Computational Fluid Dynamics Using Finite Volume Method
Prof. Kameswararao Anupindi
Department of Mechanical Engineering
Indian Institute of Technology, Madras

Lecture — 31
Finite Volume Method for Convection and Diffusion: Discretization of steady and
unsteady convection equation
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Hello everyone, welcome to another lecture as part of our ME 6151 Computational heat
and Fluid flow course. So, in the last lecture what we saw was we discussed about upwind
different scheme, which was said to be an alternate for the central difference scheme, right.
And, we also looked at the order of accuracy of the two schemes that we have studied, that
is the CDS and the UDS and we have also looked at an example problem. So, this was a

pure convection problem, but this was a steady pure convection problem, right.

And, then we noted that if we have a pure convection, when we try to solve using central
difference method what we got was some kind of wiggles were obtained as compared to
the exact or correct solution and we tried to solve with upwind difference scheme, then
what we noted was we got dissipation or diffusion in the solution, right. Although, there
was no diffusion in the original problem, we saw that we got some diffusion, because of

the way the upwind difference scheme kind of works, ok.

So, we noted these two aspects. So, in today’s lecture as to continue from where we left

off what we are going to look at is, we are going to look at numerical diffusion and



dispersion; that is basically this artificial diffusion and dispersion that are obtained,
because of UDS and CDS, ok. So, we are going to see this from a numerical perspective,
ok.

So, this we are going to analyze from numerical perspective. So, can we see this kind of
behavior or can we explain this behavior from the equations that we are solving, ok. So,
that is what we are going to analyze today, and depending on the time, we are also going
to look at how unsteady convection equation looks and what can be done in order to solve
and study convection using again these two schemes that would come in the later lectures,
ok.
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So, then let us go into the lecture essentially; so, the example problem are pure convection,
right. So, this was what we studied in the last class example, problem on steady pure
convection. We noted that we have the central difference scheme produce or produced
oscillations, which we called it as a dispersive scheme and the upwind difference scheme
produced a diffusive solution right it kind of smeared out the sharp peaks that we have in

the solution, ok. So, that is what we kind of noted.

Now, can we explain this behavior using model equation? So, today we are going to see
how to construct this model equation or also known as a modified equation, ok. So, we

will explain this behavior of dispersion and diffusion using a modified equation or also



known as equivalent equation, ok. So, these are equations which are written from the

original governing equation, ok.

So, we are going to see how to construct these modified equations or equivalent equations
for a given equation and see if we can explain the behavior, ok. So, that is the agenda for
today. Then, let us start off with pure convection problem; again this is a steady pure
convection problem, ok. So, we have V- (pu¢) = 0. Now, if we consider 2-dimensions,

then nabla (V) can be expanded in 2-dimensions, this would be %(pud}) +aiy(pvc|>) =0,

ok.
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Then, for the sake of simplicity | am also going to consider density equals to constant. So,
p equals constant and | will also assume that ¥ which is ui + vjis also a constant vector
and the 2 velocities in the x and y directions are also positive, ok. So, we are going to
assume that u is a constant and v is a constant and these two are positive constant; that

means, u and v are constant and they are also greater than 0, ok.

So, that is what we are going to assume, because then we can simplify this equation very
easily, ok. So, with these assumptions, the first step is to infinite volume method is to
integrate the governing equation on a control volume’s and we can write this as control

volume V - (ptid) dV equals 0, right.



And, if we apply Gauss divergence method; Gauss divergence theorem and then also
convert the resulting surface integral into a summation, then we can convert this equation
into sigma f (ptid)f -/Tf equal to 0, ok. So, that is the resulting equation we can write
alright. Then, we have to choose a particular method here now, right a particular scheme
in order to essentially further discretize this problem, ok.
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So, then we will use; so, if | go back then, essentially what we have is (pzid) - 4y, then
this can be expanded for each of the coefficients right each of the faces that is east, west,
north and south, ok. Then, this can be written as F, ¢, — E, &, + F,d,, — F,ds = 0, right.
This is already what we saw in the last lectures, because F, the way F, and F,, are defined
is basically it is puAy, but now, we have assumed that u is constant everywhere and v is

constant everywhere.

So, pu. equals pu,, right; as a result both the flow rates are the same puAy right, both are
the same and this minus comes in because of the area vector being —Ayi for the west face,
ok. So, that is the reason here. Now, what about the F, and F,? E, and F, are again are both

equal to pvAx, because v is a constant and it is positive, ok.

So, as a result we can simplify this equation further and also; that means, we can kind of
write this as F, or puAy times ¢, minus ¢,, plus pvAx times ¢,, minus ¢, right that can be
written. And, if | choose let us say a upwind difference scheme if | choose upwind

difference scheme then, what we can do is, we can again write the upwind differencing for



the face value of phi; that means, depending on the flow rate we would use upwind for the
dependent variable, ok.

And, because we have assumed that u is greater than 0 and v is greater than 0, we can now
write phi on the face east face (¢.) equals ¢p, right, because u is greater than 0. Similarly,
¢, on the west face, because u is greater than O will be equal to ¢,. Applying the same
logic phi on the north face (¢,,) can be written as ¢p,, because v is greater than 0 and phi
on the south face (¢y) is equal to ¢, because v is greater than 0, ok. So, now, this can be

written.

Then, we can go and substitute for these ¢., ¢, ¢, and ¢, into the equation number 1
here, and collect all the terms. Then we can write this as puAy¢, right instead of ¢, we
wrote ¢ minus pudy instead of ¢,, we wrote ¢y, plus pvAxd,, instead of ¢,, we wrote ¢p

minus pvAx ¢ and replacing that with ¢ equal to 0, ok.

So, this is the equation 1 which is modified with these upwind difference scheme and also
substituting for the corresponding flow rates. Alright now, let us divide this entire equation

using Ax times Ay, ok.
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And then, we can write this as puAy divided by AxAy. So, 1 Ay gets cancelled and you
would get Ax in the denominator and then, what you get is ¢, — ¢y, by Ax plus from these

two terms you would get pu times ¢p — ¢ upon Ay equal to O right; that is what we get.



Now, look at this equation. So, let us call this equation as 2. Now, what we do is well up
till now, what we have done is you have taken the original governing equation and applied
the corresponding discretization scheme. In this particular case it was upwind different
scheme and we have just written the finite volume linear algebraic equation right, this is
the discrete equation for pure convection using upwind difference scheme that is all we
have done.

Now, in order to construct a modified equation, what we have to do is, we have to rewrite
this equation by expanding some of these phi values using Taylor series expansion, ok. So,
in this what we see is we have 3 quantities ¢p, ¢y, and ¢g, ok. So, I am going to expand
¢y and ¢ about ¢p using Taylor series expansion, ok.

So, let me expand ¢y, and ¢ about ¢, then | can write a ¢y, as W is to the west of ¢,

or location x, by minus Ax right; it is about Ax to the west of P, right. As a result, ¢, can

a2 0%
2! 0x2

_a3 0% and so on, right. That is expansion for

: _Ax2®
be written as ¢p — Ax—> p 3 ax3lp

bw-

Similarly, ¢ can be written ¢ can be written in terms of ¢, being in the Ay direction to

_ 4y o%e
2! ay?

_ 0%

and
p 3! ay3

P

the south of location P right. We can write ¢g as ¢p — Ayg—i’
so on, right. So, that is what we have for Taylor series expansion of ¢, and ¢ quantities,

alright.
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Now, in order to, we essentially want to replace this quantity as well as this quantity using
the Taylor series expansion we have. So, if you want to write ¢p — ¢y, So, we divided by
Ax. So, we can write this from here. Essentially, ¢, — ¢v; that would give you this entire
term sent to the left hand side, but then we want to divide by Ax, right. So, what would
remain for ¢ — ¢y, divided by delta x that would be essentially, if I go back and make it

continuous, ok.

So, essentially ¢p — ¢y by Ax would be ‘;—1’|P right Ax gets divided. So, this will minus

Ax 9% Ax? 33

2 0% p then, this will be plus — e f , right.
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So, that is what we have; that means, (¢, — ¢,,)/Ax equals —| minus 2 plus

AS—X'Z‘:TZ’ » right. Essentially, we just rewritten what is this quantity from the 1st equation

that we have here, alright. Similarly, can we write what is (¢, — ¢,)/Ay from this

equation? Yes, we can write that; that means, send ¢ to this side and send all these guys

to the left hand side and divide by Ay right what may remain is partial ‘;—i’| :

Ay* 93¢
3'03

by 2%

So, that would be ‘;—"’ similar to here we will get 23y and so on, right.

lus =
Yip p

So, essentially, we got expressions for these two quantltles right from Taylor series



expansion, ok. So, we have these two quantities. Now, what we do is, we just substitute
for these two quantities in that equation, right.

So, essentially the equation is, what was the equation? Equation was pu times this quantity

plus pv times this quantity so; that means, pu times a_¢ mlnus thls plus A:' 31“3’
plus we have pu times a—q’  minus A—Tg—“z’ right, this should be plus %637‘13’ and so on
' P

equal to 0, right. So, essentlally, we got now one equation, which is again a continuous
equation, right.
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So, this is a continuous equation right. This is essentially it is taking care of the terms
which we have; which we would probably neglect, because of the discretization, right.
Those terms are now substituted back. So, we got some continuous equation, from the

discrete equation that we have constructed, alright. Then, if you look at what is if |

rearrange these terms, then | can write pu times ‘Z—i plus pv times g—i; we have these two

terms.

And, | would like to send the remaining quantities to the right hand side that would be

pulx by 2 times 2-2 = plus pvAy by 2 times 2-2 right plus order Ax? plus order Ay? and so

62'

on, right. So, we get so many of these terms, right.
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Original equation, Discrete equation, Taylor-series expansion, re-arrange, similar to the
given equation.

So, we got now an equation, which is actually the modified equation, but we would like to
do some more simplification before we call it a modified equation, ok. So, in order to make
things little more simple what we do is, let us assume that u and v are not only constant,
but they are also equal, ok. They are positive and they are also equal, ok. And, then let us

also assume that we have a uniform mesh in both the directions that is Ax equal’s Ay, ok.

These are basically couple of simplifications to make the analysis easy, alright. Then, we

pqu d vay

can write this equation as pu— plus pV equals because these two — are now

one and the same, because u equals y and Ax equal Ay. | can write this as combine these

two quantities.

We can write this as 242 (a ¢

” ) plus order Ax?, alright. So, this equation is what we
call as the modified equation, ok. So, we call this as the modified equation or model

equation or the equivalent equation, right. Now, how did we construct this?

Essentially, we started off with the original equation right, start with the original equation,
then write the corresponding discrete equation right for the finite volume method, then in
the discrete equation use Taylor-series expansion and then rearrange, right. So, that it looks
similar to the given equation right, ok. So, now, why do we say this is similar? It is similar,

because we were started off to solve a pure convection equation in 2-dimensions, right.
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Now, that means, | can, because p, u, v are all constants | can take these guys inside the
derivative. | can write this as %(pud)) plus aiy(pvq)) on the right hand side. Again, this is

. . . AX (0?2 . .
all these are all constants. | can now write this as instead of ¥(_¢) we can write this

%2

5}
as —

puAx dod I 0 (pulAxdd
—_— us
(P55 plus 3

— ——) plus of course, we have order Ax? terms here, ok.
2 0x dy 2 0dy

pulx
2

Now, we can of course, rearrange thisas V - (pii¢p) =V - (( )Vq)), right. We essentially

converted this equation into a vector equation that looks like this, right. Now, ok; so, this
is basically something similar to what we have learned this is basically the convection

term, this is the diffusion term, but this is not something that we started off to solve, right.

We started off or we wanted to solve pure convection equation, where del dot rho u bar
phi equals 0 right; whereas, what we ended up with is this equation 3, which is not the
same equation rather this is the equation right or the continuous equation or the continuous
equation that the finite volume method or the method that we have employed will solve,

right.

So, this is the equivalent equation that the method solves, right which is not the same as
what we wanted to solve, ok. Now, why is this coming? This is happening, because of the

discretization scheme that we have chosen which was the upwind difference scheme, right.



So, what does this look like? So, essentially there is a diffusion part in there. So, although

we wanted to solve pure convection, we have some diffusion coming into play.

That is why, when we looked at in the last lecture, there is some diffusion of the spearing

out of the sharp discontinuities was occurring, right. Now, what will be the effective

pulx
2

diffusion coefficient? The affected diffusion coefficient is equal to . This is more like

gamma right this is more like gamma; so, that means, there is some diffusion which we
call it as numerical diffusion, ok; which is coming into play, because of the upwind

difference scheme that we have chosen.
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And, the artificial diffusion coefficient is not a constant, rather it is equal to right; that

means, if we try to solve pure convection using UDS it will be diffusive. However, the
diffusion coefficient is proportional right to Ax; that means, if you take smaller and smaller
Ax, then the gamma effective can be taken to go to 0, right, but it will never be zero it can

be made to go to as small as possible, right.

So, as a result this can be made small, but it will never be zero, right; it will never be zero,
because it is always proportional to Ax fine so, but that kind of gives us some insight on
why the upwind difference scheme is diffusive, right. Like what we have observed

yesterday.



Now, in general not only upwind difference scheme, but any method that we use if it gives
in the modified equation if it gives this kind of even order derivatives; if it gives even order
derivatives, then that method can be said to be; that means, if you have in the equivalent

equation the even order derivatives such as, these guys %’ 2nd order derivative, then we

can call this equation or that particular equation as always diffusive, right.

So, in the modified equation if the if the derivatives are of the 2nd order, 4th order, 6th
order and so on, then that scheme can be called as a diffusive scheme right, it produces
diffusion. Now, what will be the order of accuracy of this method? Order of accuracy is of
course, 1st order, because this is the truncation error right; that means, this is order delta

X.

So, the method is 1st order accurate, but it is diffusive, alright. So, then let us look at now
the other scheme that we have tried solving the pure convection equation that is the Central
Difference Scheme, right. We would use the CDS scheme to solve for pure convection
problem, ok.
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And essentially, we want to also construct what is the; what is the modified equation for a
pure convection problem, for convection problem using the central difference scheme
right. So, that is what we want to do alright. Then, let us again get started with the pure

convection that is V - (pu¢) = 0, right.



The right hand side V - (I'V) + S, is equal to 0 anyway and then, you are we again assume
that density is constant so, p is constant. When the velocities u and v the two components
of velocity are also constants and they are greater than 0 that is what we assume. And, we
apply finite volume method and then transform this equation into a discrete equation, right.
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So, the discrete equation reads like this. F,¢, — E, ¢, + E,d, — Fdg = 0, oK. Now, in this
one again F, and F,, are both equal to puAy and F, and F, both are equal to pvAx right,
because we assume that u and v are constants, their value on the east face is the same as
west face and everywhere else. Same for the phi the value is same on the north face and

the south face and everywhere else, ok.

Then, what we get is we get puAy times ¢, — ¢, plus pvAx times ¢, — b equals 0, ok.
So, this is our equation by substituting for the flow rates in terms of the puAx will be pudy

and pvAx, ok.

Now, we have to introduce the discretization for the central difference scheme right that is
basically, how do we say ¢, is what how do we describe the value of phi on the east face,
right. This is using central difference scheme we write it as the linear average or arithmetic

average of the two cell values right.
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So, in the CDS what we said is, we say ¢, equals (¢, + ¢,)/2. And similarly, ¢,, equals

(b, + d,)/2 and ¢, equals (b, + d,)/2 and by equals (b, + d,)/2, right. So, we have
the central difference scheme definitions then we will plug it into this equation.

What we see is that, ¢, as E and P and ¢, which is coming with a minus has W and P as

well; that means, the P gets cancelled and what we get is instead of ¢, — ¢,, we get
(¢, — d,,)/2, right. So, this equation is nothing, but puay times (¢, — ¢,,)/2 plus pvAx
times (¢, — ¢)/2 equals 0, ok.

So, that is what we have. Then, let us again divide throughout by AxAy, then this Ay gets
cancelled and then we get a Ax in the denominator. And, we also get a Ay in the

denominator, because this Ax gets cancelled, alright. Then, what we can do is we can write

PE— ¢W) dn— ¢s)

equals 0, ok.

the final equation this as pu ( plus pv (
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So, this is the; this is the discrete equation right using a central difference scheme, ok.
Now, what you see is that of course, this was derived using finite volume method, but what
you see is that this would be the same as the equation that you would if you had used a
finite difference method right and substitute it for directly for partial phi partial x in terms

of a 2nd order central difference scheme as well, right that would be the same alright.

So, that is what you would note from here. This equation e would be the same even if you
have started off with the finite difference method, because right now, we have assumed lot
of things to be constant and stuff like that ok; that is why we could write and eventually it
looks similar to the central differencing scheme coming from the finite difference method
right, ok.

So, equation 5 is our final discrete equation. Now, what do we do? In order to construct a
modified or modified equation what we have to do is; what we have to do is we have to
plug in for &g, oy, by and by in terms of ¢p, right. That is what we have to do, in order
to construct the modified equation. So, therefore, let me expand ¢ and ¢y, using Taylor-

series about ¢p.

So, what is ¢z? ¢ is nothing, but ¢ is at delta x from ¢p. So, by = dp +Ax‘;—i’ . +

&2 920
2! 0x2

Ax3 93¢

~ 305|,, and so on.
P .

P




X3l a0

xlp 2! ox?lp

_ M3 0%
3! ax3lp

Similarly, ¢y = dp — and so on, ok. So, that is what we

have written for this quantity.

So, can we write what is % from here? Yes, we can write that will be this minus this

divided by 2Ax that would give you ¢, gets cancelled, right. So, essentially this guy gets
cancelled right and then, these two would ¢z minus ¢ this would add up to 2Ax, but that

is what we are dividing with.

So, what remains is partial phi partial x remains. Then, what about this guy? This guy also
this is a plus. So, this this guy also gets cancelled right, this guy gets cancelled these two
gets cancelled. Then, this guy will become Ax3 by 6, but you are adding them up. So, this
will become Ax? right divided by we are also dividing by 2Ax. So, this would become 12

right 6 and 6. So, this would be divided by 2Ax. So, you would get something of the order

rlght So, that is what we would get.
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That means, if | write this equation what you get is a_¢ which survives from here, plus

Ax2/6 that is what we would get for this 1st quantity, ok. Now, what we have to do is,
We have to also expand the ¢, and ¢ in terms of ¢, and then find out a value for

% that is what we would do which | have not done, but which you can on a very similar

lines by replacing Ax with Ay and 24 Wlth and S0 on.



t¢N ¢s

You can get you can show tha equals plus Ax2/6 and so on. So, let us plug

these two quantities back into the equation number 5 ok; that means, rho u times this
quantity plus pv times this quantity, ok.
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So, that is basically, if you substitute back you get pu times ‘;—i plus Ax? /6 times ‘?:T‘f plus

. . 3
pv times g—i’ plus Ay? /6 times ‘;7‘5 equals 0 plus and so on, there are several terms here. Now,

of course, we can again rearrange this; such that it looks somewhat similar to the original

pure convection problem that we want to or wanted to solve, right

So, let us kind of do the rearrangement. If we do the rearrangement, then it is pu( ) plus

_pu(ax?) a%¢

—— minus

pv( ) equals the remaining terms go to the right hand side; that is,
pv(ay?) )0 ¢

A > plus and so on, right alright.
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Let me also assume that again, for the sake of simplicity | am assuming u equals v and Ax

equals Ay. So, that we can rewrite the right hand side and of course, the left hand side I am
writing it as, because rho u and v are constants we can write it as :—X(pud)) plus aiy(pvq))

_ 2
equals this would be these two are the same one and the same. So, this will be —pu(:x )

- 3 3 -
times ZT? + ZT‘E cube, ok. So, that is what we have here.

Now, what is the leading truncation error here? It is 2nd order accurate. This we already

know, right. We know that the central difference scheme is a 2nd order accurate right that
we already know. And, but we wanted to solve aa—x (puod) + % (pvd) = 0, but what we ended

up getting is equation 6, which has some term here, this is not we cannot call this diffusion,

because this does not have even order derivatives, right.

This we would call in as dispersion all the this term and which is basically responsible for
the oscillatory behavior of the central difference schemes, ok. So, in general, any derivative

on the right hand side or in the modified equation that comes with odd derivatives, ok.
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So, let me write it here. If it comes with the odd derivatives, then we can call it as a
dispersive scheme, ok. So, if there are odd derivatives appearing in the modified equation,
then we can call this as a dispersive term. Again, we know that the dispersive term is

basically, of the order of delta x square it is kind of proportional to the grid size.

So, as we refine the mesh the dispersive term goes smaller and smaller; that means, we can
expect the wiggles to become lesser and lesser, but nonetheless they will be there, because
the mesh is always something that is finite, but small, ok. So, this is how we can now,
describe the behavior of the central differencing and the upwind difference scheme based

on the terms that we get in the modified equation, ok.

Essentially, for this we got odd derivative terms which we are responsible for something
known as dispersion and for the UDS, we got even derivatives which are similar to
diffusion process and as a result we can call UDS as diffusive process diffusive scheme

and CDS as a dispersive scheme, ok.

So, now of course, you are also in a position to write a modified equation for any equation
that will be given to you right for an equation. I mean essentially the process is construct
the finite volume scheme that is basically, the construct the discrete equation then use
Taylor-series expansion and substitute back for all the phi values at all the neighboring

points in terms of phi P.



And then, rearrange it to look like the original equation right and then, that is your modified
equation and then you can analyze the modified equation and comment on what would be
the solution be depending on the terms that you get in the modified equation, ok. So, that
is an explanation from the numerical point of view for the artificial or numerical or false
dispersion and diffusion that we have seen when using CDS and UDS schemes in the
solution of pure convection equation, alright.
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So, now, let us move on to the unsteady convection equation; that means, we are

introducing the unsteady component. So, that means, if we go back to the general scalar
transport equation which is ait(pq)) + V- (pud) = V- (I'Vd) + S4, because we are only

again interested in the pure convection, but unsteady convection we are setting these two

terms equal to 0, ok.

So, essentially, we are only just unsteady convection. So, let us see we are also want to
kind of make a simplification. So, we will consider only a 1 D scenario or a 1 D situation

and then, we also want to set the density equal to 1 everywhere. Then, this equation can
be written as % (pd) plus, because it is 1 D you can write this as ;—X (ud) right, p is 1 this is

ud equals 0.

So, this equation is known as in the literature as the linear wave equation or it is also known

as what linear advection equation. Now, why is it linear? It is linear, because u is known



and is not a function of ¢ right; that is why, it is linear, alright. Then, what do we need to
solve for this equation. This equation is basically a 1st order equation and it requires it has

one time derivative one space derivative. So, it would require one initial condition, right.

So, this would require an initial condition that is basically, it requires a specification of phi
0 or the entire domain that is initial condition and then it requires boundary conditions
right at the, at both the ends of the problem right, if you have a domain of length L; domain
length is L then, we would need boundary conditions at x 0 and x L, ok. Now, what kind

of an equation is this? Thisis a 1 D linear advection equation.

What is the type of this equation? Is it elliptic, parabolic or hyperbolic? We have done this
in the past. So, this is basically hyperbolic equation right, alright. So, then for this equation
fortunately exact solutions exist. So, that is why we have chosen this equation, because
this can help us understand how does the different schemes the discretization schemes that

we would choose behave when compared to the exact solution that we know, ok.
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So; that means, the exact solution to this linear advection equation is basically ¢(x,t)
equals ¢o(x —ut). It is basically, whatever is the initial condition ¢, of x that basically

gets shifted by u times t right; it basically gets shifted by a minus u t right or u t.

Essentially and the shape as such of the initial profile would be would not change right

that is preserved that is the property of 1 D linear wave equation. So, whatever is the initial



profile given, that initial profile will remain the same, but only thing is that there will be a
shift of this initial profile to a different location depending on what is u and what is time

by a distance u times t right, ok.

That is what this says. Phi of x t at any time is nothing, but phi naught of x instead of x
you have x minus u t. So, the shape would not change, but it only gets shifted, alright. Let
us consider two initial conditions which are shown in black here, ok. So, one initial
condition is basically using a sine wave. So, this is at t equal to 0. Now, at a later time if
you solve using 1-D wave equation, this solution would come out to be something that is

shown in red.

Essentially it will get shifted, but without a change in shape it gets shifted by some
distance. Now, how much is this distance? This distance is nothing, but u times t right; this
is your u times t, ok. After t seconds it would have traveled u times t, but the shape as such
remains the same, ok. Similarly, if you take a square pulse that is basically again shown
using black at t equal to O, this is the square pulse, ok. Now, this also gets shifted by a
distance u t in after a time of t seconds, ok.

So, the red one is basically it goes this way and the peak gets shifted, then the initial
condition gets shifted, but there is no change in the shape or size of the initial pulse, right.
So, the amplitude remains at 1.0 same as the here, 1.0 and minus 1.0. Itis only a rigid body

translation of the initial pulse that is the exact solution that is given.
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Now, this is very useful, because then, we can now apply the different schemes that we
were to work with which are basically the upwind difference scheme and the central
difference scheme; of course, together with the some kind of time stepping scheme for the
unsteady term. And, we can evaluate; how does these schemes behave in this context,

because we know the exact solution.

We can compare it and see well, do you see what it is supposed to be like from the
numerical solution or not, ok. So, that kind of comparison can be done because the exact
solution is known, ok. So, essentially the motivation is to see if the schemes that we would
use that are constructed based on the upwind differencing and central differencing, can
they construct they predict the shift without introducing diffusion that is the smearing out
or the dispersion, right. These oscillations or wiggles. So, can we solve for these or not?

So, that is the question we can pose.

Now, that would be our discussion for the next lecture. Essentially, using central
differencing and upwind differencing schemes and some form of time stepping scheme,
we would like to see what will be the solution that is obtained from these and compare it

with the exact solution.

Now, this may look very simple, because it is a 1-D wave equation. It is linear. Well, will
that be useful? Yes, because of its simplicity it is very extensively used in the literature to
compare any new scheme that is introduced. However, the insights that we gain from
working with this 1-D wave equation can be useful in the more complex situations where
we have non-linear and coupled equations such as in the context of Navier-Stokes

equations, ok.

So, what we learn from here can be directly useful there as well. So, that is the motivation
to study such a simple problem using the different schemes alright. So, I am going to stop
here. And, we will continue with the discretizing the unsteady convection equation using

finite volume method and with the different schemes in the next class alright.

Thank you.



