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Hello, everyone. Let us get started. So, welcome to another lecture as part of our ME6151 

computational heat and fluid flow. So, in the last lecture, we looked at numerical diffusion 

and dispersion and explained these properties as their type to the upwind difference 

scheme as well as to the central difference scheme, right, from a numerical perspective. 

And, then we also looked at kind of an introduction to unsteady convection and we looked 

at the exact solution which can be used to compare now when we try to solve this equation 

using a finite volume method right. So, we can compare it with exact solution and comment 

on the accuracy of the schemes that we are using ok. 

So, in continuation to what where we left off so, in today’s lecture what we are going to 

discretize this unsteady convection equation using central difference scheme or an upwind 

difference scheme for the spatial derivatives ok. So, for the spatial derivatives we will use 

either a central difference scheme or upwind difference scheme and we will also use for 

the temporal derivatives we will either use either explicit schemes or implicit schemes. 



And, in addition we will also look at another particular method that is known as Lax – 

Wendroff discretization and then we will also look at constructing and using some of the 

higher order schemes for convection. Because till now we have only looked at upwind 

difference scheme which is first-order accurate in space and central difference scheme 

which is second-order accurate in space alright. 
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Let us move on. So, starting with the unsteady convection equation so, if you set the 

gamma equal to 0 and source equal to 0, and retain the unsteady part and the advection 

part, then we get this partial differential equation which is 
∂

∂t
(ρϕ) + ∇ ⋅ (ρ�⃗� ϕ) = 0, right. 

In order to simplify the analysis we will make a one-dimensional approximation and also 

set the density equal to 1, ok. 

So, with these two assumptions we can now reduce this equation with rho equal to 1. This 

term will become 
∂ϕ

∂t
 plus we have ∇ ⋅ (ρ�⃗� ϕ), rho equals 1 and this being 1D will only retain 

one derivative that is 
∂

∂x
(uϕ) which is only the x component of this velocity vector equal 

to 0. To make things further simple we are going to also assume that the mesh is uniform 

with a cell width of Δx ok, alright. 

Now, how do we solve this unsteady convectional equation? Remember, we have done the 

unsteady diffusion equation a while back in which we had to integrate it not only on the 

control volume also, but also on the time step, right. As a result, now, we have to integrate 



both in volume both in space and time for this particular equation so that would read 

integral Δ𝑡 that is time going from t to 𝑡 + Δ𝑡 and integral over the volume. 

In this particular case, volume happens to delta x. So, this is integral Δ𝑡 integral Δ𝑥, 
∂ϕ

∂t
 and 

then we have integration on dx dt right, on the volume as well as on the time step plus and 

then on the second time also we have integral Δ𝑡 integral Δ𝑥,  
∂

∂x
(uϕ) dx dt equal to 0, ok. 

Now, of course, we can we know how to now integrate these two quantities both on space 

and time. So, we can write the first quantity as phi p minus phi p 0 times delta x right 

because this will simplify to partial partial t dt which will give you phi and phi value at the 

cell centroid can be taken assuming the determines it prevails over the entire cell. 

So, this will be ϕ𝑃 − ϕ𝑃
0 , times of course, the volume would be integral times Δ𝑥 right plus; 

now, how do we integrate this particular candidate? Essentially we have we apply the 

Gauss divergence theorem, then 
∂

∂x
(uϕ) dx would give you uϕ on the face on both the 

faces, right. This is uϕ on the east minus uϕ on the west plus we also have a profile 

assumption for variation of this flux with time right. 

That means that we will introduce a factor 𝑓 times the quantity (𝑢ϕ)𝑒 − (𝑢ϕ)𝑤 plus (1 − 𝑓) 

times (𝑢ϕ)𝑒 at the previous time level (𝑢ϕ)𝑒
0 − (𝑢ϕ)𝑤

0  right. Times, of course, this entire 

thing because being a linear profile assumption as we multiplied with Δ𝑡 to account for the 

integration of this quantity ok. So, this is the discretized equation for the volume and time 

integrated unsteady convection equation here. 
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Now, depending on the method that we choose either the value of 𝑓 will be decided and 

similarly depending on the spatial method that we choose the approximation for the face 

values of the dependent variable will be evaluated ok. So, if we use an explicit method for 

the time step then 𝑓 would be taken to be 0. So, if you set f equal to 0, the method would 

be explicit in which case this entire thing would go to would go to 0, right; only the second 

term remains here, only this term remains. 

And, we also say if we use a central difference scheme then ϕ𝑒 and ϕ𝑤 would be taken as 

arithmetic average of the east value and the P value and the west value and the P value, 

right. We also assume that u is constant and it is positive in this particular case it does not 

matter because it is a central difference scheme. So, irrespective of the direction of 

velocity, the value on the phi on the faces is always computed as the arithmetic average 

ok, alright. 

Then, what we have is (ϕ𝑃 − ϕ𝑃
0)Δ𝑥. So, we also want kind of divide throughout divide by 

Δ𝑥Δ𝑡 throughout this equation; that means, we will get Δ𝑥 gets cancelled, we get a Δ𝑡 in 

the denominator. So, the first term would be ϕ𝑃 − ϕ𝑃
0  upon Δ𝑡 plus this term is 0 right. So, 

essentially because what we have is an explicit method, right. 

So, f equal to 0 for that, that will give you this quantity is 0 right and only this quantity 

remains and ϕ𝑒 equals (ϕ𝐸 + ϕ𝑃)/2. So, as a result what you get is you get a P here and 



a half phi here and a half phi here, both of which get cancelled, right. And, then remaining 

terms would be 𝑢/2Δ𝑥Δ𝑡, Δ𝑡 gets cancelled with this Δ𝑡. 

So, you get 𝑢/2Δ𝑥 and there is a 2 in the denominator. So, you get 𝑢/2Δ𝑥 times ϕ𝐸
0 − ϕ𝑊

0 , 

both evaluated at the previous time level equal to 0 ok. So, this is the equation when 

explicit time stepping and central difference scheme is used to discretize this particular 

one dimensional wave equation ok. 

Now, of course, this is an explicit method. So, do we have to solve for a system of linear 

equations in order to do this? So, no need to solve for a system right because this is a an 

explicit equation. So, you can directly substitute for the right hand side values and then 

calculate what is ϕ𝑃. Of course, we can do a truncation error analysis on this thing right 

on this particular discretized equation to know what is this spatial and temporal order of 

accuracy. 

And, also we can do a von Neumann stability analysis right and see if that is stable or not 

similarly we can also do understand what is the modified equation for this to see whether 

it works or not, ok. So, if you look at the truncation error of course, without doing 

truncation error we know that the explicit scheme is only first-order accurate in time and 

the central difference scheme is a second-order accurate in space, ok. 
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So, from the truncation error analysis we can write that this is order Δ𝑡 and order Δ𝑥2, ok. 

So, which I have not done, but you have to do it and check and again the von Neumann 

stability analysis we perform oh it shows that essentially this is unconditionally unstable 

ok. So, this method is a unconditionally unstable. 

So, what does that mean? That means, that this cannot be used under any circumstances 

because whatever no matter what delta t you choose, this is always unstable, but this is a 

an explicit method. So, what does instability mean? This is an explicit method and this is 

also for an unsteady equation. 

As a result as you go ahead with calculating ϕ𝑃 by substituting ϕ𝑃
0 , ϕ𝐸

0 , ϕ𝑊
0  from the 

previous types of values, ϕ𝑃 gets to unbounded values as you go with time as you go with 

time. So, that is that is the meaning for unconditionally unstable ok; that means, we cannot 

this method is of cannot be used. So, it cannot it cannot use. 

As a result of course, we cannot go ahead with this method. So, we need to change 

something to get a better method, alright. If you look at the modified equation which you 

have to derive which I have not done so, you need to derive. What you see is that the 

modified equation for this particular scheme reads as 
∂ϕ

∂𝑡
 plus 𝑢

∂ϕ

∂𝑥
 this is basically the same 

as the original equation that we started off with assuming u equal to constant. 

On the right hand side, what you see is you see −
𝑢2Δ𝑡

2

∂2ϕ

∂𝑥2  ok. So, the term on the right hand 

side is has a second derivative. So, this is more like a what is more like a diffusion term, 

right. This is more like a diffusion like behavior whereas, the diffusion constant itself is 

actually a function of delta t and not only that there is a minus sign here. 

So, the gamma that we would choose till now is now a corresponding value here it has a 

negative. So, this is more like anti diffusion, right. This is kind of a negative artificial 

viscosity also we know that if there is a positive viscosity that tends to suppress the 

instabilities right, essentially it is going to introduce a diffusion like behavior because it is 

multiplying an even order derivative whereas, if you have a negative value for the viscosity 

like coefficient. 

So, what does that mean; what does that mean if you having a negative diffusivity what 

will it do to the equation? Essentially it will reduce instead of damping, instead of reducing 



amplitude it is going to make it unstable, right. So, no doubt why we saw a similar behavior 

coming from our von Neumann stability analysis which says that it is unconditionally 

unstable. 

And, reason for this instability is basically the negative diffusion that is coming up which 

can be explained through the modified equation as well, ok. So, as a result the explicit 

central difference scheme when applied to the wave equation is cannot be used, ok. So, it 

cannot be used to solve this particular wave equation ok. Then, of course, we can look at 

the we can look at change in either the (Refer Time: 12:34) scheme or we can look at 

change in the time stepping scheme. 

Let us first look at change in the time stepping scheme instead of having an explicit 

method, let us have an implicit method for the time derivative and a central difference 

scheme as usual for the spatial derivative ok. 
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Now, if we do this of course, we have the original equation because the spatial scheme is 

not a different it is basically. So, essentially we are substituting for what here f equals 1 

because this is implicit method. And, the central difference approximation is the same ok; 

that means, we go back here now this term gets retained whereas, this term. So, this term 

gets retained because f equals to 1 and this term goes to 0. 



So, all our values are now evaluated time level 1 right or at delta t. So, that is the only 

difference; that means, we get rid of these superscripts here. So, as a result our discretized 

equation reads as (ϕ𝑃 − ϕ𝑃
0)/Δ𝑡. Of course, here again we are dividing everything with 

Δ𝑥Δ𝑡 plus you have u upon 2Δ𝑥 times ϕ𝐸 − ϕ𝑊, these are evaluated at the current time 

level. 

Now, how do we solve for this equation? Do we need to solve for a system? Do we need 

to solve for a linear system of equations? Yes, we need to solve for linear system; that 

means, at every Δ𝑡 you have to solve for a linear system right because this is an implicit 

method, right. So, yes, at every Δ𝑡 a linear system needs to be solved, alright. What about 

the truncation error? The truncation error remains the same. We know that the implicit 

method and the explicit method both have order Δ𝑡 in time and order Δ𝑥2 in space. So, this 

is the same thing. 

What about the von Neumann stability analysis? Von Neumann stability analysis if you 

perform which I am not doing here. So, you need to kind of perform this step and see if 

you perform once von Neumann stability analysis, then what you get is, it says that the 

method is unconditionally stable ok. That is good news because the method is 

unconditionally stable. This can be used of course, maybe for simulations, but what 

happens is if you look at the modified equation oops, sorry. 

So, if you look at the modified equation what we get is basically 
∂ϕ

∂𝑡
+ 𝑢

∂ϕ

∂𝑥
 equals you get 

a plus instead of minus right in this case you get a minus and here in this case you get a 

plus, is that easy to see? Is that straight forward to see? Because we have just changed the 

time stepping here maybe if you perform or equation you will be able to see that ok. 

So, essentially 
𝑢2Δ𝑡

2

∂2ϕ

∂𝑥2. So, that means, again we got a diffusion like term alright and then 

there is a positive value for the diffusion coefficient. So, that means, this also acts like 

most alike an upwind scheme right, essentially it is going to introduce some kind of 

diffusion. Now, that is what we think. 

But, however, if you look at if you actually try to solve this system although this is 

unconditionally stable what you see is that your solution would kind of give you a stable 

solution, but the results will not be accurate for any delta t you choose. That is because the 

von Neumann stability analysis only tells you that it is unconditionally stable; that means, 



it is not going to be unbounded it is not going to be infinite values for any of these solution 

variables. But, it does not guarantee that it will give you the correct answer ok. 

So, this stability analysis only tells you whether it is gives you boundedness or not or it 

gives you stable solutions or not, but it does not tell you whether it is accurate or not ok. 

So, that this does not mean that it will be accurate or correct or deflect physically whether 

it is possible or not. That can be that behavior can be explained by looking at the 

coefficients right in our regular analysis we always look at the coefficients. 

So, if I rewrite this equation by sending everything to the right hand side we know that 

there are the coefficients here one has a positive sign and one has a negative sign right. 

Now, does not matter what our Δ𝑡 we take, the a east and a west will always have opposite 

signs, right. 
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That means, I can rewrite this as ϕ𝑃 = ϕ𝑃
0 −

𝑢Δ𝑡

2Δ𝑥
(ϕ𝐸 − ϕ𝑊), right. So, we can write that 

here. This should be a minus here ok. So, this should be a minus because I have send it to 

the right hand side ok. So, this is not a plus this is a minus, fine, alright. 

So, that means; that means, what we have here is that, we have the coefficients being 

opposite signs this E is would always produce oscillations, right. This will produce 

oscillations as a result of the negative coefficients that we have and does not matter 



whatever Δ𝑡 we take, this will always produce oscillations ok. So, that is the reason why 

the solution will not be physically correct. However, the results will be bounded. 

So, you will get still some numbers which will not grow to infinite or something, but this 

method would not be of use because we cannot really use the apprehend solutions to 

compare with anything ok. So, essentially both the method that we have seen till now either 

the implicit or the explicit time stepping methods together with this central difference 

scheme are not of any use alright. So, we could not solve for it. 

Now, let us explore the other two methods which are either the implicit or explicit, but 

used with the in the context of the upwind difference schemes ok, alright. 
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Let us look at upwind difference schemes. So, let us get started again with explicit method 

for time stepping and upwind difference schemes for the spatial derivatives ok. So, because 

it is explicit, we expect that everything to be evaluated at the previous time level; that 

means, everything will have a superscript of 0. The unsteady term remains as it is this is 

(ϕ𝑃 − ϕ𝑃
0)/Δ𝑡. 

Now, we make an assumption that the velocity is positive because upwind scheme requires 

you to have a kind of depends on the direction. So, as a result I make u is greater than 0. 

So, basically once u is greater than 0, we can write for phi remember this term is basically 



ϕ𝑒 and this term is our ϕ𝑤 right because this is basically you have a phi is u is greater than 

0. 

So, ϕ𝑒 will be equal to ϕ𝑃 and this quantity would be equal to ϕ𝑊, right. This is on the 

west face on the west face if u west is also positive, then this will be phi W, right. You 

need to verify this once again alright. So, we have this particular equation which is 

discretization with explicit time stepping and upwind difference scheme ok. 

Now, of course, if you perform truncation error analysis what you get is you get a first-

order in space and first-order in time because upwind difference scheme is first-order in 

space as well, ok. Now, if you perform von Neumann stability analysis what you see is 

that the method says this is conditionally stable. 

So, conditionally stable which means that essentially if you choose the so, that means, the 

this method can be used depending on under certain conditions of your Δ𝑡 ok. So, which 

is basically which tells you and the and the stability condition you would get from this 

stability analysis is basically 
𝑢Δ𝑡

Δ𝑥
 which is a particular ratio should be between 0 and 1. So, 

if it is between 0 and 1, then this method can be used to get correct results, ok. So, that 

means, this method can be used, now let us look at the modified equation to kind of 

describe its behavior. 
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So, the modified equation looks like 
∂ϕ

∂𝑡
+ 𝑢

∂ϕ

∂𝑥
 equals; now, on the right hand side again 

we have a second-order derivative which is similar to the diffusion like behavior ok. Not 

only that we have we have also the diffusion coefficient is now 
𝑢Δ𝑥

2
(1 − ν), ok. This nu (ν) 

is nothing, but the 𝑢Δ𝑡/Δ𝑥 ok. So, this is basically the same now value here we have now 

called it as nu ok. 

So, if I say ν is 
𝑢Δ𝑡

Δ𝑥
 which is in the literature referred to as either Courant number or it is 

actually referred to as CFL number which is named after Courant, Friedrich’s and Lewy 

in the after the scientist who first proposed this particular who first performed the stability 

analysis and discovered this thing ok. So, as a result if we can choose Δ𝑡 such that it is less 

Δ𝑥/𝑢, then we can certainly work with the equation in integrating this thing ok. 

So, now let us come back to our heuristic analysis where we can rewrite this equation as 

ϕ𝑃 equals ϕ𝑃
0  by Δ𝑡, right. This is ϕ𝑃

0  times 1 −
𝑢Δ𝑡

Δ𝑥
. So, I am sending everything to the 

right hand side and then this becomes 
𝑢Δ𝑡

Δ𝑥
 times ϕ𝑊

0  ok. So, this is basically what we get 

ok. So, if I do this, this is basically what we get.   ϕ𝑃 = ϕ𝑃
0 (1 −

𝑢Δ𝑡

Δ𝑥
) + (

𝑢Δ𝑡

Δ𝑥
)ϕ𝑊

0  
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Now, this equation is nothing but if I replace 
𝑢Δ𝑡

Δ𝑥
 with ν what we get is ϕ𝑃

0  times 1 − ν plus 

ν times ϕ𝑊
0 , ok. Now, what we see is if because we said from the stability analysis if nu 

can be taken to be between 0 and 1, then it turns out then both coefficients are always 



positive, is it not? Which was not the case when we had x when we had implicit CDS, 

right. 

No matter what delta do you take, the coefficients were always coming out to be some 

coefficients coming out to be negative because there the coefficients were in terms of phi 

p, phi east and phi w whereas, here we have only two in terms of phi p and phi w as a result 

they are the term coming from the unsteady can be clubbed with the one of the spatial 

values ok. So, that means, if nu can be taken to be between 0 and 1; that means, this will 

be positive and of course, this will be positive. 

As a result both the coefficients will be positive and this equation would give you stable 

solutions and physically possible solution without oscillations right because the 

coefficients will be both coefficients will be positive, alright. As a result the explicit plus 

upwind difference scheme can be used to solve the unsteady convection equation ok. So, 

it can be used ok. We now found a one method to solve our equation, alright. 

Now, do we need to solve for a system here, a system of linear equations? No, we do not 

have to because this is an explicit method, everything is known on the right hand side and 

it can be just substitute and we can get the value of  ϕ𝑃 at every Δ𝑡. Only condition is that 

your Δ𝑡 cannot be any random number rather it has to be between to satisfy this CFL 

number criteria, right. So, it has between 0 and 1, 
𝑢Δ𝑡

Δ𝑥
 ok. So, that is the only condition that 

is put on the method alright. 

Now, let us see if we can use this explicit upwind difference scheme to solve let us say our 

wave equation with two initial conditions; one set of problem would be with an initial 

condition of a sine wave the other one would be with a. So, one would be with a sine wave; 

the other one would be with a square pulse, ok. Now, we assume that we have let us say 

periodic boundary conditions what does that mean? 

That means, that in the x-direction we have periodic boundary condition. So, if something 

is leaving through the domain through one direction it will come back through the through 

the left hand side ok; if it leaves the right hand side, it will come back through the left hand 

side that is a periodic boundary condition that is what we implemented in the code 



So, what does it mean? How do you implement a periodic boundary condition? We 

implement a periodic condition by saying that your east neighbor for the cell that is near 

the boundary would be same as this guy, right, on the left hand side here. Let us see ok. 
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Let us look at this example problem convection of an initial profile. We know that the 

exact solution is basically the same profile shifted by u times time right velocity times the 

time is what the shift is. Now, we will use a explicit and upwind difference scheme for 

time stepping and spatial derivative and of course, also use a periodic boundary conditions 

in the x-direction. 
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So, here on the left hand side you see a initial sine wave on the right hand side you see the 

problem of the square pulse. So, let us see if you have a so, I have periodic boundary 

conditions here and here; that means, whatever goes out of here will come back from here. 

Now, the initial profile is shown here in black this is basically approximately a sine wave 

and this sine wave the exact solution also after one period that means, it will travel it will 

travel it will come back and it will come back to the same location. 

So, we have solved the problem let us say for one time period one period of this travel. So, 

it has come back to the same location. So, the exact solution also coincides with the initial 

profile that is with the black one. Now, if you have solved it using explicit and upwind 

difference scheme, the result you would obtain is basically shown in red color here where 

you can see that there is a decrease in amplitude. So, we start off with this black profile 

and solve the system using explicit upwind difference scheme. 

Then, the solution after one period of revolution or one period of movement would be 

equal to the line shown by red right. So, you can see that there is a diffusion that is coming 

into here. This diffusion is basically dictated or controlled because of the term we saw here 

right based on 
𝑢Δ𝑥

2
 times 1 − ν this is the diffusion coefficient depending on how large Δ𝑥 

, Δ𝑥t we take. The amount of diffusion we see here will be controlled ok. 

But, one thing we see is that there are no wiggles in the solution right that is because we 

have not used the CDS scheme rather we have used an upwind difference scheme. So, we 



see some artificial diffusion right. We see artificial diffusion which is a characteristic of 

the upwind difference scheme right because of the even order derivative in the modified 

equation. 

Now, what about on the right hand side? So, on the right hand side we again start off with 

a square pulse that is the black solution that is our initial profile and again we apply 

periodic boundary conditions. So, the square pulse essentially moves ok. The square pulse 

moves like this to the right hand side once it reaches the boundary it will start coming back 

from the left hand side ok. 

So, again have periodic boundary condition and we let it come back to the same position 

to the same location that is one cycle of revolution and we again start off. So, that is the 

exact solution dictated by ϕ(𝑥 − 𝑢𝑡) the exact solution for the pure convection equation. 

Now, if we solve again this initial profile that is shown in the black with explicit and 

upwind difference scheme what you see is that, you see again a profile that does not have 

any wiggles, but it has a decrease in amplitude, right. You can see a diffusion like behavior 

that is because of the even order derivative that is coming up in the modified equation ok. 

So, this is a solution of course, it is not exact rather it gives you a solution which is a kind 

of diffusive in nature, but without any wiggles ok. So, explicit upwind difference scheme 

can be used with a proper delta x delta t such that we can get somewhat results with by 

using the method ok. 

Now, one question here is that we have solved it let us say for one period of revolution, 

now let us say if I if we keep doing this with explicit UDS for let us say few hundreds of 

cycles, what will happen to this peak? Would it be the same or would it reduce? Or in the 

let us say in the limit of t tends to infinity, what would be the amplitude that you see here 

predicted using the upwind difference and the explicit method? 

What would that be? What will happen with this amplitude? Would it remain the same as 

you go with time or would it? Of course, it will shift right it will shift it will come back, 

but the next time it comes back here would that be smaller or would that be the same? That 

should be smaller, right? Because continuously you are as you are integrating the equation, 

your diffusion is taking away the energy from the solution right. 



So, as a result it will be smaller and smaller and what will happen in the limit of infinite 

amplitude? The exact solution will remain the same because it dictates that it has to 

preserve the amplitude and it only shifts in location, whereas if you solve it with one of 

these methods eventually the amplitude will go to 0, right. Everything will disappear 

alright. 
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Now, that means, we found one method of doing or solving this unsteady convection 

equation that is the explicit upwind difference scheme, now what about the implicit upwind 

difference scheme would that work or would it would it not work? Will an implicit UDS 

work that is something you have to find out and you can again perform truncation error 

analysis, of course, if you do this thing you know that this is order Δ𝑡 and order Δ𝑥, right. 

This you already know. 

If you perform stability analysis you need to see what you would get would it be 

unconditionally stable or unconditionally unstable or whatever it is. So, you need to 

perform a stability analysis and also you need to look at modified equation for this and 

comment on the on the solution ok; that is something I leave it for you to do, ok. Of course, 

you can draw similar conclusions by looking at how this term will be right, we have done 

it for the implicit series. So, you can see how the modified equation looks like and so on 

by looking at the explicit method as well, alright. 



So, we have now out of these four methods we have looked at one of the methods. Now, 

the of course, the upwind difference schemes are viable; they can be used for the solution, 

but the issue is that the upwind difference schemes are also diffusive right. When we 

looked at the central difference schemes they cannot be directly used either with explicit 

or implicit methods, but one property that the central difference schemes has is they are 

dispersive in nature. 

However, they also have this artificial viscosity, the negative viscosity that is coming into 

play; however, they are not dissipative. So, they kind of you know preserve the amplitude 

right which is a good thing. So, several attempts have been made in the literature and 

several modifications have been have been done and one of such schemes is basically a 

Lax – Wendroff scheme which is basically tries to address kind of tries to fix the problems 

associated with the explicit CDS method ok. 

So, it will take basically the explicit central difference scheme which will not work because 

of the negative viscosity that we have in the modified equation and it will try to fix that 

such that it works ok. 
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So, essentially you if you would recall the explicit CDS method the modified equation for 

explicit CDS method what we got was 
∂ϕ

∂𝑡
+ 𝑢

∂ϕ

∂𝑥
= −

𝑢2Δ𝑡

2

∂2ϕ

∂𝑥2 . We said this is more like a 

diffusion like a term and then the negative viscosity, negative diffusion coefficient is what 

is causing the problem in terms of instability ok. 



So, the idea is can we get rid of this coefficient or this particular term from the from this 

modified equation? Ok. So, that means, yes, we can. Essentially, we should not solve for 

∂ϕ

∂𝑡
+ 𝑢

∂ϕ

∂𝑥
= 0 in the first place, rather if you add a positive value of the same quantity to 

the equation; that means, instead of solving for the originally wave equation if you would 

solve for you add a plus here right to the original equation such that in the modified 

equation when you get this minus this gets cancelled with this plus ok. 

So, if you start off with this problem instead of the original problem, then you will not 

have the negative viscosity coming into play; in the modified equation as a result it will 

work fine. So, that is the idea with which it was started off with. So, instead of instead of 

solving with instead of solving with this, you solve you start off with the essentially a wave 

equation with the diffusion like term on the right hand side where the diffusion coefficient 

is basically your negative of what you get in the modified equation; that means, if it is a 

positive 
𝑢2Δ𝑡

2

∂2ϕ

∂𝑥2  ok. 

So, this is basically changing the problem. So, you are asked to solve for a 1D wave 

equation and instead you will not solve for it because you want to work with explicit 

central difference scheme, you will solve a different equation with something else on the 

right hand side which would have a better behavior ok. So, that is what Lax – Wendroff 

proposed and that is what Lax – Wendroff scheme is applied to 1D wave equation ok, 

alright. 
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That means, now, how do we discretize this equation? So, we actually made it now second-

order derivative here. So, what now starting point is this equation that is 
∂ϕ

∂𝑡
+ 𝑢

∂ϕ

∂𝑥
=

𝑢2Δ𝑡

2

∂2ϕ

∂𝑥2  that is our starting point. 

Now, in the Lax – Wendroff scheme we again use explicit method; that means, and central 

difference scheme for these derivatives and also we need to now come up with central 

difference scheme for the second derivative, that is, the 
∂2ϕ

∂𝑥2 , ok. So, what we have is, for 

the first term we have 
ϕ𝑃−ϕ𝑃

0

Δ𝑡
 plus the second term is u times this is basically when you 

integrate and substitute for ϕ𝑒 and ϕ𝑤, you get 
ϕ𝐸

0−ϕ𝑊
0

2Δ𝑥
 that is what you get. 

And, on the right hand side what you get is 
𝑢2Δ𝑡

2
 and the second derivative here it appears 

as if we have substituted using a finite difference formula, but this is done with finite 

volume you get a pretty much the same result here. So, you get basically 
∂ϕ

∂x
|
𝑒
 minus 

∂ϕ

∂x
|
𝑤

 

and each of them would have ϕ𝐸
0 − ϕ𝑃

0  minus ϕ𝑃
0 − ϕ𝑊

0  that will give rise to minus 2ϕ𝑃
0  and 

all other terms. 

And, when you had divided with delta x delta t there is already a Δ𝑥 here and this becomes 

Δ𝑥2 and there is a Δ𝑡 that comes up in the a numerator as well this is basically coming 

because of the extra term we started off with it ok. So, this is the discretization for the Lax 

– Wendroff method alright 
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Now, we can of course, do a truncation error analysis and von Neumann stability analysis 

and we can look at the modified equation for this for this Lax-Wendroff scheme; that 

means, we are looking at a modified equation for the modified wave equation ok. 

So, that means, if you do a truncation error analysis which I have not done here which you 

know how to do it. So, if you kind of derive this part. This is basically gives you second-

order accuracy in space that is because of the central difference schemes we have used and 

it also gives you second-order accuracy in time that is because of these terms that are 

coming up here, ok. So, this you need to verify. 

Now, if you perform von Neumann stability analysis for this Lax-Wendroff scheme what 

you get is essentially your 
𝑢Δ𝑡

Δ𝑥
 the CFL number has to be between minus 1 to 1. So, it only 

gives you a conditional stability; that means, you have to choose your Δ𝑡 such that it is 

kind of satisfies this condition and if you can choose it that way then the method would be 

stable, ok. 

So, we have changed the unconditionally stable method right which was originally the you 

remember the explicit CDS was unconditionally unstable right. So, that we have changed 

it and now, conditionally stable method by incorporating this extra second-order derivative 

on the right hand side, ok. That is what Lax-Wendroff scheme has done, alright. 

Now, we can look at the modified equation for the Lax-Wendroff method; that means, we 

are looking at modified equation for this guy right. So, which of course, will have will not 

have this particular term because this gets cancelled with whatever term that usually you 

get and you get now a third-order derivative. So, the modified equation would read 
∂ϕ

∂𝑡
+

𝑢
∂ϕ

∂𝑥
 equals you get some number times 

∂3ϕ

∂x3 . 

So, you get a third derivative with something multiplying it which is basically in terms of 

your CFL number and order delta x square. So, this is basically telling you your method is 

second-order accurate and this being a third derivative this is basically what kind of a term 

is this? 
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This is dispersive, right. So, this is not a dissipative it produces dispersion. So, depending 

on 
𝑢Δ𝑡

Δ𝑥
 value, this we can solve for the method right, alright. 
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So, that means, a let us look at an example problem example problem is again same sine 

wave and the step function. So, on the left hand side here we have the sine wave where 

again the black denotes the initial condition or the exact solution after one cycle of 

evolution and the red denotes the solution obtained using the Lax-Wendroff scheme ok. 



So, what we see is that because there is no dissipation like term, unlike the upwind 

difference scheme we see that the peaks are now very much preserved, ok. I have drawn 

this red to be somewhat closer to this, but it is exactly over lying on top of it, I just drew 

it very close such that you can perceive it ok. So, there is no diffusion. However, you see 

that where there are discontinuity you see again some kind of wiggles that show up, ok. 

This is because of the dispersive nature, ok. 

Again if you look at the sine wave what you have is the black one is the initial condition 

as well as the exact solution after one cycle of revolution; that means, having periodic 

boundary conditions on the left and right. The red one as you can see preserves the 

amplitude, but again at the locations where there as there is a jump in the solution you get 

some kind of oscillations that come up this is again because of the dispersive nature of the 

of the method ok. 

However, the Lax-Wendroff seems to be much better than upwind difference scheme 

which produced a differences in the amplitudes ok. So, as a result there are several other 

methods which are proposed which will try to fix these oscillations as well, and 

particularly, some of them are in the class where we look at we kind of construct a higher 

order schemes for upwind differencing. 

Because upwind difference schemes would not produce this oscillations as a result the 

upwind difference schemes are somewhat preferred because you do not get nu u maxima 

and minima, rather what you get is your amplitude decrease in amplitude can be fixed by 

going to higher order ok. 
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So, the next topic is basically construction and use of higher order schemes those are based 

on upwind difference method ok. So, up till now we have looked at the first-order upwind 

difference scheme and the second-order central difference schemes, but these per se as 

such are not very usable because upwind difference schemes are more diffusive in nature. 

And, the central difference schemes are although they are dispersive in nature, there cannot 

be used because of the problems with unconditional unstability and these things. 

So, as a result the higher order schemes are proposed which are based on which are based 

on the higher order which are based on the upwind difference schemes but constructed to 

the high order alright. So, now, we will see how to construct the higher order schemes. So, 

the convection term we get is basically in the form of 𝐹𝑒ϕ𝑒 and if 𝐹𝑒 is positive; that means, 

the velocity on the face is positive, then ϕ𝑒 equals ϕ𝑃, that is what we have. 

So, we construct everything for this particular condition ok. So, I use this condition and 

construct all the schemes and later on you will you would realize how to change this how 

to modify this for the other conditions that exist ok. 
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So, means if F𝑒 is greater than or equal to 0, of course, this can be written always. I can 

write ϕ(𝑥) that is phi in the neighborhood of 𝑥𝑃 can be written in terms of the ϕ𝑃 right the 

value of phi at the cell centroid P. This is basically using Taylor series expansion. So, we 

can expand using Taylor series this is ϕ(𝑥) = ϕ𝑃 + (𝑥 − 𝑥𝑃)
∂ϕ

∂x
|
𝑃
 plus you get the 

second derivative that is 
(𝑥−𝑥𝑃)2

2!

∂2ϕ

∂𝑥2|
𝑃
 and so on, ok. 

Now, up till now for the first-order UDS, this is our first-order upwind difference scheme 

right. Essentially, if you only consider this first term here then this gave you your first-

order UDS right the upwind difference scheme. Now, if you include not only the first term 

if you also include the gradient term; that means, the first two terms in the Taylor series, 

then you what you going to get is basically a second-order accurate scheme. 

Of course, now we need to introduce an approximation not only for the face value, but also 

for the gradient ok, just like the way we have done it for the diffusion terms. Now, if you 

include first three terms then they other term this would be of the order Δ𝑥3. So, you get a 

third-order accurate scheme and so on. So, depending on the number of terms you retain 

in the Taylor series expansion for a ϕ(𝑥) we can get more and more accurate schemes for 

the upwind difference scheme of the quantity dependent quantity phi ok. 

So, let us look at by including the first two terms let us construct something known as a 

second-order upwind second-order accurate upwind scheme by including the first two 



terms; that means, a ϕ(𝑥)equals ϕ𝑃 plus (𝑥 − 𝑥𝑃)
∂ϕ

∂x
|
𝑃
 plus this is basically plus this is 

order Δ𝑥2, right. This is basically order in the x square second-order accurate in space. 
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So, again I should that the mass flow rate the 𝐹𝑒 is greater than or equal to 0 then we need 

to see how to calculate how do I approximate phi sub e, ok. We know that now the x 

location is basically 𝑥𝑒 which is that means, 𝑥𝑒 minus 𝑥𝑃 would be equal to how much? 

Δ𝑥/2, right. The distance between the east face and the cell centroid p would be Δ𝑥/2 ok. 

That means, I want to calculate what is ϕ(𝑥𝑒) which is nothing, but ϕ𝑒 equals ϕ𝑃 plus 

(𝑥𝑒 − 𝑥𝑃)
∂ϕ

∂x
|
𝑃
. 
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So, this is nothing, but ϕ𝑒 is ϕ𝑃 plus (𝑥𝑒 − 𝑥𝑃) is Δ𝑥/2 times 
∂ϕ

∂x
|
𝑃
. Now, how do we 

evaluate this particular derivative that again defines a particular second-order upwind 

difference scheme ok. 

So, we can of course, write this in two ways: one is using a central difference formula that 

is 
∂ϕ

∂x
|
𝑃
 can be written as in central difference terms this is 

ϕ𝐸−ϕ𝑊

2Δ𝑥
 that is the distance 

between east and west and which will give you ϕ𝑒 equals ϕ𝑃 plus 
ϕ𝐸−ϕ𝑊

4
, right because 

you have a 2 here and you have a 2 here and Δ𝑥 gets cancelled, right. 

We just substituting for 
∂ϕ

∂x
|
𝑃
 from basically we are substituting 

∂ϕ

∂x
|
𝑃
 from here into this 

term here, right. So, if we substitute for this, then we get for ϕ𝑒 = ϕ𝑃 + (
ϕ𝐸−ϕ𝑊

4
). So, this 

particular scheme of evaluating the gradient the first derivative using central difference 

formula gives you something known as FROMM scheme ok. So, this is what is referred 

to it in the literature as. 

Now, similarly the first derivative can also be approximated using a backward difference 

formula right because you have ϕ𝑃 it can be
ϕ𝑃−ϕ𝑊

Δ𝑥
. Now, why cannot we use a forward 

difference formula here? That is because we have assumed 𝐹𝑒 to be greater than 0, right. 

So, either you can use central difference or a backward difference because flow is going 

from left to right. 



So, you cannot use the forward difference here right ϕ𝐸 − ϕ𝑃 would try to you can you can 

you can actually use it, but it will instabilities you can actually try that ok. So, that is why 

this is 
ϕ𝑃−ϕ𝑊

Δ𝑥
 using a backward difference formula one sided formula this will give you phi 

little e equals phi p plus there is no 2 here there is a 2 here. So, this will be 
ϕ𝑃−ϕ𝑊

2
, right; 

the Δ𝑥 gets cancelled. So, this particular scheme is known as Beam-Warming scheme. 

Now, this of course, this becomes ϕ𝐸 − ϕ𝑃 if 𝐹𝑒 is negative if 𝐹𝑒 is less than 0, ok. So, this 

basically now gave you two schemes which are both second-order accurate and both are 

second-order accurate upwind difference schemes. 

Now, of course, remember that all these things are derived for 𝐹𝑒 greater than equal to 0. 

So, you need to modify them accordingly for other faces and for other values of 𝐹𝑒; if 𝐹𝑒 is 

less than 0 and so on. Another thing is these are all derived for assuming a uniform mesh. 

So, you need to fix things if mesh is not uniform ok, alright. 
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Then if you include let us say the first two terms then what you get is basically a third-

order upwind scheme that would read you that would read as (𝑥) = ϕ𝑃 + (𝑥 − 𝑥𝑃)
∂ϕ

∂x
|
𝑃

+

(𝑥−𝑥𝑃)2

2!

∂2ϕ

∂𝑥2|
𝑃
 plus order Δ𝑥3 ok. So, this is basically a third-order accurate scheme. 

Of course, just like what we have done for the first derivative, now we have to also model 

the we have to also introduce something some kind of model for the second derivative as 



well, right. We have done this for the first derivative, now we have to do something for 

the second derivative as well. So, if you can do this then scheme is complete right. 
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So, we need to evaluate 
∂ϕ

∂x
|
𝑃
 and partial square phi by partial x square at p. Now, again 

depending on what schemes you use you get a particular final scheme ok. So, if you use a 

central difference scheme for evaluating derivatives, then you get a particular scheme, ok. 

Now, again I am assuming that e is positive and we want to calculate what is phi on the 

face east, ok. 

So, if you use central difference scheme we can write the first-order derivative as 
ϕ𝐸−ϕ𝑊

2Δ𝑥
 

and the second derivative as 
ϕ𝐸−2ϕ𝑃+ϕ𝑊

(Δ𝑥)2
 ok. So, if I plug in these two back into the original 

equation here and here and substitute for 𝑥𝑒 − 𝑥𝑃 as 
Δ𝑥

2
 and 𝑥𝑒 − 𝑥𝑃 as (

Δ𝑥

2
) whole square, 

then what you get is you get an equation for ϕ𝑒. 
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As ϕ𝑃 plus (
Δ𝑥

2
) times this quantity (

ϕ𝐸−ϕ𝑊

2Δ𝑥
) plus (

Δ𝑥2

8
), right. We have a 2 coming from 

here and as it there is already 2 in the denominator times the second derivative plus order 

Δ𝑥3. So, if we simplify this, what you get is ϕ𝑒 = ϕ𝑃 + (
ϕ𝐸−ϕ𝑊

4
) + (

ϕ𝐸−2ϕ𝑃+ϕ𝑊

8
) ok. 

Remember, this entire thing only works for 𝐹𝑒 greater than or equal to 0 so, if Fe is not 

greater than or equal to 0, if 𝐹𝑒 is negative what would you do? Essentially, if 𝐹𝑒 is negative 

where do you start off with? 𝐹𝑒 is negative, you start off with do you write ϕ𝑒 equals ϕ𝑃? 

No. We start off with if 𝐹𝑒 is negative we start off with ϕ𝐸, right. 

So, this would we start off with ϕ𝐸 and try expanding about expanding about the east x𝐸 , 

right that is where you start off and then you have to substitute the central difference 

formula for these in terms of the centered around E cell ok. That is what you have to do 

and so on. Similarly, you want to do all these things for the other faces 𝐹𝑤 and 𝐹𝑤 when it 

is positive the phi w when 𝐹𝑤 is positive and negative ok. So, we have only done for one 

case ok. 

So, this particular scheme that we got by using the central difference schemes for the first 

and second derivatives in the Taylor series expansion for ϕ𝑒 is known as in the literature 

known as QUICK scheme which is third-order accurate which stands for Quadratic 

Upwind Interpolation for Convective Kinetics ok. This is basically quadratic is basically 



second-order accurate second-order interpolation that is what we have used. That is why 

it is called quadratic upwind interpolation. 

Now, this is upwind is because all this we will work for 𝐹𝑒 greater than or equal to 0, we 

have developed in terms of phi p that is the upwind part here, but not the these parts these 

are always central differences ok. So, accordingly that means, you get another formula for 

ϕ𝑒 if 𝐹𝑒 is negative. Similarly, you get one formula when 𝐹𝑤 is positive for ϕ𝑤 and one 

formula for ϕ𝑤 when 𝐹𝑤 is negative ok, fine. 

So, that may not be in terms of let us say for example, if let us say for example, if your 𝐹𝑒 

is negative, then what do you expect? What would be your ϕ𝑃? ϕ𝑃 would be shifted to ϕ𝐸 

right, this would be ϕ𝐸 and what would be the central differencing for 𝐹𝑒 less than 0? If 𝐹𝑒 

is less than 0 your central cell is basically ϕ𝐸, then the central difference formula would 

read this as east east would be your east and then this would be your west will be p cells. 

So, this would be east east minus p and similarly, this would be east east and this will be 

east and this will be p right and so on. So, accordingly you have to develop for the west 

face you want to type for essentially when 𝐹𝑤 is greater than 0 and 𝐹𝑤 is less than 0 you 

need to come up with formulae for ϕ𝑊 or ϕ𝑤, alright. 

So, that, kind of finishes the two higher order schemes or the three higher order schemes 

that is basically FROMM scheme, Beam-Warming scheme and then the QUICK scheme 

– the Quadratic Upwind Interpolation for Convective Kinetics, alright. Now, we going to 

stop here.  

So, in the next lecture next lecture we will pickup from these higher order schemes how 

do we implement them actually in the code and then we move on to the discussions on the 

unstructured meshes right because till now we have not looked at unstructured meshes for 

convection ok. 

So, that will be kind of the agenda for the next lecture, ok. I am going to stop here. If you 

have any questions write back to me, we will discuss them alright. 

Thank you. Talk to you in the next class. 


