
Computational Fluid Dynamics Using Finite Volume Method 

Prof. Kameswararao Anupindi  

Department of Mechanical Engineering 

Indian Institute of Technology, Madras 

 

Lecture – 33 

Finite Volume Method for Convection and Diffusion: Discretization of convection- 

diffusion equation on unstructured mesh 

 

(Refer Slide Time: 00:14) 

 

Hello everyone, let us get started. So, in the previous lecture, we looked at discretization 

of unsteady conviction equation using the central difference scheme upwind difference 

scheme and a Lax Wendroff scheme right, which was affix for central difference scheme, 

isn’t it? Alright. So, we looked at discretization and looked at the several properties 

associated, and how the exact solution compares with the solutions obtained from these 

schemes. 

In addition, we also looked at couple of higher order schemes; one was the second order 

accurate upwind scheme, and the another one was the third order accurate upwind scheme, 

which we call it as the quick scheme right, the quadratic upwind interpolation for 

convective kinetics, right. So, that is what we looked at the previous lecture. In today’s 

lecture, we are going to look at implementing this, these higher order schemes. So, how 

do we actually go about implementing them in a code? 



And, we will then kind of switch gears and then look at Discretization of convection-

diffusion equation on unstructured meshes, right. Because, till now we only looked at how 

to discretize on essentially on a structured Cartesian meshes only we have looked at. 
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So, today we are going to look at unstructured and essentially non-orthogonal meshes, so 

we are going to look at that in today’s lecture. And depending on the time, we will also 

look at how do we, how can we actually extend these higher order schemes to unstructured 

meshes ok; that is something we have not, we have of course not done, ok. So, these are 

the kind of topics for today’s discussion. 
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So, let us get started. So, let us kind of review the convection schemes, where you have 

looked at in the last class. So, essentially the convection schemes are, if your flow rate on 

the east face is greater than or equal to 0; the way this is basically defined is, if your 𝑢𝑒 is 

greater than or equal to 0, then your 𝐹𝑒, the flow rate on the east face would come on to be 

0. 

In under such conditions, we have defined the upwind difference scheme as something 

that assigns the value of the face value right, ϕ𝑒 as the upwind value that is ϕ𝑃 right; 

because, because 𝐹𝑒 is positive, so it is going in the positive x direction. So, ϕ𝑒 would be 

taken as ϕ𝑃 right, that is what we have. And then, if it is a central difference scheme, then 

the face value of phi would be taken as of course arithmetic average of the east and the P 

cells. 

So, we have (ϕ
𝐸

+ ϕ
𝑃
)/2, alright. Then if you, we have also looked at the second order 

upwind scheme in which the phi or the face ϕ𝑒 is written as ϕ𝑃 + (
ϕ𝐸−ϕ𝑊

4
), right. So, this 

was obtained using an approximation for the first derivative, right. The first derivative 

essentially is evaluated, the 
∂ϕ

∂x
|
𝑃
 is evaluated using a central second order accurate formula 

right; that you obtained essentially the Fromm scheme.  

And, if you had used the for expanding the first derivative and using a backward difference 

right, backward difference formula; then you essentially obtained a scheme that is known 



as Beam Warming scheme, right. Basically you had the Taylor series expansion and ϕ𝑃 

plus 
∂ϕ

∂x
|
𝑃
 that is where we have used these two definitions for the first derivative, ok. 
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Going on extending the same concept, if you start including higher order terms, that is 

∂2ϕ

∂𝑥2|
𝑃
 as well and then use a central difference formula for both the first derivative and the 

second derivative; then the Δ𝑥 that we have got cancelled and then we essentially obtained 

something known as the quick scheme, where ϕ𝑒 equals ϕ𝑃 + (
ϕ𝐸−ϕ𝑊

4
) + (

ϕ𝐸−2ϕ𝑃+ϕ𝑊

8
), 

right.  

These are basically the central difference formulae for the first and the second derivatives; 

of course in doing all this we have assumed that, we are essentially working with a not 

only with a Cartesian mesh, but the mesh is also uniform. So, it is probably a good idea 

for you to ponder on, how do I extend? So, how to extend these schemes to non-uniform, 

but let us say still Cartesian meshes, that is something I want you to kind of think about 

and see how do you extend these schemes. So, what are the changes you have to make, 

and things like that, alright. 

Now, we looked at all these schemes, but all do all these schemes look ok, or are there any 

issues that you see right away? Yes we do see some issues; if it is upwind scheme, we do 

not have any problem, because ϕ𝑒 = ϕ𝑃. So, this either ϕ𝑃 or phi ϕ𝐸 depending on the 

direction of the flow rate. So, there is no problem; because all the coefficients would come 



out to be positive. As we have seen in the context of the central difference scheme, there 

is a possibility for central difference scheme to have negative coefficients and those can 

be avoided using these by maintaining the cell, Peclet number to be less than 2 right that 

is what we have already discussed. 

Now, of course, if you are working with any of these higher order schemes; again, you see 

that there are these neighboring coefficients which are the phi west and ϕ𝑃 here, which 

have which is essentially carry a negative coefficient, right. So, these negative coefficients 

are not good; because, essentially this is not good and of course this is also not good, 

because this is making the central value ϕ𝑃 to go to a smaller value right. You have minus 

one-fourth here coefficient, which makes the central value a P to go down right, ok. 

So, essentially these negative coefficients are not good; because, they do not satisfy 

Scarborough criterion, right. The moment you have these negative coefficients, your 

Scarborough criterion may not be satisfied; essentially, the diagonal dominance would not 

be respected, right. As a result, if we use an iterative scheme to solve for the solution, then 

we would run into trouble, right. Using an iterative scheme to obtain solution would cause 

issues; because, the Scarborough is not satisfied, right. 

As a result, we need to find a way of getting around this problem ok, so that we can still 

satisfy Scarborough criteria. But, we will not any issue; we will not have any issues in 

converting the solution using some iterative scheme, ok. So, I am going to, we are going 

to look at one particular method and after that I want you to think and see if there is, if 

there could be any other method that you can do this in a different way, ok. 
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So, let us get started. So, implementation of higher orders schemes. So, you will see, how 

do we get about this problem. So, essentially to satisfy Scarborough criteria, we use 

something known as a deferred correction approach, ok. So, this was proposed essentially 

to make some of the kind of legacy codes that were originally written using the upwind 

difference solutions, ok.  

So, in order to kind of make these work for high order schemes, a deferred correction 

approach is proposed. This also not only to make these codes work with very simple with 

small changes, but also to make any of these iterative solvers also to work, because then 

they will start satisfying these Scarborough criteria, ok. 

So, essentially the method is same as what we have learned till now; this is basically 

deferred correction approach, in which we like the way we have done it for the source 

terms and the way we do it for any of the non-linear terms. So, what we do is, we know 

that if we take a simple upwind scheme, that is basically the first order upwind difference 

scheme; this always satisfies Scarborough criteria, because everything is positive 

coefficient, either it is going into the a P term or to the a and b terms and you have no 

problem in obtaining the solution, ok. 
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So, what we do is, essentially we take that point, and then if you consider the convective 

scheme; the discretized value is nothing, but 𝐹𝑒ϕ𝑒 yeah right, this is what you would get 

after discretization. So, 𝐹𝑒ϕ𝑒 and if I assume that 𝐹𝑒 is positive and 𝐹𝑒 is greater than or 

equal to 0. Then, for a upwind difference scheme, what we do is, if 𝐹𝑒 is positive, then 𝐹𝑒ϕ𝑒 

would translate into 𝐹𝑒ϕ𝑃 right, essentially this 𝐹𝑒 would go into the coefficient of a P right 

or a east, if this was negative, this will go into a capital east, ok. 

Now, what about the higher order scheme? Let us say if you take some higher order 

scheme, which I would like to write it as HO, Higher Order scheme. So, 𝐹𝑒ϕ𝑒 would 

become 𝐹𝑒 times phi higher order. Now, phi higher order is basically what? It is not just 

ϕ𝑃, but it is basically all this entire thing right; phi higher order is ϕ𝑃 plus blah blah blah 

or it is this thing or this thing right, it is basically a big expression that contains not only 

ϕ𝑃, but also contains several other neighboring values, which is given by the higher order 

scheme. 
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Now, we know that if I use directly this, it is not going to satisfy Scarborough; because, it 

is going to cause trouble with the coefficients. So, as a result what we do is, we look at 

deferred correction approach. So, what we do here is that, we write 𝐹𝑒ϕ𝐻𝑂, the Higher 

Order scheme as, we add and subtract the upwind difference component that is 𝐹𝑒ϕ𝑃. So, 

I would add 𝐹𝑒ϕ𝑃 to 𝐹𝑒ϕ𝐻𝑂 and then I will subtract 𝐹𝑒ϕ𝑃 ok, so essentially this is same as 

what we have on the left hand side. 

Now, what we do is that, now in the deferred correction approach; we will evaluate 

everything that is there in this parenthesis ok, using the previous iteration value. So, we 

are going to put a star here for these two terms, ok. So, whatever we have here, this will 

be evaluated using the previous iteration values, ok. So, these are basically F𝑒ϕ𝐻𝑂
∗  star 

minus F𝑒ϕ𝑃
∗  star, ok. 

Now, this is something that is not the same as what we have written in the previous step; 

but we understand that by writing it this way, we have now changed few things, right. Of 

course, what did we change? We have changed that, excuse me. So, we have changed that, 

at convergence what will happen here; at convergence ϕ𝑃 equals ϕ𝑃
∗  as a result, this term 

gets canceled, essentially this term gets canceled right with this term and we kind of 

recover back our ϕ𝐻𝑂 right, that is what we would recover. 

And now, what about Scarborough criterion? Now, because this term is written 𝐹𝑒 as 𝐹𝑒ϕ𝑃 

and these two terms are evaluated at the star level, that is the current iterate level or known 



values right are the starred values; then where does, where do these terms go, right. So, if 

we have written it like this 𝐹𝑒ϕ𝐻𝑂 equals 𝐹𝑒ϕ𝑃 plus 𝐹𝑒 times. If I want to write this as ϕ𝐻𝑂
∗ −

ϕ𝑃
∗  as some Δϕ𝐻𝑂

∗  ok, some difference between the higher order value and the ϕ𝑃 value, 

essentially the upwind value; then, where will these coefficients go? This coefficient will 

go into, into where? This will go into your a P. 

And, where will this term go; because this is star values, these will not go into a w, a 

neighbors, this will go into the b term, ok. As a result, now your Scarborough is now 

satisfied; because, it is basically similar to your upwind difference scheme, except that 

these are going into the source terms, right. So, your Scarborough is now satisfied. As a 

result, for every iteration or the outer iteration that you have, your Scarborough is always 

satisfied and you have no problem right, you can implement any higher order scheme in 

this particular way, alright. 
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Now, let us take an example of the quick scheme and see how do we go about 

implementing it. So, if you look at the quick scheme; what we have is, 𝐹𝑒ϕ𝑒 would read as 

𝐹𝑒ϕ𝑄𝑈𝐼𝐶𝐾 equals 𝐹𝑒ϕ𝑝 plus, ok. So, this particular thing, entire expression here is the ϕ𝑄𝑈𝐼𝐶𝐾 

right; that is what we have for ϕ𝑄𝑈𝐼𝐶𝐾 minus ϕ𝑃
∗ . 

So, essentially we have added 𝐹𝑒ϕ𝑝 and subtracted it here 𝐹𝑒 times ϕ𝑝, and everything in 

the parenthesis we have, we are starting evaluating at star values. Of course, there could 



be a different way of doing this, because there is already a ϕ𝑃
∗  here, but I would like to 

follow with what we have written up here, ok. 

So, that means 𝐹𝑒ϕ𝑝 equals , so this basically equals 𝐹𝑒ϕ𝑝 plus 𝐹𝑒 times ϕ𝑃
∗  now gets 

canceled. So, what you get is, you get this remaining term, ok. So, essentially again now 

this entire thing would go into the b term and this entire thing here would go into the a P 

term, ok. So, as a result this Scarborough is now satisfied, alright. So, this is how you 

would implement it. Now, what about another way of implementing it? Let us say, is there 

it another way of implementing it, if you do not want you use a different deferred 

correction approach? Yes, you can do it. 

Essentially, what you have to do is, if you want to do in another way, what we are losing 

here is the diagonal dominance right, your Scarborough would not be satisfied. So, you 

can make it satisfy diagonal dominance or Scarborough by using some kind of relaxation, 

right. If you have a relaxation factor, you can make it go up right; you can make it an under 

relaxation factor or something and then, you can or, and then you can make it this 

Scarborough satisfied or diagonal dominance, ok. So, that is another way. 

But in in our particular course, we will use this deferred correction approach; because, it 

is much simpler and also you can make, you can write a code for let us say the upwind 

difference scheme and make any other scheme work as well in a very simplified way, 

because all you have to change is basically the b term, right. Once you change that, you 

essentially are doing a higher order differencing, alright. 
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Let us see now how do we, when we concatenate all the equations, let us look at the overall 

equations, if you have let us say a higher order scheme, essentially we are talking about a 

higher order upwind scheme, ok.  

So, that means what we have is, if you kind of concatenate all the equations what you get 

is the discrete equation is 𝑎𝑃ϕ𝑃 = ∑  anbϕ𝑛𝑏 + 𝑏 ok, where your 𝑎𝐸 is we have already seen 

this as the diffusion component 𝐷𝑒 plus max of minus 𝐹𝑒 comma 0. And, 𝑎𝑊 equals 𝐷𝑤 

plus max of 𝐹𝑤 comma 0. Notice that there is a minus and a plus here; this is because, we 

have defined the flow rate as simply ρ𝑢𝑒Δ𝑦 here, and we have defined it here simply as 

ρ𝑢𝑤Δ𝑦, ok. 

So, we have not defined these as the dot product of ρ𝑢⃗ ⋅ 𝐴𝑓
⃗⃗⃗⃗  ok, rather we have simply 

written it as the rho density times velocity times area. As a result we got this minus plus 

problem right, minus plus issue. And similarly, 𝑎𝑁 would be 𝐷𝑛 plus max of minus 𝐹𝑛 

comma 0 and then 𝑎𝑆 would be 𝐷𝑠 plus max of 𝐹𝑠 comma 0, ok. So, this is if we have 

already known about all these things, this is basically your first order upwind difference 

scheme, right. If you are asked to write code for upwind difference scheme, this is the 

algorithm. 
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Now, what about the higher order scheme? Essentially, the higher order scheme would 

contribute to the b term. So, as a result, your 𝑎𝑃 is also the same as before. So, you have 

𝑎𝑃 equals ∑anb minus the source term that is 𝑆𝑃Δ𝑉𝑃 plus we have 𝐹𝑒 minus 𝐹𝑤 plus 𝐹𝑛 

minus 𝐹𝑠, right. Essentially, this term is comes into play to counteract the upwind scheme 

whether it is going into 𝑎𝑃 or 𝑎𝐸 right, only for that this is coming into play.  

And again, we know that the term here in the parentheses would evaluate to zero; if your 

under line flow field that is the 𝑢⃗ , let us say if it satisfies continuity, right. If it satisfies 

continuity equation; then, the mass flux that is coming in and going out would be balanced. 

As a result, this parentheses term would go to zero, alright. 

What about b term? b term, now contains 𝑆𝐶Δ𝑉𝑃 and then we would contain if 𝐹𝑒 is positive; 

you would get a 𝐹𝑒 times, you would get Δϕ𝐻𝑂,𝑒
∗  term evaluated at star value, right. Delta 

here is, because we have phi higher order minus phi upwind right, and this is evaluated on 

the east face and everything is evaluated at this star value, alright. 

Now, why is there a minus here? There is a minus, because your term is basically 𝐹𝑒 times; 

𝐹𝑒ϕ𝑝, alright. Because 𝐹𝑒 is positive, then the contribution will go into 𝑎𝑃. And so, 𝐹𝑒 is 

positive, then this will go into 𝐹𝑒ϕ𝑝; but this is being sent to the other side, so we have a 

minus F𝑒Δϕ𝐻𝑂,𝑒
∗ , alright. But if 𝐹𝑒 is negative, then this would turn out to be going into a𝐸 , 

right. Is this correct? Maybe you need to check for the sign here; if is this correct or not, 



ok. Then, we have plus F𝑤Δϕ𝐻𝑂,𝑤
∗  on the west and then minus F𝑛Δϕ𝐻𝑂,𝑛

∗  star on the north 

plus F𝑠Δϕ𝐻𝑂,𝑠
∗  for the south on the star, ok. 

So, this extra term is basically the only change when compared to the upwind difference 

scheme, ok. So, this is the only change; because, we have used the deferred correction 

strategy, ok. So, as a result this is the only change; so, that means if you write a code for 

upwind difference scheme, it is very easy to modify to use any higher order scheme using 

this deferred correction strategy, alright.  

Then, let us move on to now something different; because, up till now we have been only 

looking at the Cartesian or we have been only looking at the structured Cartesian meshes 

right, and then, we have seen how to discretize the convection diffusion equation as well 

as the unsteady convection equation, ok. Now, what about unstructured non orthogonal 

meshes? How do I solve for convection diffusion equation on unstructured non orthogonal 

meshes, ok. So, this is something we take up now, alright. 
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So, as usual we have our two cells; let us say this is the 𝐶0 cell and this is the 𝐶1 cell and 

the vector connecting them would be the ξ direction, and the direction along the face would 

be your η direction. And, we have these two unit vectors that is 𝑒ξ and 𝑒η and we of course, 

have the global coordinates that is x y and î and î and the face normal vector is 𝐴 𝑓. 



And in addition we have now because of convection, we have some velocity field 𝑢⃗ , let 

say this is the velocity vector that is in the flow field and this is known ok, now this is 

known, alright. Then, how do I now go about calculating convection diffusion in an 

unstructured mesh like this that is also non orthogonal, ok. So, that is the question. 
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Our governing equation is the same as before right, we start off with the general scalar 

transport equation that is 
∂

∂t
(ρϕ) + ∇ ⋅ (ρ𝑢⃗ ϕ) = ∇ ⋅ (Γ∇ϕ) + 𝑆ϕ, right. For now, we would 

only look with, work with the just look at the convection diffusion equation. 

So, we will not study convention diffusion equation. So, as the result we would check the 

unsteady part to 0 and of course, this is something that can be drawn easily. So, you can 

see how do extend this to be in cooperate the unsteady equation, which we have already 

seen in the context of structured meshes for convection diffusion, ok.  

So, if I apply now finite volume method to the convection diffusion equation, of course 

we can write this by getting this term to the right hand side. As (Γ∇ϕ)𝑓 ⋅ Af
⃗⃗  ⃗ minus (ρ𝑢⃗ ϕ)𝑓 ⋅

Af
⃗⃗  ⃗ plus 𝑆ϕ

̅̅ ̅Δ𝑉0 equal to 0, ok. So, this is basically you apply a integrate it on a finite volume 

and then convert the volume integrals into surface integrals using Gauss divergence 

theorem and then replace the surface integrals with summation ok, that is what. And then, 

we already know how to discretize the first time here, this is the diffusion flux (Γ∇ϕ)𝑓 ⋅ Af
⃗⃗  ⃗. 



And, we also know how to discretize the 𝑆ϕ
̅̅ ̅Δ𝑉0 right; essentially, we make a linearize the 

source, write the 𝑆ϕ
̅̅ ̅ as 𝑆C + SPϕP. Now, only thing that we do not know is this part that is 

the convection term right, which is (ρ𝑢⃗ ϕ)𝑓 ⋅ Af
⃗⃗  ⃗, ok. Remember for the structured meshes, 

we have defined for the east face, west face and so on; we have clubbed ρ𝑢⃗  and Af
⃗⃗  ⃗ together, 

we call that as some kind of flow rate right, because it is kind of multiplying density times 

velocity times the area, the scalar area. 

So, this was ρ𝑢𝑒Δ𝑦, we defined it as 𝐹𝑒 right that is the mass flow rate through the east 

face. Similarly, we defined ρ𝑢𝑤Δ𝑦 as the mass flow rate through the west face, ok. 

Remember, while defining these things, we did not consider the area vector direction, ok. 

We have only used the area magnitude, ok. So, as a result we got this plus minus in the 

definition of the upwind schemes, so right that is the consequence of that.  

Whereas, now what I would like to do is, I would like to define our flow rate as (ρ𝑢⃗ )𝑓 ⋅ Af
⃗⃗  ⃗, 

ok. So, now this e is, this takes into account the plus minus automatically depending on 

the face we are; of course, Af
⃗⃗  ⃗ is now pointing out of the cell that we have focused on, ok. 

So, that means 𝐹𝑓 is the flow rate which is basically (ρ𝑢⃗ )𝑓 ⋅ Af
⃗⃗  ⃗ ok; that means, this term 

can be written as 𝐹𝑓ϕ𝑓 right for each of the faces, alright. 
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If we go about the diffusion flux that we have, diffusion term is (Γ∇ϕ)𝑓 ⋅ Af
⃗⃗  ⃗; bar is missing 

here equals; this, basically has two components; if it is a non-orthogonal mesh, one was 

the primary derivative, the other one was the secondary derivative.  

So, the primary derivative was 
Γ𝑓

Δξ

𝐴𝑓⋅𝐴𝑓

𝐴𝑓⋅𝑒ξ

(ϕ1 − ϕ0) right; essentially, (ϕ1 − ϕ0)/Δξ is 

coming from your 
∂ϕ

∂ξ
 on the face, plus we had some term which is basically your 

∂ϕ

∂η
 on the 

face, this we call it as a secondary gradient, ok. So, that is coming from the diffusion on 

the unstructured non orthogonal meshes, alright.  

Now, just like what we have done in the structured examples, we would like to call this 

entire coefficient as some 𝐷𝑓, ok. Remember we have defined something called 𝐷𝑒, which 

was ΓΔ𝑦/δ𝑥𝑒. So, on similar lines we would like to define this entire coefficient as 𝐷𝑓 ok, 

𝐷𝑓, this is 𝐷𝑓 times ϕ1 − ϕ0 plus secondary gradient of f, this is fine, this is we already 

know about the diffusion discretization. So, there is nothing new here. 
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What about the convention term? The convention term if we write that is (ρ𝑢⃗ ϕ)𝑓 ⋅ Af
⃗⃗  ⃗, with 

our definition of (ρ𝑢⃗ )𝑓 ⋅ Af
⃗⃗  ⃗ as 𝐹𝑓; this term evaluates to 𝐹𝑓 times ϕ𝑓, right. Now, notice the 

similarity, here this is basically similar to your 𝐹𝑒 times ϕ𝑒 ok; of course, in definition of 

𝐹𝑒 is different here slightly, because it does not consider the direction here, alright.  



So, then we have 𝐹𝑓 times ϕ𝑓. Now, can we write the complete discrete equation? Yes, we 

can write essentially, that is basically you go back and substitute for each of these terms 

and then write the summation on the f that basically gives you 𝐷𝑓 times ϕ1 − ϕ0 for f. 

So, that means either this is ϕ1 − ϕ0 or ϕ2 − ϕ0, and the corresponding things depending 

on the which face we are looking at plus you have secondary gradient of f minus you have 

𝐹𝑓 time ϕ𝑓, right. So, this is basically you are coming from the convection flux, plus we 

have the source term that is 𝑆C + SPϕ0 times Δ𝑉0 equal to 0, ok. So, that is the full equation. 

Now, just like what we have done in the structured mesh case, we now have to apply a 

particular discretization scheme for our convective term right, our convective term is 

basically ϕ𝑓, 𝐹𝑓 times ϕ𝑓. 

Now, we need a some kind of profile assumption or some kind of value for our phi on the 

face f, ok. So, if we apply let us say central difference scheme, we of course recall that in 

the context of structured meshes, we wrote ϕ𝑒 that was coming in 𝐹𝑒, right 
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In 𝐹𝑒ϕ𝑒, what we wrote wasϕ𝑒; we have written as (ϕ
𝐸
+ ϕ

𝑃
)/2 in the context of central 

difference scheme. Now, if I were to apply central difference scheme for unstructured non-

orthogonal meshes, I can write this phi f as a using a simple average as (ϕ
0
+ ϕ

1
)/2, right. 

Now, this is ok, because although, there is a difference in the cell sizes; even if the cells 

are not uniform, we assume that the phi kind of let us say varies linearly or something. So, 



this is a simple average; of course, this can be improved upon by using the gradients of phi 

later on, ok.  

So, anyway I would make a simple average, this is basically ϕ𝑓 equals (ϕ
0
+ ϕ

1
)/2; that 

means, I would substitute (ϕ
0
+ ϕ

1
)/2 into the ϕ𝑓 value that we have here, ok. Now, what 

happens when we substitute this? What happens is you have −𝐹𝑓/2 going into a 0 and then 

you have −𝐹𝑓/2 going into a1, right.  

Now, a0 is your P cell here, right that is your 0 cell; that means, −𝐹𝑓/2 would become plus 

−𝐹𝑓/2 and it goes to the right hand side and you have a −𝐹𝑓/2 that is remaining here, ok. 

So, that is what happens. Now, because the way 𝐹𝑓 is defined, this will always be a minus 

here; because, 𝐹𝑓 already contains the plus minus automatically depending on the area 

vector. So, as a result, we can now substitute for these values and then form the complete 

discrete equation for central difference scheme, when applied to convection diffusion on 

unstructured, non-orthogonal meshes. 
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So, of course, we kind of get back to our nice equation that is 𝑎𝑃ϕ𝑃 = ∑  anbϕ𝑛𝑏 + 𝑏. Now, 

this is where I want you to kind of draw parallels to the structured mesh discretization. So, 

you have to kind of recall what we have done in the structured context, in the context of 

convection diffusion equation. 



See, how this makes sense ok; otherwise, you have to kind of go through this and kind of 

derive it independently after we have gone through these steps, ok. So, what would be anb? 

anb is basically in the context of structured mesh, this was 𝐷𝑒 minus 𝐹𝑒 by 2, alright. This 

was so, if you go about here; again this should be 𝐷𝑓 minus 𝐹𝑓 by 2 right that is what we 

would get for the neighbors, right. 

So, that is your anb; anb would be 𝐷𝑓 minus 𝐹𝑓 by 2, because this will stay on the left hand 

side that is coefficient of phi once, alright. What about aP? aP would be of course sum of 

∑  anb, sum of all these guys; but remember, that this would come with a plus. So, as a 

result we will have this extra term right, 𝐹𝑒 minus 𝐹𝑤 plus 𝐹𝑛 minus 𝐹𝑠 in the context of 

central difference scheme that same thing comes here. 

But, again we do not have plus minus here, so as a result this would be summation of 𝐹𝑓, 

right. So, we would not have that plus minus thing here right, recall that was there in the 

context of structured meshes. So, this a n b would basically we have 𝐷𝑓 minus 𝐹𝑓 by 2 that 

is the reason we are getting this, ok.  

Then your b term of course, has the remaining part of the source term that is 𝑆C times Δ𝑉0 

plus we have the secondary gradient term as well, right. The secondary gradient term 

would be would remain on the left hand side as a result it will be a plus a ∑  anb; secondary 

gradient for each of the face that is shared with the neighboring cells, ok. 
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So, that is what we have. Now, similar to the Cartesian mesh case, if 𝐹𝑓 is greater than 0 

right; if this is positive, can will this coefficient be always positive? Will this be always 

positive? No right, this is not always positive; if 𝐹𝑓 is positive and 𝐹𝑓 is greater than 2 times 

D f, right. 
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Then essentially, this coefficient can be negative right, and we do not like negative 

coefficients, because if we use an iterative scheme, then this Scarborough criterion will 

not be satisfied and so on. So, we do not like this, that means we have to choose 𝐹𝑓, such 

that 𝐹𝑓/𝐷𝑓 should be always less than or equal to 2 right; that means, only then your anb’s 

will be positive, right.  

That means, we are again come back to the same condition that, the cell Peclet number has 

to be less than 2; this is basically, we had a similar restriction in structured meshes also, 

right. So, the same restriction kind of comes back to us, even in the context of unstructured 

non-orthogonal meshes, ok. So, that, but that is how that is exactly how about you go about 

implementing the central difference scheme on these unstructured meshes, alright. Now, 

let us see, how do we implement the upwind difference scheme, ok. 
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So, the upwind difference scheme we again recall from the structured mesh case that, phi 

all the face ϕ𝑒 is either ϕ𝑃 or ϕ𝐸 depending on the direction of the mass flow rate, right. 

If F e is greater than or equal to 0, then ϕ𝑒 equal to ϕ𝑃; if F e is less than 0, then ϕ𝑒 equals 

ϕ𝐸, right we recall this thing. 

Now, of course, the same condition applies here, only thing is that now ϕ𝑓 is either ϕ0 or 

ϕ1 depending on the direction of the F𝑓. That means, if we go back to the diagram that we 

have drawn, which is couple of pages here, ok. So, if F𝑓 bar is positive right, essentially 

you can move this arrow here. So, if this is going this way right; that means, it is in the 

direction of Af
⃗⃗  ⃗ right, if that is the only way it can be positive. 

Then, what will we take the phi value on the face; we would like to take it as ϕ0, right. If 

it is going this way, then we would like to take the phi comma face value equal to ϕ1 right 

that is what the condition says now, ok. So, if F𝑓 is positive, then we would take ϕ𝑓 as ϕ1; 

otherwise, we would take it as ϕ1 alright, that is what we have, alright. Then of course, 

this is the only; this is the only thing we have to worry about right, this is your upwind 

differencing scheme. 

So, once we have defined this thing, we can essentially assemble the equation right, 

assemble the equation. So, the discrete equation is basically 𝑎𝑃ϕ𝑃 = ∑  anbϕ𝑛𝑏 + 𝑏; 

because, we already know how to discretize and assemble all the diffusion equation and 

everything else right, which is basically the same as before. Now, what will be the anb 



terms? This will be again if you draw a parallel to these structured mesh; what we get is 

anb equals, you get the 𝐷𝑒 that is 𝐷𝑓 plus max of −𝐹𝑓 comma 0, ok. 

Now, this will always be max of −𝐹𝑓 comma 0, for any face that you consider in the cell 

or for any cell; because, this is always defined the way width direction. So, this will always 

have plus max of −𝐹𝑓comma 0, ok. So, you need to verify this; how will this come up, so 

you need to look at this and verify by comparison to the structured mesh case. And, aP 

would have ∑  anb as before −𝑆P times Δ𝑉0 plus we would have all this contribution. 

Again, now this term would be; this term would be 0, if u bar satisfies continuity equation, 

alright. Now, b term as usual we will have 𝑆C times Δ𝑉0 plus the secondary gradient of for 

each of the faces, ok. So, that is a very compact and nice equation; essentially, we got 

discretized the convection diffusion using the upwind difference scheme on unstructured 

non orthogonal meshes ok, that is very similar to the structured mesh, alright. 
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So far, so good now, the essentially we have now looked at not only about implementation 

issues on higher order schemes, and we have also looked at how do we go about 

discretizing convection diffusion on unstructured non orthogonal meshes for both the basic 

convention schemes; that is basically, your central difference scheme and upwind 

difference scheme, ok. 



Now, one question that we did not answer basically is now ok, all this is fine; now how 

about higher order schemes. Can I extend these higher order schemes that we have learned 

that is basically your second order upwind scheme or the quick scheme to unstructured 

meshes? Yes of course we can, this is very regularly used on all the, in all the software’s. 

So, essentially we will look at what about higher order schemes implementing higher order 

schemes on unstructured meshes, ok. So, again we look at the diagram here. 

So, we have the 𝐶0 cell, 𝐶1 cell and the Af
⃗⃗  ⃗and we have the face, and the line joining 𝐶0 to 

the face centroid we would like to call it as the vector Δ𝑟0
⃗⃗ ⃗⃗⃗⃗  ok, bar is missing here. And 

then of course, we have the velocity vector that is 𝑢⃗ , ok. So, that is what we have. Now, 

how about, how do we do this? Essentially, in the context of a structured meshes; what we 

have done is, essentially we have used the Taylor series expansion, right. 

And not only the value of ϕP, but also the 
∂ϕ

∂𝑥
 and 

∂2ϕ

∂x2 , all these things are evaluated using 

central difference schemes; let us say if you want to do a quick scheme or something like 

that, ok. So, now, the same thing we have to do; of course, now but things are not in one 

direction right, because we do not have a particular direction that we can go about, because 

this is now essentially unstructured. 
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So, we do not have a particular direction, but we know that, we can use a multi-dimensional 

Taylor series expansion; that is basically, to obtain the value of phi on the face, we can 



expand this about the ϕ0, this is ϕ0 plus ∇ϕ0 dot Δ𝑟0
⃗⃗ ⃗⃗⃗⃗  plus essentially we expand with our 

gradient calculation, and then we have the next term would be ∇2ϕ0 times order of Δ𝑟0
2, 

right. So, this will require you to calculate second derivative of the phi right, just like how 

we are done, but in multi-dimensions, alright. 

So, depending on again if you only include this term, we are back to our upwind difference 

scheme, if you include even this term, then we are looking essentially at a second order 

accurate upwind scheme, because this term would evaluate itself to order Δ𝑟0
2, right. Now, 

if you of course, include this term as well, which require you to have del square phi in all 

the directions; then, you are essentially talking about a third order accurate upwind 

scheme. 

Is this clear? Now, essentially we are looking at if you have only include the first term, we 

do not include any of these guys, then this is basically the first order of upwind scheme. If 

you include this, then we are essentially talking about an order delta r naught square; that 

is basically, the second order upwind scheme. And again if you include this, term them the 

truncational would be order Δ𝑟0
2; that means it will be a third order accurate scheme, ok. 

Now, of course, we have already calculated gradients before, in the context of secondary 

gradients; so that means, we already know, what is grad phi at the cell centers, right. So, 

if we just include that, we can of course build a second order accurate scheme very easily 

right; because the grad phi is available at every cell, all you need to do is basically use the 

grad phi and reconstruct the value on the faces. And, again this term of course, would go 

into the b term right, like way the way we have described if you want to implement it. So, 

we can, this can be easily done, ok. 

So far, so good we essentially discussed how to extend the higher order schemes or second 

order upwind scheme to unstructured meshes, right. So, that is what we have discussed till 

now, how to extend this to unstructured meshes, the second order upwind scheme. Now, 

how about the quick scheme, what we have to do? I do not have the second derivative is 

calculated already.  

So, what should I do about doing, about calculating quick scheme or unstructured meshes? 

Because, that has that comes up with x cube. There are multiple ways of doing this thing; 



of course, you do not want to calculate the second derivative here and then include all 

those terms. So, as a result, there is an alternative way that is used in the literature. 
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So, that is basically kind of generalizing the existing quick scheme on the structured 

meshes. So, we start off with the quick scheme that we have on the structured mesh, ok. 

So, recall from our structured mesh implementation, if F𝑒 is greater than or equal to 0, then 

ϕ𝑒 = ϕ𝑃 + (
ϕ𝐸−ϕ𝑊

4
) + (

ϕ𝐸−2ϕ𝑃+ϕ𝑊

8
), ok. 

So, this is the original equation for quick scheme that we have already developed. This can 

be also rewritten as the equation here; this is basically ϕ𝑃 plus we have ϕ𝐸 by 4 and we 

have ϕ𝐸 upon 8th. So, one-eighth I am writing it here. So, this is ϕ𝐸 upon 8th and then 

minus one-eighth of ϕ𝑊, that is basically minus one-fourth here and plus one-eighth here. 

So, this would basically give you minus one-eighth that is what I have written here, and 

the remaining terms are phi east is remaining one-fourth and ϕ𝑃 has remaining one-fourth, 

ok. 

So, we just modified this equation to look slightly different in terms of ϕ𝑃 plus one-fourth 

of ϕ𝐸 minus ϕ𝑊 by 2 plus one-fourth of ϕ𝐸minus ϕ𝑃, alright. If that is the case, we can 

also rewrite this slightly differently by writing it like this, ϕ𝑃 plus I would like to get the 

half here. So, this will be one half ϕ𝐸 minus ϕ𝑊 upon multiply with Δ𝑥 and divide with 

Δ𝑥. So, we have 2Δ𝑥 into Δ𝑥/2 right, in the denominator it kind of multiplies to 8 and you 

get back the original value here. 



Similarly, here I would like to write this as one-half times Δ𝑥/2 that gives you the 4 value 

here and we would like to write the as ϕ𝐸 minus ϕ𝑃 by Δ𝑥 into Δ𝑥/2, ok. So, basically this 

is another modification of this one by multiplying each of these terms, the second and third 

term with Δ𝑥 and dividing with the Δ𝑥, ok. Now, what can you say about this term? This 

is basically, if you are at the P cell, ok.  

So, we are essentially at this is our west cell; then we have the P, then we have the east 

right that means. If we are talking about phi east minus ϕ𝑊 by 2Δ𝑥, this is basically 

calculating the gradient at the cell P, right. So, I can write this of course, as 
∂ϕ

∂x
|
𝑃
 times 

Δ𝑥/2 into one half plus. What about ϕ𝐸 minus ϕ𝑃 by Δ𝑥? ϕ𝐸 minus ϕ𝑃 by Δ𝑥, this will be 

basically gradient evaluated at the little east right, basically at the east face right; so that 

means, I can write this as 
∂ϕ

∂x
|
𝑒
 at the east face times Δ𝑥/2. 

Now, what is this Δ𝑥/2? Δ𝑥 is the width of the cell right, either this one or this one; Δ𝑥/2 

would be the distance between either P to the face e or between e to the E right something 

like that. So, essentially if you are talking about P, this would be the distance between cell 

centroid to the face, fine. Essentially, now we have kind of transformed this equation for 

quick scheme, assuming that F𝑒 is greater than 0; you have to redo all this if it is less than 

0. That will be slightly different into something else, in terms of a continuous gradients, 

ok. 

Now, I have done this thing. Now, from here we can kind of generalize this equation, such 

that we can build a unstructured counterpart of this equation ok, very easily without going 

into the second derivates as we saw before. So, how do I now write this? This is basically 

∂ϕ

∂x
|
𝑃
; in general this would be, because this is unstructured mesh, I can write this as (∇ϕ)0 

evaluated at 0. 
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Now if we generalize, this is basically ϕ𝑃 would be ϕ0 right; to obtain the value on the 

face this will be ϕ0; plus one half times this would be what, (∇ϕ)𝑃 evaluate cell p that is 

0 dotted with, what is Δ𝑥/2? Δ𝑥/2 is nothing, but Δ𝑟0
⃗⃗ ⃗⃗⃗⃗  right; we have just drawn this as 

basically, the distance between the cell centroid to the face centroid, this is delta r naught 

bar, ok. 

So, we have generalized this formula. Plus what is the second one? This is half of partial 

phi partial x at east is nothing, but this is in the context of Cartesian structured meshes, 

this is basically the 
∂ϕ

∂𝑥
. But if you were to generalize this, this is basically your (∇ϕ)𝑓 

evaluated on the face f. So, this is basically (∇ϕ)𝑓 ok, dotted with this is again Δ𝑟0
⃗⃗ ⃗⃗⃗⃗ , ok. 

Now, very nicely we have got an equation here which is a generalize, generalization of the 

quick scheme to unstructured non orthogonal meshes, ok. 

Now, only requirement of course is that, the gradients that we have computed or we will 

compute; these two have to be at least second order accurate right, only then this entire 

thing will be third order accurate, and whatever we kind of leave it here would be third 

order accurate, ok. 

So, this is the counter part of the quick scheme for unstructured non orthogonal meshes, 

ok. So, only requirement is that, evaluate are the gradients at the cell centers and the faces 



to at least second order accuracy, such that this entire terms here would be will be third 

order accurate, ok. 

Now, following here similar pattern; you can of course derive other higher order scheme, 

such as the second order upwind scheme or Beam Warming scheme or Fromm scheme 

using by generalizing those equations as well into unstructured non orthogonal meshes ok, 

following a singular algorithm, ok. 

So, that is about it. Essentially now we have covered today the unstructured mesh 

discretization for the convection diffusion as well as we learnt how to extent the higher 

order upwind schemes to the unstructured non orthogonal meshes, ok. So, I am going to 

stop here. Let me know if you have any questions through e mail, alright. 

Thank you. 


