Computational Fluid Dynamics Using Finite Volume Method
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Lecture - 34
Finite Volume Method for Convection- diffusion and fluid flow calculations
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Hello everyone, welcome to another lecture as part of our ME6151 course, Computational
Heat and Fluid Flow. So, let us get started. So, in the previous lecture, we looked at the
implementation of higher order schemes right whether on a structured mesh or on a

unstructured mesh essentially using the deferred correction strategy right.

And then we looked at convection diffusion on unstructured non-orthogonal meshes,
essentially how do we go about solving convection diffusion, we formulated the equations

for both the upwind difference scheme as well as the central difference scheme right.

We have also extended our kind of discuss the higher order schemes right, we extended
them to how to solve them on unstructured meshes. For example, both the second order
accurate scheme, second order accurate upwind scheme as well as the quick scheme right.
Both of them we saw how do we extend them to unstructured non-orthogonal meshes

alright, excuse me, alright.

So, let us move on. In today’s lecture we going complete the discussion on convection,



because the only thing that is remaining is the boundary conditions for convection. So, we

are going look at that. And then that essentially finishes the chapter on convection diffusion

ok.
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Then the next chapter is actually on the linear solvers, but most of the linear solvers part

we have already discussed. So, we will skip that for now and we will move on to the

chapter afterwards that is the final chapter that is basically the discretization or the solution

of fluid flow equation, so that is the final chapter.

So, once we finish the fluid flow equations, we will come back to the linear solvers chapter

and finish whatever is remaining there alright ok. So, let us move on with the boundary

conditions for convection.
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So, let us recall the boundary conditions we have for diffusion were around three types of
boundary conditions right. We said if you have only a diffusion problem, whether it is
steady or unsteady, you would have you specify the value of the unknown that we call it
as Dirichlet boundary condition. If you specify the gradient of the unknown, then we said

this is the Neumann boundary condition.

And the third type of boundary condition, we can have is basically a combination of
Dirichlet and Neumann that is basically a phi plus b partial phi partial n equal some C 3 or
something that is basically your mixed boundary condition ok. So, this is these are the
boundary conditions for if you have only a diffusion problem. Now, if we have a
convection problem or a convection diffusion problem, then you need to specify few

boundary conditions and those kind of fall into two categories.

One of them belongs to the category of flow boundary conditions on the flow boundaries,
that means, these are the boundaries where the flow can enter the domain or leave the
domain ok. So, this is basically the boundaries where flow enters or leaves the
computational domain ok, computational domain. And we kind of categorize them as
inflow boundaries and outflow boundaries. So, we need to see how do we discretize the

cells which are sharing a face on the inflow boundaries or on the outflow boundaries.

And we have another type of boundaries that exist which are known as geometric boundary

boundaries ok. So, these are basically walls. For example, the walls of a duct in which the



flow is fluid is flowing ok. So, these are essentially the geometric boundaries.

So, we need to see how do we discretize the convection term on those faces which happen
to be on the geometric boundaries ok, essentially these are the cells which have a face on
one of these boundaries ok. So, we will see how do we apply the boundary conditions for
these cells here alright. Let us move on then.

(Refer Slide Time: 04:18)

BLGE EN YHEEEEqQn

)0 7Taomemubd QP -co MENNENENEOON sns 2

) aq@%gﬂ? 2) Gensliio boundasies - ual

- (3 Mixed

“\‘H)Ow boundw»:’: Convechion Lim \V/(Cﬁ)b

A by, s y {55 Speccpid)
T, 4 -
I U, A S0 Inflons
.
J
flow is coming in --|

inflow

So, let us first start off with inflow boundaries. So, inflow boundaries, so let us essentially
we have a schematic that is drawn here. This is basically an unstructured mesh. We take
this cell and this vertical line here is an inflow boundary ok. So, we say this is an inflow
boundary. So, out of the three faces, two faces are interior faces and this one is a boundary
face. Just like before we will call it as C 0 cell, and the vector connecting the cell centroid

Co to the face centroid is e;.

And the face of this boundary face is basically the area vector is pointing outwards like
any other face. And then we also have u b bar which is the inflow velocity vector that is
pointed towards the into the cell ok. Now, if you look at the convection term for this
particular face, this particular face will have both the convection and the diffusion terms.
Now, we are looking at the convection term. The convection term would read as del naught

rho u bar phi b right.

Now, what needs to be specified on this boundary on the inflow boundary? What needs to



be specified essentially, because the flow is coming in we need to specify essentially
everything that we need here right because the flow is coming in.

So, we need to know what is the density of the fluid that is coming in, with what velocity
the fluid is coming in, and what is the scalar that it is bringing in right; so, all these three
needs to be known. For example, if you are solving for a convection diffusion equation,

then u bar by default is anyway known right. The flow field is already known.

So, we need to know of course, you know what is the scalar value that it is brining is
brought in through the inflow boundary. So, essentially we need to specify. So, somebody
says if there is an inflow boundary, then the density on the boundary, the velocity vector
on the boundary as well as the ¢, the scalar value on the boundary, all three needs to be
specified ok. So, once we know all these three, of course, we can evaluate this term right.

So, then how do we call a boundary as inflow boundary? A boundary will be inflow
boundary if you are will you the velocity vector is kind of pointed inwards into the domain.
So, that means, Ty, - A, has to be less than or equal to 0, then only we can call this as an
inflow boundary right. So, far so good, then let us move on to how do we kind of put these

terms back into the equation.
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So, the discrete equation for boundary cell would be basically you have the diffusion terms

right. We have the integral terms which are the (I'V) - A;. And we have the convection



term that is (ptid) - Ay. So, these are for the interior faces, that means, in the triangular
cell here these are basically the two interior faces ok. And then we have not written the

boundary face here.

So, if | write the boundary face here, you have (T'Vé), - A, minus (pzid), - Ap, SO this is
the only for the boundary cells plus we have the source term that is S¢ + Spd, times AV,
equal to 0 ok. So, this is our original regular equation, but written in terms a kind of
separate it out in between the interior and the boundary and boundary. So, this is basically
written for a boundary cell alright.

Then what about the, so we know how to kind of discretize these interior faces already.
Now, we just need to look at how do we discretize the boundary terms right. Only thing
that needs to be understood is how do we discretize these two terms right alright. That
means, if we look at those two terms, even the first part which corresponds to the diffusion

is already known to us. We know how to discretize this.

a—“’, and some other coefficient times

This will basically give rise to some coefficient times T

g—f]’ if you have an unstructured non-orthogonal mesh. Now what about the other term?

So, (ptid), - Ay in which rho b bar is known sorry p,, is known, the density at the boundary
is known, velocity is known, phi is known, and A, is known right. So, we know essentially
everything, everything is known to us. So, we can just plug it in this value, and then

calculate evaluate the particular value of this particular term ok.



(Refer Slide Time: 08:44)

;_,.,4 b & :F\i‘n‘,,,,q.:
/O /7TADmeERN GO -« oNNNNNEENEODON sns 2
b term =T

Oufphe bomborg: hat iy spuid v o il
Bouwfe»:] ?

Sng
o b ™ A-i 50
Tetmg W{)b'ndd\j f éounda.? fae.:

(M5 -(fied,). 4
outflow boundary \/\/\N

0

N

=/

Now, where will this term go? Because everything is known, this term will has to go to
the b term of the equations alright. In fact, for that matter, even this will going to the b
term is not it? So everything will going to the b term. So, that is how we go about
implementing inflow boundary conditions for convection diffusion ok. Let us now move

on to the other boundary condition which is basically an out flow boundary.

Let say if we have an outflow boundary, that means, we call this particular cell as again a
cell that has a shades a face on the outflow. So, this vertical line here is the outflow
boundary. As before we have a C, cell, we have e, the velocity vector of the boundary
face is, so the area vector is pointing away, and the velocity vector is also is drawn here

such that the flow is leaving from the cell out of the domain ok.

So, on the left hand side, here is where we have the domain and this is the boundary alright.
Now, what do we, when do we call this as an outflow boundary? We can call this as an
outflow boundary if your u, - A, is what, is positive right? So, both of them have to be in

the same direction if that is positive, then we can call this as an outflow boundary.

If these two, if the dot product of u; and A, is negative, then it is an inflow boundary ok.
Now, what needs to be specified in outflow boundary? What do we need to specify? Do
we know anything? We do not know we cannot specify anything because whatever is

happening inside has to leave the domain.



So, the outflow boundary is kind of a boundary where things happening inside, needs to
be kind of dictate what is what should actually leave through the outflow right depending
on the flow rates and things like that ok. So, essentially we do not know yet what needs to
be specified essentially, we cannot specify any thing as of now, because it we feel that it
whatever is kind of computed inside needs to kind of dictate what should leave through
the boundary ok.
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Now, what about the terms that correspond to the boundary face? We can write a similar
equation for this particular cell where we have contribution of the interior faces and

contribution of the boundary face.

We will only look at the boundary face. The boundary face is basically you have (I'Vd),, -
Ay minus (ptid), - Ay right. So, you have the diffusion part and the convection part. Now,
for most of the fluid flow problems that we encounter, we assume that the diffusion
component is 0 ok. So, we make this assumption. We will come back to what is the

consequence of this assumption ok.

So, we assume that there is no diffusion happening in the cell that is sharing a face on the
outflow ok. So, we are assuming that this is 0. So, the only term remaining is the
convection term as for as this is concerned. By the way the diffusion components for
corresponding to these two interior faces are still intact ok, they are not assumed to be 0;

only the component related to the boundary face is assumed to be 0 ok.



Then we only have the convection term that is remaining, but because we know what is
u, - A, right ug is known from the flow field right because this is a convection diffusion

equation.

So, g, is already known. o, - A, is positive we know that means, the flow rate that we have
IS positive. Because this is positive what will be the value for ¢,? Because this is positive
if I use an upwind difference scheme, the ¢,, has to be equal to ¢, right if we use an upwind
difference scheme ok.

Then we can rewrite this equation as minus (pzid),, - A, as minus F, times ¢, right, because
F, itself is (ptid), - Ap. S0, this is basically your now convection term which is essentially
evaluated for an outflow boundary ok. Now, where will this term go? This term has to go

into the, the will it going to the b term?

No, it will going to the a, term right essentially because you have ¢,. So, essentially this
has to going to the a, term or for the C,, the central coefficient right alright. Now, let us
kind of discuss further on this particular assumption that we have made that the diffusion

is neglected for the boundary face when compared to convection ok.
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So, let us look at that. So, because we have assumed this to be 0, we do not need to specify
the value of ¢, right on the boundary. In fact, we do not even know what this value of ¢,

will be, because it has to be dictated from what is come what is going on inside the



boundary right.

By making this assumption that the diffusion is 0, what we made is we go back to our cell
Peclet number discussion, so we said that the cell Peclet number that we have kind of goes

to infinity, because the diffusion the ratio of convection to the diffusion.

And the diffusion we have assumed to be O for the local cell Peclet number for the
particular face, then the local cell Peclet number is now tends to infinity right, that means
this is a convection dominated flow right where we are assuming that the affects of
diffusion are negligible only for the boundary cell between the boundary cell and the
boundary face alright.

Now, what the what does that mean? That means that let us say if you have a flow and this
flow rate is let us say is quite large we have a large flow rate, that means, the convection
is very very much dominant. As a result this phi i that we have which is the value of phi
in the interior will get convected to the boundary right. So, ¢, as a result will take a value
of ¢;; and ¢; would not be affected because of ¢, right.

Because of the large flow rate whatever is happening inside would be dictated by what
will happen at the boundary right, but not the other way around. So, for all these cases
where the flow rates are kinds of considerably large or significant compared to diffusion,

then we can assume that the diffusion component is very small.

However, if you realize that the flow rate is very small and if the diffusion plays a role,
then we of course, need to specify what is the value of ¢,. Because the value of phi b
would diffuse and affect the value of the cell centroid near the near boundaries for near

boundary cells ok, so that needs to be accounted for.

But otherwise for most of the problems for the convection operated problems, whatever is
happening inside can be taken to be same as what will happen will be convected
downstream and the diffusion affects between the cell centroid to the face are quite small

alright. So, that is about the implementation of outflow boundary conditions.
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Now, we have the final one more boundary condition that is basically your geometric
boundaries, that means, we have walls such as this in which we have a flow that is going
in. And the let us say there is a cell here we have a cell here, and this is your A, again
pointing away from the away from the cell ok. Now, at walls essentially the condition we
have is the flow the flow cannot go normal to the face right. It cannot going normal to the

face, that means, the flow is kind, so the wall is kind of impermeable right.

So, for the flow, that means, the dot product of the velocity and the area vector that is u, -
A, would be equal to 0 right. So, here we have not made any assumption related to the
viscosity. We have not made anything related to the related to the no slip condition ok. We
have not made any assumption, but we are only talking about the impermeability of the

wall which makes it u, - A, equal to 0 ok.

So, once you have u; - A, equal to 0, what will be the flow rate across the wall that is of
course 0. That means, if we look at the boundary contribution, then we have the diffusion
term and the convection term, because the flow rate is 0, this term will go to 0 right. And

we are only now left with the diffusion component.
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So, this is kind of opposite behaviour to what we saw in the context of outflow boundaries
right. Because for outflow boundaries, we said we are neglecting diffusion and the only
thing we have is the convection; whereas for geometric boundaries we have convection
equal to 0 and we only thing we have is the diffusion So, these are two kind of opposite

elements.

Then what about the diffusion component, the diffusion terms? We know that again
somebody has to specify that it is as a Dirichlet boundary condition or using a Neumann
boundary condition or with using a mixed boundary condition, and these can be now
evaluated depending on the boundary condition that we already know how to essentially
discretize these values right in order to discretize these terms whether it is a Dirichlet

Neumann or a mixed boundary condition ok.

So, that kind of finishes the chapter on that kind of finishes the chapter on convection
diffusion so alright. So, let us kind of move on to the solution of fluid flow equations. So,

in fact, if you look at the general scalar transport equation that is your general scalar

transport equation ok, basically that is given by%(pd)) + V- (pud) = V- (TVd) + S, right.

We have now seen each and every component of this equation. We have seen how to solve
the diffusion part, the convection part and the unsteady part. So, in principle, we can now
solve for the convection diffusion equation or a general scalar transport equation for any

scalar phi ok.



Now, if you look at the fluid flow equations, we basically have pretty much a similar
structure as compared to the general scalar transport equation. Only thing is that now your
¢ is replaced with u right and v. So, instead of one equation, now we have two equations.

Let us say if we consider a two-dimensional flow situation ok. If we consider two
dimensional flow situation, then we have instead of one equation we have two equations.
One for the x-momentum equation; the other one for the y momentum equation, in which

¢ is replaced with u or v ok.

Of course, we also have continuity equation in addition to these two equations ok. So, if
we compare what we have is the first term is %(pu) plus V - (piiu) right. Excuse me. So,
we have ¢ replaced with u, and then V - (uVu) gamma replaced with p, instead of V¢ we
have Vu plus S, minus g Now, this is the something this is the term which is extra here

right as compare to what we have in the general scalar transport equation ok.

So, this prescribed term is something that is extra which we need to see how do we do it,
how do we evaluate this. But otherwise this looks very similar to the general scalar
transport equation. Of course, we also realize that the term that we have here this is

basically your S, right this is we have written it as source.

But this contains what? This contains the, this contains the not only the body force term
right, but also it contains all other the miscellaneous derivatives that were coming out
which were kind of not written here right. It contains several velocity gradient terms as

well.

Now, we know that if we assume a constant viscosity right, if we assume a constant
viscosity and if we assume the flow to be incompressible, then we know that S, will have
only the body force component, because every other term the miscellaneous derivatives of
velocity gradients would all go to 0 right. They will all go to 0 by because of the

conservation of mass equation ok.

So, we realize that alright, but any way those will not cause an issue in terms of the solution
algorithm whether we have constant viscosity or not, it does not matter. We can still go
ahead with the calculation of the source term by incorporating both the body force, and all

other miscellaneous velocity gradient terms alright.
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So, how do we now discretize the momentum equation? So, we would like to get kind of
get started with a steady momentum equation ok. We do not want to do the unsteady as of
now. So, let us make some approximations. The approximations we make are basically the
flow is steady, and it is also incompressible, and the fluid we assume is basically a

Newtonian fluid that means whose shear stresses are proportional to the strain rates ok.

So, we make these assumptions, and then go ahead with the solution of the fluid flow
equations. We also assume to begin with a uniform or a structured mesh which is basically
given by our regular Cartesian mesh basically that is cell P, and we have east and west
cells, and the north and the south cells ok. And the width of the cell P for which we want

write the discrete equations is basically given by Ax times Ay ok.

Then what are the equations we have? If we consider steady flow, we do not have the
%(pu) term is gone. So, only thing is we have the convection term that is V - (puiu) equals
the diffusion term is V- (uVu) plus S, minus we have essentially minus % right, minus Z—Z

that | have written it as in terms of VP. We can write it as —1 - VP right. This is basically

oP
evaluates to —.
ox

Similarly the y-momentum equation is basically V- (puv) equals V - (uvv) plus S, minus

j - VP ok, so that is your y-momentum equation which is basically minus Z—g ok. Now, we

realize that the S, and S, do not just contain the body force terms. They also contain all



the miscellaneous velocity gradient terms which we did not write in the viscous terms here
ok.

And depending on the value of the viscosity we take all other terms would actually go to
0 as well that is the that possibility is also there alright. Let us move on then. Then if we
want to apply finite volume method to these two equations, we know that we can solve for
these just like the way we have done before.

So, we know how to apply the finite volume method for the convection term and for the
diffusion term and for the source terms. Only thing we do not know or we have not done
is basically the pressure gradient term. So, let us look at only this term. Apply finite volume
method for this, and then plug it back into this equation and write the complete general
discrete equation afterwards ok.

So, we are only focusing right now on the grad p term. So, if we were to apply finite
volume method, the first step is to integrate it on a controlled volume. So, if we take AV is
the volume of the cell P, so this will be integral AV, VP dV right. Again invoking Gauss
divergence theorem, we can write this as integral over the control surface Pu that equals

assuming that the pressure on the faces is constant.

And, the cell centroid value or the face centroid value can be used to represent that pressure
on the face, then if this is P, this is P,. Similarly, P, and P, then we can write this as a

summation of all the faces east, west, north, south PA; that is the pressure on the each of

the faces times the A; ok.
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Now, if we go back to the x-momentum equation, then what we have is we have not just
VP, we have —i - VP. So, that means, whatever we got here, we need to take a dot product
with —i ok. So, that means, going back to the x-momentum equation the term we have is
—i-vP dv integral AV this is basically —i dot summation f, PfE ok, where f is east, west,

north, south ok.

Now, what about A;? What are the values for area vectors for faces? We know that A,
equals Ayt; A,, would be —Ayt; A, would be Axj, and A, would be —Axj ok. So, essentially
if we take a dot product with —i only terms that survive out of this equation are the east
and west, because the north and south contain j quantities which will give you 0 when you

take a dot product with —1 right.

That means only thing survives is basically the east and west terms. So, we have minus
P, A, dotted with 1 minus P, A,, dotted with 1. A, dotted with 1 is basically Ay; A,, dotted
with 1 is your —Ay, basically makes this as a positive. So, what we have is Ay times P,
minus P, ok. So, that is how you get for the pressure gradient term in the x-momentum

equation.



(Refer Slide Time: 26:27)

Bia Ba -k ()aAE8EEQT
20 /7TiDomeEX QR -eo AENNEEEREO0N sos 1

= (fa-le) 2}
Fa e U-mwmﬁm ﬂwﬁ”‘“ |
I.\ -
-j.ijdw P
falV) 'f&Q,IJ'JM,x

= - Fn(zuj) ”?s(t‘rs 3)
- LPS/'P'K) _Aj

It kind of the discrete value reads as P,, minus P, times Ay ok, that means, the value of the
pressure on the faces P,, minus P, times Ay is the evaluation of this particular quantity the
pressure gradient coming up in the x-momentum equation alright. Then let us look at the
y-momentum equation. So, the y-momentum equation has minus j dot this is not correct

this should be a gradient this is VP right. So, this should be a grad here ok.

So, this is basically VP dV, that means, which if you apply Gauss divergence theorem, this
will come to —j dotted with sigma P,«A? ok. And again all the faces are east, west and north
and south ok. Again we realize that because we are taking a inner product with j only terms
that survive here are the north and south, because they are the once which have j with them;

that means we get minus P,A,, dotj minus P,A, dotj ok.

So, A, is basically your —Axj, and this is Axj. As a result this will be only s minus P, times
Ax ok. So, where pressure on the south face minus pressure on the north face times delta
X is what we get alright, that kind of completes the discretization of the x and y-momentum

equations, the pressure terms that we represent gradient terms that we get.
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And we are now in a position to kind of write down the discrete equations. So, if we start
off the steady Newtonian incompressible flow equations are given here which is V-
(ptiu) = V- (uVu) —1-VP + S,. And the other one is V- (puv) =V-(uvv) —j-VP + S,
right.

So, if we plan to apply finite volume method for this, then just like the way we have done
it for the general scalar transport equation, we can write the final discrete equation as
apdp = X app,dnp + b right. Similarly, because the quantity here we are solving for is u,

S0 we can write this as apup = Y, appuyy, + by, OK.

So, we have this quantity. And then plus the pressure gradient term here would reflect to
something like this which is basically P, minus P, times Ay. So, we got basically this is
now our extra term right. So, basically this is our extra term as compared to the general

scalar transport equation ok.

Similarly, the y-momentum equation can be written in the discrete counterpart as apvp =
Y anpVap + v, coming from the source term plus we have for the pressure gradient we get
P, minus P, time Ax ok. Now, remember that these are basically evaluated on the faces.

So, these are the face values alright.
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Now, of course, can we solve for these equations 1 and 2? We cannot solve for them as it
is, because these are 2 equations and the unknowns are 3 right, because your u v and
pressure — 3, there are three unknowns, but these are only two equations. What is the third
equation? The third equation is what we have not written down here is the continuity

equation ok.

So, essentially in principle we have three equations and three unknowns. So, we can
possibly solve for this thing. But if somebody gives you pressure field, if the pressure field
is known then these two equations can be solved right. If the pressure field is known, then
it is a matter of calculating putting it back here, and calculate from the first and second

equation the u and v velocity fields ok.

So, now, remember that up till now when we had the general scalar transport equation our
u was known right it was a known field, but whereas here in the fluid flow equations the
u bar the velocity field itself is unknown right, and also the pressure field itself is unknown
ok, that is what we are trying to solve from the given boundary conditions for the domain
that we identified ok.

Now, because pressure at the faces is required, we cannot we do not know these values
because pressure is assumed to be stored at the cell centers. So, we need a profile
assumption for pressure. So, if we assume that the pressure varies linearly and we assume

a uniform grid, then the pressure on east face can be written as p capital E plus p p by 2.



Similarly p little w would be written as Py, plus P, by 2. And p on the north face can be
written as Py plus P, by 2. And P on the south face can be written as Pg plus P, by 2 ok.
So, we essentially made a arithmetic average.

If we substitute these back into the this equation, then what we get is because P, comes up
in both equations and there is a minus here, we end with P, minus P; times Ay for the
pressure gradient term in the x-momentum equation. And for the y-momentum equation,

we end up with P; minus Py times Ax, so this is Ps minus Py times Ax alright.

So, now we Kkind of translated the pressure gradient terms into cell pressures ok, from the
face pressures to cell pressures is what we have done. So, these are now in terms of cell

pressure values ok.
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1. difficulty -- we encounter
incompressible flow

So, essentially if we know the pressure field that is we know the p X, y somebody gives
you gives us, then we can use the equations above, and of course, calculate for the velocity
field ok. But the pressure field itself is an unknown and the only equation that we have at

our disposal is the continuity equation ok.

So, the continuity equation is the only one that we have remaining using which we hope
to obtain the pressure field. However, we realize that the continuity equation is not an

equation for pressure ok, so that is the first difficulty.

So, this difficulty 1 is basically we have three equations and three unknowns. However,



the first equation is the x-momentum equation is an equation for u, the y-momentum is an
equation for v. Whereas the equation for pressure is missing because the continuity
equation is also in terms of velocities, but not in terms of pressure ok. So, this is the first
difficulty we encounter when we try to solve a fluid flow equations for incompressible

flow ok.

Because you remember if you if the flow is compressible, then we know that this is also a
extra thing that is basically your density comes into play, and it through a equation of state
the density and pressure are related. As a result things will be little more are actually
balanced right which is not the case for incompressible flows because density is now
constant ok, so that is the first difficulty. We will see what are the difficulties, we will get
in order to solve the fluid flow equations for the incompressible range ok.
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Then let us look at the discrete continuity equation. So, the continuity equation is basically

%+ V- (pu) = 00, because we are assuming steady flow this particular term here is
assumed to be this is basically goes to 0. So, we do not have ‘;—‘t’ So, only thing we have is
V- (pu) = 0 ok.

So, if we apply finite volume method, again we integrate this on the cell P that is integral

AV this is integrated on cell P ok. So, V- (pu) dV equals 0, that means, equals integral

control surface applying invoking Gauss divergence theorem we can write this as (pu) -



dA. Again assuming that pu is can be representing using the face value, and that is face

centroid value is the representative for the entire face we can write this as (pt) - A; ok.
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So, basically we have all the four faces — east, west, north, south. And this quantity would
be equal to this is basically equal to O that is your discrete continuity equation ok. Now,
we have four faces. So, we can expand this A; is known 4,, 4,, is basically known similarly

Ay, As.

So, this can be extra expanded. And what we get is you get (pu),Ay minus (pu),, Ay
because A,, is —iAy, and similarly (pv),,Ax minus (pv)Ax. This is nothing but if you go
back to the convection discussion this is nothing but F, minus F,, plus F,, minus F; right.
So, this is basically conservation of mass or continuity equation. This should be equal to
0 right.

So, this is your discrete continuity equation right in terms of the face velocities. The
velocities are now u,, u,,, v, and v, which of course are not available right. Because, we
are not we have not been storing velocities of the faces. We have been only storing
velocities at the cell centroid that is velocity is only available at cell P centroid E, W, N

and S all capital letters here.

So, if we assume uniform grid for the sake of simplicity, then we can write again using

linear interpolation (pu), as density is anyway constant. So, this we can write it as



((DH)P;(DH)E) (Pu)w+(0u)P).

2

ok. Similarly, (pu),, as (
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m); and (pv), can be written as

And similarly (pv),, can be written as (

(w) ok. So, we have all these four values which we can substitute back here. And

as you can see again similar to the pressure case the (pu), gets cancelled with the (pu),

here, because we have a east minus west. So, this gets cancel.

As a result we get (pu)zAy right, so discrete continuity equation of cell P would read as
(pw) gAy minus (pu)y Ay plus (pv)yAx minus (pv)sAx ok. So, this is your now discrete

continuity equation for cell P ok.

Now, what we see here is that this is surprising because we have written equation for cell
P, and none of the values of u, or v, which correspond to the cell P featuring the above
equation. So, this equation is an equation for cell P, but the values of that particular cell

are not there in the equation ok. So, that is something has very strong implications ok.

So, we will see what implication does it have because of this thing ok. So, essentially
because of the up, v, not featuring in the above equation, we will see that there is a major
consequence of that a major trouble is kind of coming in the in the process of the solution
procedure alright. That means, this kind of equation because your up, v, do not feature in

the equation, this can actually support a checker boarded kind of velocity pattern.
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For example, if u east and u w are of the same value; however, they are different from the
value of up ok. So, if u east equals u w, however they are that is not equal to u, values ok.
Similarly, v n equals v south, but they are not equal to v,, then this equation can still be
satisfied although there are oscillations in the velocity field this equation will still give you
a conserved continuity equation. What that means, is that basically this kind of an equation

supports checker boarding right.
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So, for example, if you see this is basically these are different cells ok, each of the colors



here is a cell. So, what we have is basically this is a particular cell u equal to 30 is a cell.
Similarly, this is the grid I think the grid is quite light here you cannot see ok. So, that
means, u lets say if this is your p cell p cell has u equals 30. However, as you can see from

this equation only u east and u w matter.

So, this is 10 and this is 10, so, this 10 minus this 10 that gets that satisfies. Similarly, v
north and v south would be 20, 20. So, as a result this gives you perfect conservation of
mass for this kind of a checker boarded velocity right. Although, we know that the velocity
itself in the u and v components there are oscillations right, there is a kind of a chess board
or a checker board kind of pattern existing which is satisfied by this kind of a continuity

equation ah, but ok.

But we also know that we are not just solving for the continuity equation right. So, if
continuity equation supports this kind of thing, let it be because we have the other
equations which are the momentum equations. What about the momentum equation for u
and v? They may not support this kind of a checker boarded velocity pattern. As a result

this will be thrown out at some point in the solution procedure.

However, ok, but so, but if the momentum equation for some reason sustains this pattern
right, then this will be; this will be contained, this will be there in the final solution as well
ok. So, because this is supported by continuity equation and if the momentum equation

sustain this pattern for some reason, then the final u and v will contain checker boarding.

We do not want checker boarding, because that is not something that is physical ok. The
we do not want these kind of oscillations prevailing in the solution and still our solution
kind of converges to some value ok. But we also recall that the pressure field itself is an

unknown right, pressure field is an unknown.
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And if we go back to the kind of the x-momentum equation, we know that the discrete
equation is apup = Y, ay,u,, + b, — (P, — Pp)Ay ok. So, what we see here is that the
pressure difference term, the pressure gradient term also this also does not this also does

not contain P, right.

Although this is an equation for cell P, P, value does not feature here, that means, this also
seems like it will support a checker boarded checker boarded pressure right. In which case
if you have Py, equal to P, this would give a zero pressure gradient right, which is not true

because P, equals P, but neither of them would be equal to P, ok.
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u_Pandp_P 2. Difficulty -- pressure and velocity get coupled|

So, that means, if you have so with such a pressure discretization, it is possible to arrive at
a pressure field such that the gradient of p that is this term in the momentum equations
might cancel out the effect that is coming because of the velocities itself because of the
u,;,’s. As a result the velocity checker boarding could be sustained by the momentum

equation as well ok.

So, what we are talking about is basically you have the pressure field, the pressure field
might have a checker boarded pattern like this essentially we have p equal to 5, p equal to
10, p equal to 5, p equal to 10 and 5 and so on. So, essentially we have oscillatory field
which will be seen by the x-momentum equation as what as a zero gradient pressure field.
Because if you look at particular p, this is 5 minus 5, so this would be basically zero

pressure gradient.

So, this is a zero pressure gradient. As a result you would see that this momentum equation
cannot see this pressure gradient ok. So, such a pressure boarding pressure checker
boarding is now not seen by the velocity by the momentum equation ok. Similarly, there
could be some pattern of pressure field which might cancel out those pressure gradients

here might cancel out a velocity field like this.

That means, this negated with a pressure checker boarding could give you a free run for
your velocity and the pressure fields, such that they contain these kind of an oscillatory

field in the final solution ok. Do you see that?



So, the pressure oscillations could the pressure oscillations the gradient of which could
cancel out the velocity checker boarding as a which will in term sustain the checker
boarded velocity field not only in the continuity equation, but also in the momentum
equations because now your pressure field might support it ok. So, you may get such a
pressure gradient field which might cancel out the velocity checker boarding ok.

As a result, if this happens usually if this happens when you try to solve it and as a result
the oscillatory essentially you your final solution will have wiggles in the velocities and
pressures. And these wiggles will manifest themselves into the divergence of the solution
ok. So, that means, what we have seen is the oscillatory pressure field will be perceived
by x-momentum equation as uniform pressure field right. The gradient of p is 0.

Now, there could be some other pressure field which might cancel out the effects created
by a checker boarded velocity field ok, which might basically help sustain this checker
boarded velocity field through the momentum equation as well as of course through the

continuity equations ok.

As a result there might be some wiggles that might start showing up, these, these are the
wiggles in the pressure and the velocities which would eventually cause divergence in the
solution, these kind of oscillatory behaviour. And, that is exactly what happens in when
you try to solve it the incompressible fluid flow equations when you store all the velocities

and pressures at the cell centroids ok.

So, this is the second difficulty that is basically the pressure and velocity get kind of they
kind of get coupled. And in a sense they kind of support this kind of a checker boarded
patterns in velocities and pressures which will manifest into divergence of the solution
eventually ok. So, this is the second difficulty. The first difficulty we saw was that there is

no equation for pressure.

The second difficulty is that the pressure and velocity because of their coupling, they may
together they may support a checker boarded velocity and pressure patterns in the final
solution ok, so that is the other difficulty. So, we will see how to address these two
difficulties when we try to solve a fluid flow equations through some algorithms that are

there in the literature. So, that will be our topic for another lecture on another day ok.

So, | am going to stop here. If you have any questions, let me know through e mail alright.



Talk to you in the next lecture.

Thank you.



