Computational Fluid Dynamics Using Finite Volume Method
Prof. Kameswararao Anupindi
Department of Mechanical Engineering
Indian Institute of Technology, Madras

Lecture — 33
Finite Volume Method for Convection and Diffusion: Discretization of convection-
diffusion equation on unstructured mesh
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Hello everyone, let us get started. So, in the previous lecture, we looked at discretization
of unsteady conviction equation using the central difference scheme upwind difference
scheme and a Lax Wendroff scheme right, which was affix for central difference scheme,
isn’t it? Alright. So, we looked at discretization and looked at the several properties
associated, and how the exact solution compares with the solutions obtained from these

schemes.

In addition, we also looked at couple of higher order schemes; one was the second order
accurate upwind scheme, and the another one was the third order accurate upwind scheme,
which we call it as the quick scheme right, the quadratic upwind interpolation for
convective Kinetics, right. So, that is what we looked at the previous lecture. In today’s
lecture, we are going to look at implementing this, these higher order schemes. So, how

do we actually go about implementing them in a code?



And, we will then kind of switch gears and then look at Discretization of convection-
diffusion equation on unstructured meshes, right. Because, till now we only looked at how
to discretize on essentially on a structured Cartesian meshes only we have looked at.
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So, today we are going to look at unstructured and essentially non-orthogonal meshes, so
we are going to look at that in today’s lecture. And depending on the time, we will also
look at how do we, how can we actually extend these higher order schemes to unstructured
meshes ok; that is something we have not, we have of course not done, ok. So, these are

the kind of topics for today’s discussion.
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So, let us get started. So, let us kind of review the convection schemes, where you have
looked at in the last class. So, essentially the convection schemes are, if your flow rate on
the east face is greater than or equal to O; the way this is basically defined is, if your u, is
greater than or equal to O, then your F,, the flow rate on the east face would come on to be
0.

In under such conditions, we have defined the upwind difference scheme as something
that assigns the value of the face value right, ¢. as the upwind value that is ¢, right;
because, because F, is positive, so it is going in the positive x direction. So, ¢, would be
taken as ¢, right, that is what we have. And then, if it is a central difference scheme, then
the face value of phi would be taken as of course arithmetic average of the east and the P

cells.

So, we have (¢, + ¢,)/2, alright. Then if you, we have also looked at the second order
upwind scheme in which the phi or the face ¢, is written as ¢p + (@), right. So, this

was obtained using an approximation for the first derivative, right. The first derivative

. . ] . .
essentially is evaluated, the —ai’ is evaluated using a central second order accurate formula
P

right; that you obtained essentially the Fromm scheme.

And, if you had used the for expanding the first derivative and using a backward difference

right, backward difference formula; then you essentially obtained a scheme that is known



as Beam Warming scheme, right. Basically you had the Taylor series expansion and ¢p

plus ‘;—1’|P that is where we have used these two definitions for the first derivative, ok.
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Going on extending the same concept, if you start including higher order terms, that is

227‘1’ ) as well and then use a central difference formula for both the first derivative and the

second derivative; then the Ax that we have got cancelled and then we essentially obtained

something known as the quick scheme, where ¢, equals ¢p + (¢E;¢W) + (4’5_2‘1;”4’“’),

right.

These are basically the central difference formulae for the first and the second derivatives;
of course in doing all this we have assumed that, we are essentially working with a not
only with a Cartesian mesh, but the mesh is also uniform. So, it is probably a good idea
for you to ponder on, how do | extend? So, how to extend these schemes to non-uniform,
but let us say still Cartesian meshes, that is something | want you to kind of think about
and see how do you extend these schemes. So, what are the changes you have to make,

and things like that, alright.

Now, we looked at all these schemes, but all do all these schemes look ok, or are there any
issues that you see right away? Yes we do see some issues; if it is upwind scheme, we do
not have any problem, because ¢, = ¢p. S0, this either ¢, or phi ¢ depending on the

direction of the flow rate. So, there is no problem; because all the coefficients would come



out to be positive. As we have seen in the context of the central difference scheme, there
is a possibility for central difference scheme to have negative coefficients and those can
be avoided using these by maintaining the cell, Peclet number to be less than 2 right that

is what we have already discussed.

Now, of course, if you are working with any of these higher order schemes; again, you see
that there are these neighboring coefficients which are the phi west and ¢, here, which
have which is essentially carry a negative coefficient, right. So, these negative coefficients
are not good; because, essentially this is not good and of course this is also not good,
because this is making the central value ¢, to go to a smaller value right. You have minus
one-fourth here coefficient, which makes the central value a P to go down right, ok.

So, essentially these negative coefficients are not good; because, they do not satisfy
Scarborough criterion, right. The moment you have these negative coefficients, your
Scarborough criterion may not be satisfied; essentially, the diagonal dominance would not
be respected, right. As a result, if we use an iterative scheme to solve for the solution, then
we would run into trouble, right. Using an iterative scheme to obtain solution would cause

issues; because, the Scarborough is not satisfied, right.

As a result, we need to find a way of getting around this problem ok, so that we can still
satisfy Scarborough criteria. But, we will not any issue; we will not have any issues in
converting the solution using some iterative scheme, ok. So, | am going to, we are going
to look at one particular method and after that |1 want you to think and see if there is, if

there could be any other method that you can do this in a different way, ok.
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So, let us get started. So, implementation of higher orders schemes. So, you will see, how
do we get about this problem. So, essentially to satisfy Scarborough criteria, we use
something known as a deferred correction approach, ok. So, this was proposed essentially
to make some of the kind of legacy codes that were originally written using the upwind

difference solutions, ok.

So, in order to kind of make these work for high order schemes, a deferred correction
approach is proposed. This also not only to make these codes work with very simple with
small changes, but also to make any of these iterative solvers also to work, because then

they will start satisfying these Scarborough criteria, ok.

So, essentially the method is same as what we have learned till now; this is basically
deferred correction approach, in which we like the way we have done it for the source
terms and the way we do it for any of the non-linear terms. So, what we do is, we know
that if we take a simple upwind scheme, that is basically the first order upwind difference
scheme; this always satisfies Scarborough criteria, because everything is positive
coefficient, either it is going into the a P term or to the a and b terms and you have no

problem in obtaining the solution, ok.
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So, what we do is, essentially we take that point, and then if you consider the convective
scheme; the discretized value is nothing, but F, ¢, yeah right, this is what you would get
after discretization. So, F,¢, and if 1 assume that F, is positive and F, is greater than or
equal to 0. Then, for a upwind difference scheme, what we do is, if F, is positive, then F, ¢,
would translate into F, ¢, right, essentially this F, would go into the coefficient of a P right

or a east, if this was negative, this will go into a capital east, ok.

Now, what about the higher order scheme? Let us say if you take some higher order
scheme, which I would like to write it as HO, Higher Order scheme. So, F,¢,. would
become F, times phi higher order. Now, phi higher order is basically what? It is not just
p, but it is basically all this entire thing right; phi higher order is ¢, plus blah blah blah
or it is this thing or this thing right, it is basically a big expression that contains not only
¢p, but also contains several other neighboring values, which is given by the higher order

scheme.
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Now, we know that if | use directly this, it is not going to satisfy Scarborough; because, it
is going to cause trouble with the coefficients. So, as a result what we do is, we look at
deferred correction approach. So, what we do here is that, we write F,¢y0, the Higher
Order scheme as, we add and subtract the upwind difference component that is F,¢p. So,
| would add F,¢p to F,dy0 and then | will subtract F,¢p 0k, so essentially this is same as

what we have on the left hand side.

Now, what we do is that, now in the deferred correction approach; we will evaluate
everything that is there in this parenthesis ok, using the previous iteration value. So, we
are going to put a star here for these two terms, ok. So, whatever we have here, this will
be evaluated using the previous iteration values, ok. So, these are basically F.¢;,, Star

minus F. ¢} star, ok.

Now, this is something that is not the same as what we have written in the previous step;
but we understand that by writing it this way, we have now changed few things, right. Of
course, what did we change? We have changed that, excuse me. So, we have changed that,
at convergence what will happen here; at convergence ¢, equals ¢5 as a result, this term
gets canceled, essentially this term gets canceled right with this term and we kind of

recover back our ¢y, right, that is what we would recover.

And now, what about Scarborough criterion? Now, because this term is written F, as F,¢p

and these two terms are evaluated at the star level, that is the current iterate level or known



values right are the starred values; then where does, where do these terms go, right. So, if
we have written it like this F, ¢y, equals F, ¢p plus F, times. If | want to write this as ¢, —
¢bp as some Adj;, 0K, some difference between the higher order value and the ¢, value,
essentially the upwind value; then, where will these coefficients go? This coefficient will

go into, into where? This will go into your a P.

And, where will this term go; because this is star values, these will not go into a w, a
neighbors, this will go into the b term, ok. As a result, now your Scarborough is now
satisfied; because, it is basically similar to your upwind difference scheme, except that
these are going into the source terms, right. So, your Scarborough is now satisfied. As a
result, for every iteration or the outer iteration that you have, your Scarborough is always
satisfied and you have no problem right, you can implement any higher order scheme in

this particular way, alright.
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Now, let us take an example of the quick scheme and see how do we go about
implementing it. So, if you look at the quick scheme; what we have is, F, ¢, would read as

F.dquick €quals F, ¢, plus, ok. So, this particular thing, entire expression here is the ¢,y;cx

right; that is what we have for ¢gy;cx Minus ¢p.

So, essentially we have added F,¢,, and subtracted it here F, times ¢,,, and everything in

the parenthesis we have, we are starting evaluating at star values. Of course, there could



be a different way of doing this, because there is already a ¢5 here, but | would like to

follow with what we have written up here, ok.

So, that means F,¢, equals , so this basically equals F,¢, plus F, times ¢p now gets
canceled. So, what you get is, you get this remaining term, ok. So, essentially again now
this entire thing would go into the b term and this entire thing here would go into the a P
term, ok. So, as a result this Scarborough is now satisfied, alright. So, this is how you
would implement it. Now, what about another way of implementing it? Let us say, is there
it another way of implementing it, if you do not want you use a different deferred

correction approach? Yes, you can do it.

Essentially, what you have to do is, if you want to do in another way, what we are losing
here is the diagonal dominance right, your Scarborough would not be satisfied. So, you
can make it satisfy diagonal dominance or Scarborough by using some kind of relaxation,
right. If you have a relaxation factor, you can make it go up right; you can make it an under
relaxation factor or something and then, you can or, and then you can make it this

Scarborough satisfied or diagonal dominance, ok. So, that is another way.

But in in our particular course, we will use this deferred correction approach; because, it
is much simpler and also you can make, you can write a code for let us say the upwind
difference scheme and make any other scheme work as well in a very simplified way,
because all you have to change is basically the b term, right. Once you change that, you

essentially are doing a higher order differencing, alright.
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Let us see now how do we, when we concatenate all the equations, let us look at the overall
equations, if you have let us say a higher order scheme, essentially we are talking about a
higher order upwind scheme, ok.

So, that means what we have is, if you kind of concatenate all the equations what you get
is the discrete equation is apdpp = X an,dnp + b 0K, Where your ag is we have already seen
this as the diffusion component D, plus max of minus F, comma 0. And, a,, equals D,,
plus max of F,, comma 0. Notice that there is a minus and a plus here; this is because, we
have defined the flow rate as simply pu,Ay here, and we have defined it here simply as

pu,, Ay, ok.

So, we have not defined these as the dot product of pu - E ok, rather we have simply
written it as the rho density times velocity times area. As a result we got this minus plus
problem right, minus plus issue. And similarly, ay would be D, plus max of minus F,
comma 0 and then ag would be Dy plus max of F, comma 0, ok. So, this is if we have
already known about all these things, this is basically your first order upwind difference
scheme, right. If you are asked to write code for upwind difference scheme, this is the

algorithm.
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Now, what about the higher order scheme? Essentially, the higher order scheme would
contribute to the b term. So, as a result, your a, is also the same as before. So, you have
ap equals Y a,, minus the source term that is SpAV, plus we have F, minus E, plus E,
minus F;, right. Essentially, this term is comes into play to counteract the upwind scheme

whether it is going into ap or ag right, only for that this is coming into play.

And again, we know that the term here in the parentheses would evaluate to zero; if your
under line flow field that is the u, let us say if it satisfies continuity, right. If it satisfies
continuity equation; then, the mass flux that is coming in and going out would be balanced.

As a result, this parentheses term would go to zero, alright.

What about b term? b term, now contains S; AV, and then we would contain if F, is positive;
you would get a F, times, you would get Ay, . term evaluated at star value, right. Delta
here is, because we have phi higher order minus phi upwind right, and this is evaluated on

the east face and everything is evaluated at this star value, alright.

Now, why is there a minus here? There is a minus, because your term is basically F, times;
F.¢,, alright. Because F, is positive, then the contribution will go into ap. And so, F, is
positive, then this will go into F,¢,; but this is being sent to the other side, so we have a
minus F,Adj, ., alright. But if F, is negative, then this would turn out to be going into ag,

right. Is this correct? Maybe you need to check for the sign here; if is this correct or not,



ok. Then, we have plus F,,Ad} ,, 0N the west and then minus F,Ad;, , Star on the north

plus FsAdjp, s for the south on the star, ok.

So, this extra term is basically the only change when compared to the upwind difference
scheme, ok. So, this is the only change; because, we have used the deferred correction
strategy, ok. So, as a result this is the only change; so, that means if you write a code for
upwind difference scheme, it is very easy to modify to use any higher order scheme using

this deferred correction strategy, alright.

Then, let us move on to now something different; because, up till now we have been only
looking at the Cartesian or we have been only looking at the structured Cartesian meshes
right, and then, we have seen how to discretize the convection diffusion equation as well
as the unsteady convection equation, ok. Now, what about unstructured non orthogonal
meshes? How do I solve for convection diffusion equation on unstructured non orthogonal

meshes, ok. So, this is something we take up now, alright.
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So, as usual we have our two cells; let us say this is the C, cell and this is the ¢, cell and
the vector connecting them would be the € direction, and the direction along the face would

be your n direction. And, we have these two unit vectors that is e; and e, and we of course,

have the global coordinates that is x y and 1 and 1 and the face normal vector is /Tf.



And in addition we have now because of convection, we have some velocity field 4, let
say this is the velocity vector that is in the flow field and this is known ok, now this is
known, alright. Then, how do | now go about calculating convection diffusion in an

unstructured mesh like this that is also non orthogonal, ok. So, that is the question.
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Our governing equation is the same as before right, we start off with the general scalar
transport equation that is ait(pq)) + V- (ptidp) = V- (I'Vd) + Sy, right. For now, we would

only look with, work with the just look at the convection diffusion equation.

So, we will not study convention diffusion equation. So, as the result we would check the
unsteady part to 0 and of course, this is something that can be drawn easily. So, you can
see how do extend this to be in cooperate the unsteady equation, which we have already

seen in the context of structured meshes for convection diffusion, ok.

So, if I apply now finite volume method to the convection diffusion equation, of course
we can write this by getting this term to the right hand side. As (T'V) - A; minus (ptip) s -
A; plus Sy AV, equal to 0, ok. So, this is basically you apply a integrate it on a finite volume

and then convert the volume integrals into surface integrals using Gauss divergence
theorem and then replace the surface integrals with summation ok, that is what. And then,

we already know how to discretize the first time here, this is the diffusion flux (TV¢) - Ar.



And, we also know how to discretize the S,AV, right; essentially, we make a linearize the
source, write the Sy, as Sc + Spdp. Now, only thing that we do not know is this part that is
the convection term right, which is (pud) - A, ok. Remember for the structured meshes,
we have defined for the east face, west face and so on; we have clubbed pz and A; together,

we call that as some kind of flow rate right, because it is kind of multiplying density times
velocity times the area, the scalar area.

So, this was pu,Ay, we defined it as F, right that is the mass flow rate through the east
face. Similarly, we defined pu,, Ay as the mass flow rate through the west face, ok.
Remember, while defining these things, we did not consider the area vector direction, ok.
We have only used the area magnitude, ok. So, as a result we got this plus minus in the

definition of the upwind schemes, so right that is the consequence of that.

Whereas, now what | would like to do is, I would like to define our flow rate as (pi) - Ay,
ok. So, now this e is, this takes into account the plus minus automatically depending on
the face we are; of course, A; is now pointing out of the cell that we have focused on, ok.
So, that means F; is the flow rate which is basically (p@); - A ok; that means, this term

can be written as Fr ¢ right for each of the faces, alright.
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If we go about the diffusion flux that we have, diffusion term is (TV) - Ay; bar is missing

here equals; this, basically has two components; if it is a non-orthogonal mesh, one was

the primary derivative, the other one was the secondary derivative.

So, the primary derivative was Z—’;%(q)l — ¢y) right; essentially, (b, — dg)/AE is
e

9
9%

face, this we call it as a secondary gradient, ok. So, that is coming from the diffusion on

coming from your — on the face, plus we had some term which is basically your ‘;—: on the

the unstructured non orthogonal meshes, alright.

Now, just like what we have done in the structured examples, we would like to call this
entire coefficient as some D, ok. Remember we have defined something called D, which

was I'Ay/8x,. So, on similar lines we would like to define this entire coefficient as Dy ok,
Dy, this is Dy times ¢; — ¢, plus secondary gradient of f, this is fine, this is we already

know about the diffusion discretization. So, there is nothing new here.
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What about the convention term? The convention term if we write that is (piid) - Ay, with
our definition of (p#); - A; as Fy; this term evaluates to F; times &, right. Now, notice the

similarity, here this is basically similar to your F, times ¢, ok; of course, in definition of

F, is different here slightly, because it does not consider the direction here, alright.



So, then we have F; times ¢ (. Now, can we write the complete discrete equation? Yes, we
can write essentially, that is basically you go back and substitute for each of these terms

and then write the summation on the f that basically gives you D, times ¢, — ¢, for f.

So, that means either this is ¢, — b, or d, — ¢, and the corresponding things depending
on the which face we are looking at plus you have secondary gradient of f minus you have
Fr time ¢, right. So, this is basically you are coming from the convection flux, plus we
have the source term that is S¢ + Spd, times AV, equal to 0, ok. So, that is the full equation.
Now, just like what we have done in the structured mesh case, we now have to apply a
particular discretization scheme for our convective term right, our convective term is

basically ¢, Fr times ¢y.

Now, we need a some kind of profile assumption or some kind of value for our phi on the
face f, ok. So, if we apply let us say central difference scheme, we of course recall that in

the context of structured meshes, we wrote ¢, that was coming in F,, right
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In F,¢., what we wrote wasd,.; we have written as (¢, + ¢,)/2 in the context of central

difference scheme. Now, if | were to apply central difference scheme for unstructured non-

orthogonal meshes, | can write this phi f as a using a simple average as (¢, + ¢,)/2, right.

Now, this is ok, because although, there is a difference in the cell sizes; even if the cells

are not uniform, we assume that the phi kind of let us say varies linearly or something. So,



this is a simple average; of course, this can be improved upon by using the gradients of phi
later on, ok.

So, anyway | would make a simple average, this is basically ¢, equals (¢, + ¢,)/2; that
means, | would substitute (¢, + ¢,)/2 into the ¢, value that we have here, ok. Now, what
happens when we substitute this? What happens is you have —F /2 going into a 0 and then

you have —F/2 going into a,, right.

Now, a, is your P cell here, right that is your 0 cell; that means, —F /2 would become plus
—F /2 and it goes to the right hand side and you have a —F/2 that is remaining here, ok.
So, that is what happens. Now, because the way F; is defined, this will always be a minus
here; because, F already contains the plus minus automatically depending on the area
vector. So, as a result, we can now substitute for these values and then form the complete
discrete equation for central difference scheme, when applied to convection diffusion on

unstructured, non-orthogonal meshes.
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So, of course, we kind of get back to our nice equation that is apdbp = Y, anpdnp + b. Now,
this is where | want you to kind of draw parallels to the structured mesh discretization. So,
you have to kind of recall what we have done in the structured context, in the context of

convection diffusion equation.



See, how this makes sense ok; otherwise, you have to kind of go through this and kind of
derive it independently after we have gone through these steps, ok. So, what would be a,,;,?
app 1S basically in the context of structured mesh, this was D, minus F, by 2, alright. This
was so, if you go about here; again this should be Dy minus F; by 2 right that is what we

would get for the neighbors, right.

So, that is your ayy,; app, Would be Dy minus Fr by 2, because this will stay on the left hand
side that is coefficient of phi once, alright. What about ap? ap would be of course sum of
Y. anp, Sum of all these guys; but remember, that this would come with a plus. So, as a
result we will have this extra term right, F, minus E, plus F, minus F; in the context of

central difference scheme that same thing comes here.

But, again we do not have plus minus here, so as a result this would be summation of F,
right. So, we would not have that plus minus thing here right, recall that was there in the
context of structured meshes. So, this a n b would basically we have D, minus Fy by 2 that

is the reason we are getting this, ok.

Then your b term of course, has the remaining part of the source term that is Sc times AV,
plus we have the secondary gradient term as well, right. The secondary gradient term
would be would remain on the left hand side as a result it will be a plus a; a,;; secondary

gradient for each of the face that is shared with the neighboring cells, ok.
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So, that is what we have. Now, similar to the Cartesian mesh case, if F; is greater than 0
right; if this is positive, can will this coefficient be always positive? Will this be always
positive? No right, this is not always positive; if F¢ is positive and F; is greater than 2 times
D f, right.
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Then essentially, this coefficient can be negative right, and we do not like negative
coefficients, because if we use an iterative scheme, then this Scarborough criterion will
not be satisfied and so on. So, we do not like this, that means we have to choose Fy, such
that F; /D, should be always less than or equal to 2 right; that means, only then your a,y,’s

will be positive, right.

That means, we are again come back to the same condition that, the cell Peclet number has
to be less than 2; this is basically, we had a similar restriction in structured meshes also,
right. So, the same restriction kind of comes back to us, even in the context of unstructured
non-orthogonal meshes, ok. So, that, but that is how that is exactly how about you go about
implementing the central difference scheme on these unstructured meshes, alright. Now,

let us see, how do we implement the upwind difference scheme, ok.
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So, the upwind difference scheme we again recall from the structured mesh case that, phi
all the face ¢, is either ¢, or ¢ depending on the direction of the mass flow rate, right.
If F e is greater than or equal to O, then ¢, equal to ¢p; if F e is less than 0, then ¢, equals

og, right we recall this thing.

Now, of course, the same condition applies here, only thing is that now ¢y is either ¢, or
¢, depending on the direction of the F,. That means, if we go back to the diagram that we
have drawn, which is couple of pages here, ok. So, if F, bar is positive right, essentially
you can move this arrow here. So, if this is going this way right; that means, it is in the

direction of A; right, if that is the only way it can be positive.

Then, what will we take the phi value on the face; we would like to take it as ¢, right. If
it is going this way, then we would like to take the phi comma face value equal to ¢, right
that is what the condition says now, ok. So, if F; is positive, then we would take ¢ as ¢;;
otherwise, we would take it as ¢, alright, that is what we have, alright. Then of course,
this is the only; this is the only thing we have to worry about right, this is your upwind

differencing scheme.

So, once we have defined this thing, we can essentially assemble the equation right,
assemble the equation. So, the discrete equation is basically apdp =3 anpdnp + b;
because, we already know how to discretize and assemble all the diffusion equation and

everything else right, which is basically the same as before. Now, what will be the a,



terms? This will be again if you draw a parallel to these structured mesh; what we get is

anp equals, you get the D, that is Dy plus max of —F, comma 0, ok.

Now, this will always be max of —F; comma 0, for any face that you consider in the cell
or for any cell; because, this is always defined the way width direction. So, this will always
have plus max of —F,comma 0, ok. So, you need to verify this; how will this come up, so
you need to look at this and verify by comparison to the structured mesh case. And, ap

would have Y; a,, as before —S;, times AV, plus we would have all this contribution.

Again, now this term would be; this term would be 0, if u bar satisfies continuity equation,
alright. Now, b term as usual we will have S times AV, plus the secondary gradient of for
each of the faces, ok. So, that is a very compact and nice equation; essentially, we got
discretized the convection diffusion using the upwind difference scheme on unstructured

non orthogonal meshes ok, that is very similar to the structured mesh, alright.
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So far, so good now, the essentially we have now looked at not only about implementation
issues on higher order schemes, and we have also looked at how do we go about
discretizing convection diffusion on unstructured non orthogonal meshes for both the basic
convention schemes; that is basically, your central difference scheme and upwind

difference scheme, ok.



Now, one question that we did not answer basically is now ok, all this is fine; now how
about higher order schemes. Can | extend these higher order schemes that we have learned
that is basically your second order upwind scheme or the quick scheme to unstructured
meshes? Yes of course we can, this is very regularly used on all the, in all the software’s.
So, essentially we will look at what about higher order schemes implementing higher order
schemes on unstructured meshes, ok. So, again we look at the diagram here.

So, we have the C, cell, ¢, cell and the Arand we have the face, and the line joining ¢, to

the face centroid we would like to call it as the vector Ar, ok, bar is missing here. And
then of course, we have the velocity vector that is i, ok. So, that is what we have. Now,
how about, how do we do this? Essentially, in the context of a structured meshes; what we
have done is, essentially we have used the Taylor series expansion, right.

And not only the value of ¢p, but also the 2% and az—“’, all these things are evaluated usin
0x %2 9 Y

central difference schemes; let us say if you want to do a quick scheme or something like
that, ok. So, now, the same thing we have to do; of course, now but things are not in one
direction right, because we do not have a particular direction that we can go about, because

this is now essentially unstructured.
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So, we do not have a particular direction, but we know that, we can use a multi-dimensional

Taylor series expansion; that is basically, to obtain the value of phi on the face, we can



expand this about the ¢, this is ¢, plus V, dot Ar, plus essentially we expand with our
gradient calculation, and then we have the next term would be V2¢, times order of Ar¢,
right. So, this will require you to calculate second derivative of the phi right, just like how

we are done, but in multi-dimensions, alright.

So, depending on again if you only include this term, we are back to our upwind difference
scheme, if you include even this term, then we are looking essentially at a second order
accurate upwind scheme, because this term would evaluate itself to order ArZ, right. Now,
if you of course, include this term as well, which require you to have del square phi in all
the directions; then, you are essentially talking about a third order accurate upwind

scheme.

Is this clear? Now, essentially we are looking at if you have only include the first term, we
do not include any of these guys, then this is basically the first order of upwind scheme. If
you include this, then we are essentially talking about an order delta r naught square; that
is basically, the second order upwind scheme. And again if you include this, term them the

truncational would be order ArZ; that means it will be a third order accurate scheme, ok.

Now, of course, we have already calculated gradients before, in the context of secondary
gradients; so that means, we already know, what is grad phi at the cell centers, right. So,
if we just include that, we can of course build a second order accurate scheme very easily
right; because the grad phi is available at every cell, all you need to do is basically use the
grad phi and reconstruct the value on the faces. And, again this term of course, would go
into the b term right, like way the way we have described if you want to implement it. So,

we can, this can be easily done, ok.

So far, so good we essentially discussed how to extend the higher order schemes or second
order upwind scheme to unstructured meshes, right. So, that is what we have discussed till
now, how to extend this to unstructured meshes, the second order upwind scheme. Now,
how about the quick scheme, what we have to do? | do not have the second derivative is

calculated already.

So, what should | do about doing, about calculating quick scheme or unstructured meshes?

Because, that has that comes up with x cube. There are multiple ways of doing this thing;



of course, you do not want to calculate the second derivative here and then include all
those terms. So, as a result, there is an alternative way that is used in the literature.
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Counter-part

So, that is basically kind of generalizing the existing quick scheme on the structured
meshes. So, we start off with the quick scheme that we have on the structured mesh, ok.

So, recall from our structured mesh implementation, if F, is greater than or equal to 0, then

e = Pp + (L0 4 (2e=2betdw) o)

So, this is the original equation for quick scheme that we have already developed. This can
be also rewritten as the equation here; this is basically ¢, plus we have ¢ by 4 and we
have ¢ upon 8th. So, one-eighth I am writing it here. So, this is ¢ upon 8th and then
minus one-eighth of ¢,,, that is basically minus one-fourth here and plus one-eighth here.
So, this would basically give you minus one-eighth that is what | have written here, and
the remaining terms are phi east is remaining one-fourth and ¢, has remaining one-fourth,
ok.

So, we just modified this equation to look slightly different in terms of ¢, plus one-fourth
of ¢ minus ¢y, by 2 plus one-fourth of ¢pzminus ¢p, alright. If that is the case, we can
also rewrite this slightly differently by writing it like this, ¢ plus I would like to get the
half here. So, this will be one half ¢ minus ¢, upon multiply with Ax and divide with
Ax. So, we have 2Ax into Ax/2 right, in the denominator it kind of multiplies to 8 and you

get back the original value here.



Similarly, here | would like to write this as one-half times Ax/2 that gives you the 4 value
here and we would like to write the as ¢ minus ¢, by Ax into Ax/2, ok. So, basically this
is another modification of this one by multiplying each of these terms, the second and third
term with Ax and dividing with the Ax, ok. Now, what can you say about this term? This

is basically, if you are at the P cell, ok.

So, we are essentially at this is our west cell; then we have the P, then we have the east

right that means. If we are talking about phi east minus ¢y, by 2Ax, this is basically

calculating the gradient at the cell P, right. So, I can write this of course, as ‘;—‘b . times

Ax /2 into one half plus. What about ¢z minus ¢p by Ax? ¢z minus ¢p by Ax, this will be

basically gradient evaluated at the little east right, basically at the east face right; so that
b

means, | can write this as Z—X . at the east face times Ax/2.

Now, what is this Ax/2? Ax is the width of the cell right, either this one or this one; Ax/2
would be the distance between either P to the face e or between e to the E right something
like that. So, essentially if you are talking about P, this would be the distance between cell
centroid to the face, fine. Essentially, now we have kind of transformed this equation for
quick scheme, assuming that F, is greater than O; you have to redo all this if it is less than
0. That will be slightly different into something else, in terms of a continuous gradients,
ok.

Now, | have done this thing. Now, from here we can kind of generalize this equation, such
that we can build a unstructured counterpart of this equation ok, very easily without going
into the second derivates as we saw before. So, how do | now write this? This is basically
)

ol in general this would be, because this is unstructured mesh, I can write this as (Vé),

evaluated at 0.
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Now if we generalize, this is basically ¢, would be ¢, right; to obtain the value on the
face this will be ¢,; plus one half times this would be what, (V) , evaluate cell p that is
0 dotted with, what is Ax/2? Ax/2 is nothing, but Ar, right; we have just drawn this as
basically, the distance between the cell centroid to the face centroid, this is delta r naught

bar, ok.

So, we have generalized this formula. Plus what is the second one? This is half of partial

phi partial x at east is nothing, but this is in the context of Cartesian structured meshes,

this is basically the Z—f. But if you were to generalize this, this is basically your (Vé),

evaluated on the face f. So, this is basically (V) ok, dotted with this is again Arg, ok.

Now, very nicely we have got an equation here which is a generalize, generalization of the

quick scheme to unstructured non orthogonal meshes, ok.

Now, only requirement of course is that, the gradients that we have computed or we will
compute; these two have to be at least second order accurate right, only then this entire
thing will be third order accurate, and whatever we kind of leave it here would be third

order accurate, ok.

So, this is the counter part of the quick scheme for unstructured non orthogonal meshes,

ok. So, only requirement is that, evaluate are the gradients at the cell centers and the faces



to at least second order accuracy, such that this entire terms here would be will be third
order accurate, ok.

Now, following here similar pattern; you can of course derive other higher order scheme,
such as the second order upwind scheme or Beam Warming scheme or Fromm scheme
using by generalizing those equations as well into unstructured non orthogonal meshes ok,
following a singular algorithm, ok.

So, that is about it. Essentially now we have covered today the unstructured mesh
discretization for the convection diffusion as well as we learnt how to extent the higher
order upwind schemes to the unstructured non orthogonal meshes, ok. So, | am going to
stop here. Let me know if you have any questions through e mail, alright.

Thank you.



