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Hello everyone, welcome to another lecture as part of our ME6151 course, Computational 

Heat and Fluid Flow. So, let us get started. So, in the previous lecture, we looked at the 

implementation of higher order schemes right whether on a structured mesh or on a 

unstructured mesh essentially using the deferred correction strategy right.  

And then we looked at convection diffusion on unstructured non-orthogonal meshes, 

essentially how do we go about solving convection diffusion, we formulated the equations 

for both the upwind difference scheme as well as the central difference scheme right. 

We have also extended our kind of discuss the higher order schemes right, we extended 

them to how to solve them on unstructured meshes. For example, both the second order 

accurate scheme, second order accurate upwind scheme as well as the quick scheme right. 

Both of them we saw how do we extend them to unstructured non-orthogonal meshes 

alright, excuse me, alright. 

So, let us move on. In today’s lecture we going complete the discussion on convection, 



 

 

because the only thing that is remaining is the boundary conditions for convection. So, we 

are going look at that. And then that essentially finishes the chapter on convection diffusion 

ok.  
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Then the next chapter is actually on the linear solvers, but most of the linear solvers part 

we have already discussed. So, we will skip that for now and we will move on to the 

chapter afterwards that is the final chapter that is basically the discretization or the solution 

of fluid flow equation, so that is the final chapter.  

So, once we finish the fluid flow equations, we will come back to the linear solvers chapter 

and finish whatever is remaining there alright ok. So, let us move on with the boundary 

conditions for convection. 
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So, let us recall the boundary conditions we have for diffusion were around three types of 

boundary conditions right. We said if you have only a diffusion problem, whether it is 

steady or unsteady, you would have you specify the value of the unknown that we call it 

as Dirichlet boundary condition. If you specify the gradient of the unknown, then we said 

this is the Neumann boundary condition.  

And the third type of boundary condition, we can have is basically a combination of 

Dirichlet and Neumann that is basically a phi plus b partial phi partial n equal some C 3 or 

something that is basically your mixed boundary condition ok. So, this is these are the 

boundary conditions for if you have only a diffusion problem. Now, if we have a 

convection problem or a convection diffusion problem, then you need to specify few 

boundary conditions and those kind of fall into two categories.  

One of them belongs to the category of flow boundary conditions on the flow boundaries, 

that means, these are the boundaries where the flow can enter the domain or leave the 

domain ok. So, this is basically the boundaries where flow enters or leaves the 

computational domain ok, computational domain. And we kind of categorize them as 

inflow boundaries and outflow boundaries. So, we need to see how do we discretize the 

cells which are sharing a face on the inflow boundaries or on the outflow boundaries. 

And we have another type of boundaries that exist which are known as geometric boundary 

boundaries ok. So, these are basically walls. For example, the walls of a duct in which the 



 

 

flow is fluid is flowing ok. So, these are essentially the geometric boundaries.  

So, we need to see how do we discretize the convection term on those faces which happen 

to be on the geometric boundaries ok, essentially these are the cells which have a face on 

one of these boundaries ok. So, we will see how do we apply the boundary conditions for 

these cells here alright. Let us move on then. 
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So, let us first start off with inflow boundaries. So, inflow boundaries, so let us essentially 

we have a schematic that is drawn here. This is basically an unstructured mesh. We take 

this cell and this vertical line here is an inflow boundary ok. So, we say this is an inflow 

boundary. So, out of the three faces, two faces are interior faces and this one is a boundary 

face. Just like before we will call it as C 0 cell, and the vector connecting the cell centroid 

𝐶0 to the face centroid is 𝑒ξ. 

And the face of this boundary face is basically the area vector is pointing outwards like 

any other face. And then we also have u b bar which is the inflow velocity vector that is 

pointed towards the into the cell ok. Now, if you look at the convection term for this 

particular face, this particular face will have both the convection and the diffusion terms. 

Now, we are looking at the convection term. The convection term would read as del naught 

rho u bar phi b right.  

Now, what needs to be specified on this boundary on the inflow boundary? What needs to 



 

 

be specified essentially, because the flow is coming in we need to specify essentially 

everything that we need here right because the flow is coming in.  

So, we need to know what is the density of the fluid that is coming in, with what velocity 

the fluid is coming in, and what is the scalar that it is bringing in right; so, all these three 

needs to be known. For example, if you are solving for a convection diffusion equation, 

then u bar by default is anyway known right. The flow field is already known.  

So, we need to know of course, you know what is the scalar value that it is brining is 

brought in through the inflow boundary. So, essentially we need to specify. So, somebody 

says if there is an inflow boundary, then the density on the boundary, the velocity vector 

on the boundary as well as the ϕ𝑏 the scalar value on the boundary, all three needs to be 

specified ok. So, once we know all these three, of course, we can evaluate this term right. 

So, then how do we call a boundary as inflow boundary? A boundary will be inflow 

boundary if you are will you the velocity vector is kind of pointed inwards into the domain. 

So, that means, u⃗ b ⋅ 𝐴 𝑏 has to be less than or equal to 0, then only we can call this as an 

inflow boundary right. So, far so good, then let us move on to how do we kind of put these 

terms back into the equation. 
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So, the discrete equation for boundary cell would be basically you have the diffusion terms 

right. We have the integral terms which are the  (Γ∇ϕ)𝑓 ⋅ A⃗⃗ f. And we have the convection 



 

 

term that is (ρ𝑢⃗ ϕ)𝑓 ⋅ Af
⃗⃗  ⃗. So, these are for the interior faces, that means, in the triangular 

cell here these are basically the two interior faces ok. And then we have not written the 

boundary face here.  

So, if I write the boundary face here, you have (Γ∇ϕ)𝑏 ⋅ A⃗⃗ b minus (ρ𝑢⃗ ϕ)𝑏 ⋅ Ab
⃗⃗ ⃗⃗  , so this is 

the only for the boundary cells plus we have the source term that is 𝑆C + SPϕ0 times Δ𝑉0 

equal to 0 ok. So, this is our original regular equation, but written in terms a kind of 

separate it out in between the interior and the boundary and boundary. So, this is basically 

written for a boundary cell alright.  

Then what about the, so we know how to kind of discretize these interior faces already. 

Now, we just need to look at how do we discretize the boundary terms right. Only thing 

that needs to be understood is how do we discretize these two terms right alright. That 

means, if we look at those two terms, even the first part which corresponds to the diffusion 

is already known to us. We know how to discretize this.  

This will basically give rise to some coefficient times 
∂ϕ

∂ξ
, and some other coefficient times 

∂ϕ

∂η
 if you have an unstructured non-orthogonal mesh. Now what about the other term?  

So, (ρ𝑢⃗ ϕ)𝑏 ⋅ Ab
⃗⃗ ⃗⃗   in which rho b bar is known sorry ρ𝑏 is known, the density at the boundary 

is known, velocity is known, phi is known, and Ab
⃗⃗⃗⃗  is known right. So, we know essentially 

everything, everything is known to us. So, we can just plug it in this value, and then 

calculate evaluate the particular value of this particular term ok. 
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Now, where will this term go? Because everything is known, this term will has to go to 

the b term of the equations alright. In fact, for that matter, even this will going to the b 

term is not it? So everything will going to the b term. So, that is how we go about 

implementing inflow boundary conditions for convection diffusion ok. Let us now move 

on to the other boundary condition which is basically an out flow boundary.  

Let say if we have an outflow boundary, that means, we call this particular cell as again a 

cell that has a shades a face on the outflow. So, this vertical line here is the outflow 

boundary. As before we have a C0 cell, we have 𝑒ξ, the velocity vector of the boundary 

face is, so the area vector is pointing away, and the velocity vector is also is drawn here 

such that the flow is leaving from the cell out of the domain ok.  

So, on the left hand side, here is where we have the domain and this is the boundary alright. 

Now, what do we, when do we call this as an outflow boundary? We can call this as an 

outflow boundary if your ub⃗⃗  ⃗  ⋅ Ab
⃗⃗⃗⃗  is what, is positive right? So, both of them have to be in 

the same direction if that is positive, then we can call this as an outflow boundary.  

If these two, if the dot product of ub⃗⃗  ⃗ and Ab
⃗⃗⃗⃗  is negative, then it is an inflow boundary ok. 

Now, what needs to be specified in outflow boundary? What do we need to specify? Do 

we know anything? We do not know we cannot specify anything because whatever is 

happening inside has to leave the domain.  



 

 

So, the outflow boundary is kind of a boundary where things happening inside, needs to 

be kind of dictate what is what should actually leave through the outflow right depending 

on the flow rates and things like that ok. So, essentially we do not know yet what needs to 

be specified essentially, we cannot specify any thing as of now, because it we feel that it 

whatever is kind of computed inside needs to kind of dictate what should leave through 

the boundary ok. 
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Now, what about the terms that correspond to the boundary face? We can write a similar 

equation for this particular cell where we have contribution of the interior faces and 

contribution of the boundary face.  

We will only look at the boundary face. The boundary face is basically you have (Γ∇ϕ)𝑏 ⋅

Ab
⃗⃗ ⃗⃗   minus (ρ𝑢⃗ ϕ)𝑏 ⋅ Ab

⃗⃗ ⃗⃗   right. So, you have the diffusion part and the convection part. Now, 

for most of the fluid flow problems that we encounter, we assume that the diffusion 

component is 0 ok. So, we make this assumption. We will come back to what is the 

consequence of this assumption ok. 

So, we assume that there is no diffusion happening in the cell that is sharing a face on the 

outflow ok. So, we are assuming that this is 0. So, the only term remaining is the 

convection term as for as this is concerned. By the way the diffusion components for 

corresponding to these two interior faces are still intact ok, they are not assumed to be 0; 

only the component related to the boundary face is assumed to be 0 ok. 



 

 

Then we only have the convection term that is remaining, but because we know what is 

ub⃗⃗  ⃗  ⋅ Ab
⃗⃗⃗⃗  right ub⃗⃗  ⃗ is known from the flow field right because this is a convection diffusion 

equation.  

So, ub⃗⃗  ⃗ is already known. ub⃗⃗  ⃗  ⋅ Ab
⃗⃗⃗⃗  is positive we know that means, the flow rate that we have 

is positive. Because this is positive what will be the value for ϕ𝑏? Because this is positive 

if I use an upwind difference scheme, the ϕ𝑏 has to be equal to ϕ0 right if we use an upwind 

difference scheme ok. 

Then we can rewrite this equation as minus (ρ𝑢⃗ ϕ)𝑏 ⋅ Ab
⃗⃗ ⃗⃗   as minus F𝑏 times ϕ0 right, because 

F𝑏 itself is (ρ𝑢⃗ ϕ)𝑏 ⋅ Ab
⃗⃗ ⃗⃗  . So, this is basically your now convection term which is essentially 

evaluated for an outflow boundary ok. Now, where will this term go? This term has to go 

into the, the will it going to the b term?  

No, it will going to the a𝑃 term right essentially because you have ϕ0. So, essentially this 

has to going to the a𝑃 term or for the C0, the central coefficient right alright. Now, let us 

kind of discuss further on this particular assumption that we have made that the diffusion 

is neglected for the boundary face when compared to convection ok. 
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So, let us look at that. So, because we have assumed this to be 0, we do not need to specify 

the value of ϕ𝑏 right on the boundary. In fact, we do not even know what this value of ϕ𝑏 

will be, because it has to be dictated from what is come what is going on inside the 



 

 

boundary right.  

By making this assumption that the diffusion is 0, what we made is we go back to our cell 

Peclet number discussion, so we said that the cell Peclet number that we have kind of goes 

to infinity, because the diffusion the ratio of convection to the diffusion.  

And the diffusion we have assumed to be 0 for the local cell Peclet number for the 

particular face, then the local cell Peclet number is now tends to infinity right, that means 

this is a convection dominated flow right where we are assuming that the affects of 

diffusion are negligible only for the boundary cell between the boundary cell and the 

boundary face alright.  

Now, what the what does that mean? That means that let us say if you have a flow and this 

flow rate is let us say is quite large we have a large flow rate, that means, the convection 

is very very much dominant. As a result this phi i that we have which is the value of phi 

in the interior will get convected to the boundary right. So, ϕ𝑏 as a result will take a value 

of ϕ𝑖; and ϕ𝑖 would not be affected because of ϕ𝑏 right.  

Because of the large flow rate whatever is happening inside would be dictated by what 

will happen at the boundary right, but not the other way around. So, for all these cases 

where the flow rates are kinds of considerably large or significant compared to diffusion, 

then we can assume that the diffusion component is very small.  

However, if you realize that the flow rate is very small and if the diffusion plays a role, 

then we of course, need to specify what is the value of ϕ𝑏. Because the value of phi b 

would diffuse and affect the value of the cell centroid near the near boundaries for near 

boundary cells ok, so that needs to be accounted for.  

But otherwise for most of the problems for the convection operated problems, whatever is 

happening inside can be taken to be same as what will happen will be convected 

downstream and the diffusion affects between the cell centroid to the face are quite small 

alright. So, that is about the implementation of outflow boundary conditions. 
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Now, we have the final one more boundary condition that is basically your geometric 

boundaries, that means, we have walls such as this in which we have a flow that is going 

in. And the let us say there is a cell here we have a cell here, and this is your Ab
⃗⃗⃗⃗  again 

pointing away from the away from the cell ok. Now, at walls essentially the condition we 

have is the flow the flow cannot go normal to the face right. It cannot going normal to the 

face, that means, the flow is kind, so the wall is kind of impermeable right. 

So, for the flow, that means, the dot product of the velocity and the area vector that is ub⃗⃗  ⃗  ⋅

Ab
⃗⃗⃗⃗  would be equal to 0 right. So, here we have not made any assumption related to the 

viscosity. We have not made anything related to the related to the no slip condition ok. We 

have not made any assumption, but we are only talking about the impermeability of the 

wall which makes it ub⃗⃗  ⃗  ⋅ Ab
⃗⃗⃗⃗  equal to 0 ok. 

So, once you have ub⃗⃗  ⃗  ⋅ Ab
⃗⃗⃗⃗  equal to 0, what will be the flow rate across the wall that is of 

course 0. That means, if we look at the boundary contribution, then we have the diffusion 

term and the convection term, because the flow rate is 0, this term will go to 0 right. And 

we are only now left with the diffusion component. 
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So, this is kind of opposite behaviour to what we saw in the context of outflow boundaries 

right. Because for outflow boundaries, we said we are neglecting diffusion and the only 

thing we have is the convection; whereas for geometric boundaries we have convection 

equal to 0 and we only thing we have is the diffusion So, these are two kind of opposite 

elements.  

Then what about the diffusion component, the diffusion terms? We know that again 

somebody has to specify that it is as a Dirichlet boundary condition or using a Neumann 

boundary condition or with using a mixed boundary condition, and these can be now 

evaluated depending on the boundary condition that we already know how to essentially 

discretize these values right in order to discretize these terms whether it is a Dirichlet 

Neumann or a mixed boundary condition ok.  

So, that kind of finishes the chapter on that kind of finishes the chapter on convection 

diffusion so alright. So, let us kind of move on to the solution of fluid flow equations. So, 

in fact, if you look at the general scalar transport equation that is your general scalar 

transport equation ok, basically that is given by 
∂

∂t
(ρϕ) + ∇ ⋅ (ρ𝑢⃗ ϕ) = ∇ ⋅ (Γ∇ϕ) + 𝑆ϕ right.  

We have now seen each and every component of this equation. We have seen how to solve 

the diffusion part, the convection part and the unsteady part. So, in principle, we can now 

solve for the convection diffusion equation or a general scalar transport equation for any 

scalar phi ok. 



 

 

Now, if you look at the fluid flow equations, we basically have pretty much a similar 

structure as compared to the general scalar transport equation. Only thing is that now your 

ϕ is replaced with u right and v. So, instead of one equation, now we have two equations.  

Let us say if we consider a two-dimensional flow situation ok. If we consider two 

dimensional flow situation, then we have instead of one equation we have two equations. 

One for the x-momentum equation; the other one for the y momentum equation, in which 

ϕ is replaced with u or v ok. 

Of course, we also have continuity equation in addition to these two equations ok. So, if 

we compare what we have is the first term is 
∂

∂t
(ρu) plus ∇ ⋅ (ρ𝑢⃗ u) right. Excuse me. So, 

we have ϕ replaced with u, and then ∇ ⋅ (μ∇u) gamma replaced with μ, instead of ∇ϕ we 

have ∇u plus 𝑆u minus 
∂P

∂x
. Now, this is the something this is the term which is extra here 

right as compare to what we have in the general scalar transport equation ok. 

So, this prescribed term is something that is extra which we need to see how do we do it, 

how do we evaluate this. But otherwise this looks very similar to the general scalar 

transport equation. Of course, we also realize that the term that we have here this is 

basically your 𝑆u right this is we have written it as source.  

But this contains what? This contains the, this contains the not only the body force term 

right, but also it contains all other the miscellaneous derivatives that were coming out 

which were kind of not written here right. It contains several velocity gradient terms as 

well. 

Now, we know that if we assume a constant viscosity right, if we assume a constant 

viscosity and if we assume the flow to be incompressible, then we know that 𝑆u will have 

only the body force component, because every other term the miscellaneous derivatives of 

velocity gradients would all go to 0 right. They will all go to 0 by because of the 

conservation of mass equation ok.  

So, we realize that alright, but any way those will not cause an issue in terms of the solution 

algorithm whether we have constant viscosity or not, it does not matter. We can still go 

ahead with the calculation of the source term by incorporating both the body force, and all 

other miscellaneous velocity gradient terms alright. 
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So, how do we now discretize the momentum equation? So, we would like to get kind of 

get started with a steady momentum equation ok. We do not want to do the unsteady as of 

now. So, let us make some approximations. The approximations we make are basically the 

flow is steady, and it is also incompressible, and the fluid we assume is basically a 

Newtonian fluid that means whose shear stresses are proportional to the strain rates ok.  

So, we make these assumptions, and then go ahead with the solution of the fluid flow 

equations. We also assume to begin with a uniform or a structured mesh which is basically 

given by our regular Cartesian mesh basically that is cell P, and we have east and west 

cells, and the north and the south cells ok. And the width of the cell P for which we want 

write the discrete equations is basically given by Δ𝑥 times Δ𝑦 ok.  

Then what are the equations we have? If we consider steady flow, we do not have the 

∂

∂t
(ρu) term is gone. So, only thing is we have the convection term that is ∇ ⋅ (ρ𝑢⃗ u) equals 

the diffusion term is ∇ ⋅ (μ∇u) plus 𝑆u minus we have essentially minus 
∂P

∂x
 right, minus 

∂P

∂x
 

that I have written it as in terms of ∇P. We can write it as −î ⋅ ∇P right. This is basically 

evaluates to 
∂P

∂x
.  

Similarly the y-momentum equation is basically ∇ ⋅ (ρ𝑢⃗ v) equals ∇ ⋅ (μ∇v) plus 𝑆v minus 

ĵ ⋅ ∇P ok, so that is your y-momentum equation which is basically minus 
∂P

∂y
 ok. Now, we 

realize that the 𝑆u and 𝑆v do not just contain the body force terms. They also contain all 



 

 

the miscellaneous velocity gradient terms which we did not write in the viscous terms here 

ok.  

And depending on the value of the viscosity we take all other terms would actually go to 

0 as well that is the that possibility is also there alright. Let us move on then. Then if we 

want to apply finite volume method to these two equations, we know that we can solve for 

these just like the way we have done before.  

So, we know how to apply the finite volume method for the convection term and for the 

diffusion term and for the source terms. Only thing we do not know or we have not done 

is basically the pressure gradient term. So, let us look at only this term. Apply finite volume 

method for this, and then plug it back into this equation and write the complete general 

discrete equation afterwards ok. 

So, we are only focusing right now on the grad p term. So, if we were to apply finite 

volume method, the first step is to integrate it on a controlled volume. So, if we take Δ𝑉 is 

the volume of the cell P, so this will be integral Δ𝑉, ∇P dV right. Again invoking Gauss 

divergence theorem, we can write this as integral over the control surface P𝑢⃗  that equals 

assuming that the pressure on the faces is constant.  

And, the cell centroid value or the face centroid value can be used to represent that pressure 

on the face, then if this is P𝑒 this is P𝑤. Similarly, P𝑛 and P𝑠, then we can write this as a 

summation of all the faces east, west, north, south 𝑃𝑓Af
⃗⃗  ⃗ that is the pressure on the each of 

the faces times the Af
⃗⃗  ⃗ ok. 
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Now, if we go back to the x-momentum equation, then what we have is we have not just 

∇P, we have −i ̂ ⋅ ∇P. So, that means, whatever we got here, we need to take a dot product 

with −i ̂ok. So, that means, going back to the x-momentum equation the term we have is 

−i ̂ ⋅ ∇P dV integral Δ𝑉 this is basically −i ̂dot summation f, 𝑃𝑓Af
⃗⃗  ⃗ ok, where f is east, west, 

north, south ok. 

Now, what about Af
⃗⃗  ⃗? What are the values for area vectors for faces? We know that Ae

⃗⃗  ⃗ 

equals Δ𝑦î; Aw
⃗⃗ ⃗⃗   would be −Δ𝑦i;̂ An

⃗⃗⃗⃗  would be Δ𝑥ĵ, and As
⃗⃗  ⃗ would be −Δ𝑥j ̂ok. So, essentially 

if we take a dot product with −i ̂only terms that survive out of this equation are the east 

and west, because the north and south contain 𝑗 quantities which will give you 0 when you 

take a dot product with −i ̂right.  

That means only thing survives is basically the east and west terms. So, we have minus 

𝑃𝑒 Ae
⃗⃗ ⃗⃗  dotted with î minus 𝑃𝑤 Aw

⃗⃗ ⃗⃗  ⃗ dotted with î. Ae
⃗⃗  ⃗ dotted with î is basically Δ𝑦; Aw

⃗⃗ ⃗⃗   dotted 

with î is your −Δ𝑦, basically makes this as a positive. So, what we have is Δ𝑦 times 𝑃𝑤  

minus 𝑃𝑒  ok. So, that is how you get for the pressure gradient term in the x-momentum 

equation. 
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It kind of the discrete value reads as 𝑃𝑤  minus 𝑃𝑒  times Δ𝑦 ok, that means, the value of the 

pressure on the faces 𝑃𝑤  minus 𝑃𝑒  times Δ𝑦 is the evaluation of this particular quantity the 

pressure gradient coming up in the x-momentum equation alright. Then let us look at the 

y-momentum equation. So, the y-momentum equation has minus j dot this is not correct 

this should be a gradient this is ∇P right. So, this should be a grad here ok.  

So, this is basically ∇P dV, that means, which if you apply Gauss divergence theorem, this 

will come to −j ̂dotted with sigma 𝑃𝑓Af
⃗⃗  ⃗ ok. And again all the faces are east, west and north 

and south ok. Again we realize that because we are taking a inner product with ĵ only terms 

that survive here are the north and south, because they are the once which have ĵ with them; 

that means we get minus 𝑃𝑛An
⃗⃗ ⃗⃗  dot ĵ minus 𝑃𝑛An

⃗⃗ ⃗⃗  dot ĵ ok.  

So, As
⃗⃗  ⃗ is basically your −Δ𝑥j,̂ and this is Δ𝑥ĵ. As a result this will be only 𝑠 minus 𝑃𝑛 times 

Δ𝑥 ok. So, where pressure on the south face minus pressure on the north face times delta 

x is what we get alright, that kind of completes the discretization of the x and y-momentum 

equations, the pressure terms that we represent gradient terms that we get. 
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And we are now in a position to kind of write down the discrete equations. So, if we start 

off the steady Newtonian incompressible flow equations are given here which is ∇ ⋅

(ρ𝑢⃗ u) = ∇ ⋅ (μ∇u) − î ⋅ ∇P + 𝑆u. And the other one is ∇ ⋅ (ρ𝑢⃗ v) = ∇ ⋅ (μ∇v) − ĵ ⋅ ∇P + 𝑆v 

right.  

So, if we plan to apply finite volume method for this, then just like the way we have done 

it for the general scalar transport equation, we can write the final discrete equation as 

𝑎𝑃ϕ𝑃 = ∑  anbϕ𝑛𝑏 + 𝑏 right. Similarly, because the quantity here we are solving for is u, 

so we can write this as 𝑎𝑃u𝑃 = ∑  anbu𝑛𝑏 + 𝑏𝑢 ok.  

So, we have this quantity. And then plus the pressure gradient term here would reflect to 

something like this which is basically 𝑃𝑤 minus 𝑃𝑒 times Δ𝑦. So, we got basically this is 

now our extra term right. So, basically this is our extra term as compared to the general 

scalar transport equation ok. 

Similarly, the y-momentum equation can be written in the discrete counterpart as 𝑎𝑃v𝑃 =

∑  anbv𝑛𝑏 + 𝑣𝑢 coming from the source term plus we have for the pressure gradient we get 

𝑃𝑠 minus 𝑃𝑛 time Δ𝑥 ok. Now, remember that these are basically evaluated on the faces. 

So, these are the face values alright. 
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Now, of course, can we solve for these equations 1 and 2? We cannot solve for them as it 

is, because these are 2 equations and the unknowns are 3 right, because your  u v and 

pressure – 3, there are three unknowns, but these are only two equations. What is the third 

equation? The third equation is what we have not written down here is the continuity 

equation ok.  

So, essentially in principle we have three equations and three unknowns. So, we can 

possibly solve for this thing. But if somebody gives you pressure field, if the pressure field 

is known then these two equations can be solved right. If the pressure field is known, then 

it is a matter of calculating putting it back here, and calculate from the first and second 

equation the u and v velocity fields ok. 

So, now, remember that up till now when we had the general scalar transport equation our 

u was known right it was a known field, but whereas here in the fluid flow equations the 

u bar the velocity field itself is unknown right, and also the pressure field itself is unknown 

ok, that is what we are trying to solve from the given boundary conditions for the domain 

that we identified ok. 

Now, because pressure at the faces is required, we cannot we do not know these values 

because pressure is assumed to be stored at the cell centers. So, we need a profile 

assumption for pressure. So, if we assume that the pressure varies linearly and we assume 

a uniform grid, then the pressure on east face can be written as p capital E plus p p by 2.  



 

 

Similarly p little w would be written as 𝑃𝑊 plus 𝑃𝑃 by 2. And p on the north face can be 

written as 𝑃𝑁 plus 𝑃𝑃 by 2. And P on the south face can be written as 𝑃𝑆 plus 𝑃𝑃 by 2 ok. 

So, we essentially made a arithmetic average. 

If we substitute these back into the this equation, then what we get is because 𝑃𝑃 comes up 

in both equations and there is a minus here, we end with 𝑃𝑊 minus 𝑃𝐸 times Δ𝑦 for the 

pressure gradient term in the x-momentum equation. And for the y-momentum equation, 

we end up with 𝑃𝑆 minus 𝑃𝑁 times Δ𝑥, so this is 𝑃𝑆 minus 𝑃𝑁 times Δ𝑥 alright.  

So, now we kind of translated the pressure gradient terms into cell pressures ok, from the 

face pressures to cell pressures is what we have done. So, these are now in terms of cell 

pressure values ok. 
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So, essentially if we know the pressure field that is we know the p x, y somebody gives 

you gives us, then we can use the equations above, and of course, calculate for the velocity 

field ok. But the pressure field itself is an unknown and the only equation that we have at 

our disposal is the continuity equation ok.  

So, the continuity equation is the only one that we have remaining using which we hope 

to obtain the pressure field. However, we realize that the continuity equation is not an 

equation for pressure ok, so that is the first difficulty. 

So, this difficulty 1 is basically we have three equations and three unknowns. However, 



 

 

the first equation is the x-momentum equation is an equation for u, the y-momentum is an 

equation for v. Whereas the equation for pressure is missing because the continuity 

equation is also in terms of velocities, but not in terms of pressure ok. So, this is the first 

difficulty we encounter when we try to solve a fluid flow equations for incompressible 

flow ok. 

Because you remember if you if the flow is compressible, then we know that this is also a 

extra thing that is basically your density comes into play, and it through a equation of state 

the density and pressure are related. As a result things will be little more are actually 

balanced right which is not the case for incompressible flows because density is now 

constant ok, so that is the first difficulty. We will see what are the difficulties, we will get 

in order to solve the fluid flow equations for the incompressible range ok. 
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Then let us look at the discrete continuity equation. So, the continuity equation is basically 

∂ρ

∂t
+ ∇ ⋅ (ρ𝑢⃗ ) = 00, because we are assuming steady flow this particular term here is 

assumed to be this is basically goes to 0. So, we do not have 
∂ρ

∂t
. So, only thing we have is 

∇ ⋅ (ρ𝑢⃗ ) = 0 ok. 

So, if we apply finite volume method, again we integrate this on the cell P that is integral 

Δ𝑉 this is integrated on cell P ok. So, ∇ ⋅ (ρ𝑢⃗ ) dV equals 0, that means, equals integral 

control surface applying invoking Gauss divergence theorem we can write this as (ρ𝑢⃗ ) ⋅



 

 

dA⃗⃗ ⃗⃗  ⃗. Again assuming that ρ𝑢⃗  is can be representing using the face value, and that is face 

centroid value is the representative for the entire face we can write this as (ρ𝑢⃗ )𝑓 ⋅ Af
⃗⃗  ⃗ ok. 
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So, basically we have all the four faces – east, west, north, south. And this quantity would 

be equal to this is basically equal to 0 that is your discrete continuity equation ok. Now, 

we have four faces. So, we can expand this Af
⃗⃗  ⃗ is known 𝐴𝑒, 𝐴𝑤 is basically known similarly 

𝐴𝑛, 𝐴𝑠.  

So, this can be extra expanded. And what we get is you get (ρ𝑢)𝑒Δ𝑦 minus (ρ𝑢)𝑤Δ𝑦 

because Aw
⃗⃗ ⃗⃗   is −i ̂Δ𝑦, and similarly (ρ𝑣)𝑛Δ𝑥 minus (ρ𝑣)𝑠Δ𝑥. This is nothing but if you go 

back to the convection discussion this is nothing but F𝑒 minus F𝑤 plus F𝑛 minus F𝑠 right. 

So, this is basically conservation of mass or continuity equation. This should be equal to 

0 right.  

So, this is your discrete continuity equation right in terms of the face velocities. The 

velocities are now 𝑢𝑒, 𝑢𝑤, 𝑣𝑛 and 𝑣𝑠 which of course are not available right. Because, we 

are not we have not been storing velocities of the faces. We have been only storing 

velocities at the cell centroid that is velocity is only available at cell P centroid E, W, N 

and S all capital letters here. 

So, if we assume uniform grid for the sake of simplicity, then we can write again using 

linear interpolation (ρ𝑢)𝑒 as density is anyway constant. So, this we can write it as 



 

 

(
(ρ𝑢)𝑃+(ρ𝑢)𝐸

2
) ok. Similarly, (ρ𝑢)𝑤 as (

(ρ𝑢)𝑊+(ρ𝑢)𝑃

2
). 
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And similarly (ρ𝑣)𝑛 can be written as (
(ρ𝑣)𝑃+(ρ𝑣)𝑁

2
); and (ρ𝑣)𝑠 can be written as 

(
(ρ𝑣)𝑆+(ρ𝑣)𝑃

2
) ok. So, we have all these four values which we can substitute back here. And 

as you can see again similar to the pressure case the (ρ𝑢)𝑃 gets cancelled with the (ρ𝑢)𝑃 

here, because we have a east minus west. So, this gets cancel.  

As a result we get (ρ𝑢)𝐸Δ𝑦 right, so discrete continuity equation of cell P would read as 

(ρ𝑢)𝐸Δ𝑦 minus (ρ𝑢)𝑊Δ𝑦 plus (ρ𝑣)𝑁Δ𝑥 minus (ρ𝑣)𝑆Δ𝑥 ok. So, this is your now discrete 

continuity equation for cell P ok.  

Now, what we see here is that this is surprising because we have written equation for cell 

P, and none of the values of u𝑃 or v𝑃 which correspond to the cell P featuring the above 

equation. So, this equation is an equation for cell P, but the values of that particular cell 

are not there in the equation ok. So, that is something has very strong implications ok. 

So, we will see what implication does it have because of this thing ok. So, essentially 

because of the u𝑃, v𝑃 not featuring in the above equation, we will see that there is a major 

consequence of that a major trouble is kind of coming in the in the process of the solution 

procedure alright. That means, this kind of equation because your u𝑃, v𝑃 do not feature in 

the equation, this can actually support a checker boarded kind of velocity pattern. 
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For example, if u east and u w are of the same value; however, they are different from the 

value of u𝑃 ok. So, if u east equals u w, however they are that is not equal to u𝑃 values ok. 

Similarly, v n equals v south, but they are not equal to v𝑃, then this equation can still be 

satisfied although there are oscillations in the velocity field this equation will still give you 

a conserved continuity equation. What that means, is that basically this kind of an equation 

supports checker boarding right. 
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So, for example, if you see this is basically these are different cells ok, each of the colors 



 

 

here is a cell. So, what we have is basically this is a particular cell u equal to 30 is a cell. 

Similarly, this is the grid I think the grid is quite light here you cannot see ok. So, that 

means, u lets say if this is your p cell p cell has u equals 30. However, as you can see from 

this equation only u east and u w matter.  

So, this is 10 and this is 10, so, this 10 minus this 10 that gets that satisfies. Similarly, v 

north and v south would be 20, 20. So, as a result this gives you perfect conservation of 

mass for this kind of a checker boarded velocity right. Although, we know that the velocity 

itself in the u and v components there are oscillations right, there is a kind of a chess board 

or a checker board kind of pattern existing which is satisfied by this kind of a continuity 

equation ah, but ok.  

But we also know that we are not just solving for the continuity equation right. So, if 

continuity equation supports this kind of thing, let it be because we have the other 

equations which are the momentum equations. What about the momentum equation for u 

and v? They may not support this kind of a checker boarded velocity pattern. As a result 

this will be thrown out at some point in the solution procedure.  

However, ok, but so, but if the momentum equation for some reason sustains this pattern 

right, then this will be; this will be contained, this will be there in the final solution as well 

ok. So, because this is supported by continuity equation and if the momentum equation 

sustain this pattern for some reason, then the final u and v will contain checker boarding.  

We do not want checker boarding, because that is not something that is physical ok. The 

we do not want these kind of oscillations prevailing in the solution and still our solution 

kind of converges to some value ok. But we also recall that the pressure field itself is an 

unknown right, pressure field is an unknown. 
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And if we go back to the kind of the x-momentum equation, we know that the discrete 

equation is 𝑎𝑃u𝑃 = ∑  anbu𝑛𝑏 + 𝑏𝑢 − (P𝑊 − P𝐸)Δ𝑦 ok. So, what we see here is that the 

pressure difference term, the pressure gradient term also this also does not this also does 

not contain P𝑃 right.  

Although this is an equation for cell P, P𝑃 value does not feature here, that means, this also 

seems like it will support a checker boarded checker boarded pressure right. In which case 

if you have P𝑊 equal to P𝐸, this would give a zero pressure gradient right, which is not true 

because P𝑊 equals P𝐸, but neither of them would be equal to P𝑃 ok. 
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So, that means, if you have so with such a pressure discretization, it is possible to arrive at 

a pressure field such that the gradient of p that is this term in the momentum equations 

might cancel out the effect that is coming because of the velocities itself because of the 

u𝑛𝑏’s. As a result the velocity checker boarding could be sustained by the momentum 

equation as well ok. 

So, what we are talking about is basically you have the pressure field, the pressure field 

might have a checker boarded pattern like this essentially we have p equal to 5, p equal to 

10, p equal to 5, p equal to 10 and 5 and so on. So, essentially we have oscillatory field 

which will be seen by the x-momentum equation as what as a zero gradient pressure field. 

Because if you look at particular p, this is 5 minus 5, so this would be basically zero 

pressure gradient.  

So, this is a zero pressure gradient. As a result you would see that this momentum equation 

cannot see this pressure gradient ok. So, such a pressure boarding pressure checker 

boarding is now not seen by the velocity by the momentum equation ok. Similarly, there 

could be some pattern of pressure field which might cancel out those pressure gradients 

here might cancel out a velocity field like this.  

That means, this negated with a pressure checker boarding could give you a free run for 

your velocity and the pressure fields, such that they contain these kind of an oscillatory 

field in the final solution ok. Do you see that?  



 

 

So, the pressure oscillations could the pressure oscillations the gradient of which could 

cancel out the velocity checker boarding as a which will in term sustain the checker 

boarded velocity field not only in the continuity equation, but also in the momentum 

equations because now your pressure field might support it ok. So, you may get such a 

pressure gradient field which might cancel out the velocity checker boarding ok. 

As a result, if this happens usually if this happens when you try to solve it and as a result 

the oscillatory essentially you your final solution will have wiggles in the velocities and 

pressures. And these wiggles will manifest themselves into the divergence of the solution 

ok. So, that means, what we have seen is the oscillatory pressure field will be perceived 

by x-momentum equation as uniform pressure field right. The gradient of p is 0. 

Now, there could be some other pressure field which might cancel out the effects created 

by a checker boarded velocity field ok, which might basically help sustain this checker 

boarded velocity field through the momentum equation as well as of course through the 

continuity equations ok.  

As a result there might be some wiggles that might start showing up, these, these are the 

wiggles in the pressure and the velocities which would eventually cause divergence in the 

solution, these kind of oscillatory behaviour. And, that is exactly what happens in when 

you try to solve it the incompressible fluid flow equations when you store all the velocities 

and pressures at the cell centroids ok. 

So, this is the second difficulty that is basically the pressure and velocity get kind of they 

kind of get coupled. And in a sense they kind of support this kind of a checker boarded 

patterns in velocities and pressures which will manifest into divergence of the solution 

eventually ok. So, this is the second difficulty. The first difficulty we saw was that there is 

no equation for pressure.  

The second difficulty is that the pressure and velocity because of their coupling, they may 

together they may support a checker boarded velocity and pressure patterns in the final 

solution ok, so that is the other difficulty. So, we will see how to address these two 

difficulties when we try to solve a fluid flow equations through some algorithms that are 

there in the literature. So, that will be our topic for another lecture on another day ok.  

So, I am going to stop here. If you have any questions, let me know through e mail alright. 



 

 

Talk to you in the next lecture. 

Thank you. 


