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Hello everyone, welcome to another lecture as part of our ME 6151, the computational 

heat and fluid flow course. So, in the past lecture, in yesterday’s lecture, we looked at how 

to discretize the convection term right; the rho u bar phi the convection term that we have 

learned how to discretize it.  

And then we also looked at one particular scheme of discretization that we named it as 

Central Differencing Scheme that is CDS; basically where the face value of the dependent 

variable ϕ𝑒 is expressed as a linear average or linear interpolation of the east and the 

primary faces, right. 

We wrote ϕ𝑒 equals ϕ𝐸 plus ϕ𝑃 by 2, right that is what we have done in order to come up 

with the value for the phi on the east face, and that is what we call it as a central 

differencing scheme in the literature. Now, we also saw that this central difference scheme 

produces negative coefficients. And in order to avoid getting these negative coefficients, 



we have to choose our grid such that the cell Peclet number should be less than 2, less than 

or equal to 2 right; that is what we kind of discussed in the yesterday’s lecture, alright. 

So, in today’s lecture we are going to look at an alternate scheme to the central difference 

scheme that is known as an upwind difference scheme which would not suffer from such 

a problem, ok. And after looking at how to kind of work with the upwind difference 

scheme; we are going to look at the order of accuracy of the central difference and the 

upwind difference schemes, ok.  

We look at what is the spatial order of accuracy, which we have done for the pure diffusion 

equation, right. We have established the order of accuracy to be second order accurate in 

space; but we will do it for now for the convection terms that is basically with these 

particular two schemes, with the CDS and the upwind difference schemes.  

Now, finally, we will also look at an example problem of solving a pure convection 

problem using both these schemes, both the central differencing and the upwind difference 

schemes, ok. So, that is the agenda for today’s lecture. And so, let us move on with the 

upwind difference scheme. 
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So, if you look at the central difference scheme that we had worked on yesterday; we note 

that there are negative coefficients and these were coming because of the arithmetic 

average, right. We wrote ϕ𝑒 equals ϕ𝐸 plus ϕ𝑃 by 2 and only because of this, we were 



getting negative coefficients; because the coefficient for here ϕ𝐸 should be F𝑒 by 2 and 

that would go in as to the a𝐸  as D𝑒 minus F𝑒 by 2, right. 

So, this is the reason we were getting the negative coefficients; if it was not a linear average 

then we would not probably have got negative coefficients like this, and further those 

constraints on the Peclet number would not have been there ok. So, in order to eliminate 

this kind of problem, people have proposed a different scheme, an alternate scheme that is 

known as upwind difference schemes; and which primarily works on the direction of the 

mass flow rate.  

So, that means, let us consider this grid. So, we have our P cell, east cell and of course the 

west cell. And we have ϕ𝑃 stored here and ϕ𝐸 stored here, ok. Now, in the upwind 

difference scheme what we do is, depending on the direction of the mass flow rate; for 

example, let us say blue indicates arrow in the positive x direction, where the mass flow 

rate is greater than or equal to 0.  

That means, the flow is going in this way; I mean essentially if you look at the definition 

of mass flow rate, it contains density, velocity and the Δ𝑦. Δ𝑦 is positive, density is 

positive; so u𝑒. So, if the flow, if the u𝑒 is positive; that means, F𝑒 would be positive right, 

the flow is going this way. If u𝑒 is negative, F𝑒  would be negative and it will be going in 

the negative x direction; here shown using a red color arrow, right alright.  

So, we have these two conditions. Now, what upwind difference scheme proposes is that, 

do not take the face value as the linear average as we have done here; rather take the face 

value as the corresponding cell value of the upstream direction.  

For example, if F𝑒 is greater than or equal to 0; that means, then consider this phi east equal 

to ϕ𝑃 ok, this is the upwind direction. For example, as the flow is going this way; this 

would be the downwind direction; this would be the up of the wind, right. So, essentially 

up of the flow. So, that is the direction. So, calculate. So, assign ϕ𝑒 equals ϕ𝑃 if F𝑒 is 

greater than or equal to 0, that is the first condition.  

If F𝑒 is less than 0, then take ϕ𝑒 equals ϕ𝐸; that means F𝑒 is in this way, then take the up 

direction, the up direction for this would be this one, right. Because this would be the 

downside, this would be the upside right from where the upstream, from where the flow is 



coming, right. So, essentially this would be the upstream for a flow like this and if the flow 

is going in the negative x direction, this should be the upside, right.  

So; that means by definition the face value is approximated using the cell centroid value 

in the upstream direction, in the up upwind direction; that means ϕ𝑒 equals ϕ𝑃 if F𝑒 is 

greater than or equal to 0, otherwise it will be equal to ϕ𝐸, ok. So, either ϕ𝑃 or ϕ𝐸, purely 

determined by the flow direction of the upwind direction.  

Now, you may have a question, ok. What about the diffusion, right? We might have had 

some diffusion by the time this phi might have reached this ϕ𝑒; that is what we are actually 

neglecting here, right. If you we are not considering the diffusion of the scalar within this 

half the grid cell size, that is what is neglected in this particular, in this particular scheme.  
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Now, given that this definition, as we can see we do not have essentially there is no linear 

average; it is just equal to the upwind cell center value. Now, so as we can see this is 

completely determined by the flow direction or the upwind direction. And the let us say if 

we consider the east face; we are only kind of focusing on the convection term and you 

consider the east face, the total convection term would come out to be F little e phi little e, 

right.  

In the case of CDS, we wrote this as ϕ𝐸 plus ϕ𝑃 by 2; whereas now what we would do is, 

we would write depending on the condition. So, we will have a conditional statement, that 



is if F𝑒 is greater than or equal to 0; then F𝑒ϕ𝑒 would be equal to F𝑒ϕ𝑃, otherwise it will 

be F𝑒ϕ𝐸, ok. So, either this or this depending on the direction of the mass flow rate or the 

direction of the velocity on the face.  

That means we would need to write four such conditions for all the four faces right, 

depending on whether F𝑒 is positive or negative, you would get either of these coefficients; 

similarly depending on if F𝑤 is positive or negative, you would get two conditions, and 

depending on F𝑛 is positive or negative, you get two conditions and so on right, ok. Now, 

a logical question would be; where will F𝑒 go? Where will F𝑒 go? F𝑒 will go to either 𝑎𝐸 

or 𝑎𝑃 depending on the mass flow rate, right.  

Because if, if F𝑒 with the mass flow rate is positive, then F𝑒 would kind of go into 𝑎𝑃 right; 

because this is multiplying ϕ𝑃 and if it otherwise F𝑒 would go into 𝑎𝐸, right we understand 

that, alright.  
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Then let us move on in terms of, how do we code this particular concept of upwind 

difference scheme, when we want when you want to solve a convection diffusion 

equation? So, one thing would be to first of all discretize the equation as if there is no 

convection, right. First of all let us look at the diffusion part of the equation.  

So, if you were to write a final equation as 𝑎𝑃ϕ𝑃 = ∑  anbϕ𝑛𝑏 + 𝑏; then if the component 

from coming from the diffusion is the same as what we have studied before, right. So, that 



does not change; only the convection part would have now conditional statements, because 

of the mass flow rate coming into play.  

So, what we can do is, we can first assign these  anb’s only with contributions from the 

diffusion. So,  aE would be essentially 
Γ𝑒Δ𝑦

δ𝑥𝑒
 right; that is nothing, but your D𝑒. Similarly, 

 aW would be D𝑤, that would be 
Γ𝑤Δ𝑦

δ𝑥𝑤
. Similarly,  aN would be D𝑛 which is given by 

Γ𝑛Δ𝑥

δ𝑦𝑛
; 

and a south would be D𝑠 that is 
Γ𝑠Δ𝑥

δ𝑦𝑠
.  

So far so good these are only a considering the diffusion part right; the contribution from 

convection needs to be still further added to aE, aW, aN, aS which we have not done at the 

moment up till here.  

Now, what would be aP? aP would be summation of all these neighbors that would be 

s∑ anb of course, the contribution coming from the source terms that is 𝑆P times Δ𝑉𝑝 as 

well as b would be equal to 𝑆C times Δ𝑉𝑝, ok. So, that is what we have.  
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This is, now, let us look at the convection part. So, the convection part; if F𝑒 is positive, 

then what do we need to do? If F𝑒 is positive, then you look at the original equation you 

have; you bring the convection term to the right hand side right, we have (Γ∇ϕ)𝑒 ⋅ Ae minus 

(ρ𝑢⃗ ϕ)𝑒 ⋅ Ae. So, essentially we are only considering the east face; then we have diffusion 

term, the convection term brought to the right hand side, plus we have the source term.  



Of course, we have four such terms corresponding to the three other faces west, north, 

south, ok. Now, what will happen if F𝑒 is positive? F𝑒 is positive, then essentially if you 

look at here; this is your F𝑒 right, ρ𝑢𝑒Δ𝑦, A𝑒 in this particular case is positive i times Δ𝑦. 

So, this is, this term can be written as minus ρ𝑢𝑒Δ𝑦ϕe; essentially this will be minus F𝑒ϕe 

right, where F𝑒 would be equal to ρ𝑢𝑒Δ𝑦, alright.  

So, that is your minus F𝑒ϕe. Now, if F𝑒 is positive; then ϕe equals ϕP right, then this will 

be minus F𝑒ϕP phi p. And if F𝑒 is negative, if it is going in the negative x direction; then 

phi little e, the upwind direction upwind value for ϕe would be equal to ϕE, phi cell 

centroid value at the east cell that will be minus F𝑒ϕE, right. So, this is essentially we are 

changing ϕe to either ϕP or ϕE.  

Now, we have these two terms minus F𝑒 or minus F𝑒, depending on whether this is positive 

or negative. Now of course, we know that if F𝑒 is positive, this has to go to 𝑎𝑃 and if it is 

negative, it has to go to 𝑎𝐸, right. But then what will be the signs; that is why we are kind 

of explaining all these concepts here. So, what will be the sign?  

So, because this term is here, minus F𝑒ϕP; remember when you when we have written this 

equations, we have sent the phi p terms to the right hand side, right. We leave the source 

terms and the A neighbors on the left hand side; we send the p terms to the right hand side 

here, right. That means, minus F𝑒ϕP would be a contribution to a p with a positive sign; so 

that means if F𝑒 is positive, 𝑎𝑃 would be equal to 𝑎𝐸 plus 𝐹𝑒.  

If F𝑒 is negative, of course we know that this evaluates to, this entire thing evaluates to 

minus F𝑒ϕE right; because then we are replacing ϕe with ϕE, if F𝑒 is negative. F𝑒 itself is 

negative; but then you have minus F𝑒ϕe.  

So, what will be the, this contribution? This contribution of minus F𝑒 would go into a east. 

So, 𝑎𝐸 will be equal to 𝑎𝐸 minus F𝑒 ok, essentially this contribution; because it is getting 

retained on the left hand side here. Now, one thing you notice here is, because we have 

already populated the coefficients a neighbors and 𝑎𝑃 with some values of the diffusion 

terms; we are now adding to the existing value whatever is the extra contributions here, 

right.  

We are not writing 𝑎𝑃 equals F𝑒 that would be incorrect; because if you write 𝑎𝑃 equals 

F𝑒, then all your contribution of the diffusion is gone, right. We are essentially solving for 



pure convection problem that is not correct. So, 𝑎𝑃 needs to take care of the original 𝑎𝑃, 

where the contribution from the diffusion is already there plus F𝑒 right, which is the 

convection part.  

So, we need to write a conditional statement such that we either such that either 𝑎𝑃 or 𝑎𝐸 

get modified, because of the convection on the east face, right. So, we need to now write, 

how many such conditions? So, we need to write 4 such conditions right corresponding to 

each of the four faces right; that is basically east, west, north and south, ok.  
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So, we need to write 4 such conditions. We will not write all the conditions here, rather I 

will look at the other face that is the west face here and I would leave the north and south 

for you to figure out. So, if you look at the west face here. So, if you are on the west face 

that is w; then what do we have here? We have if F𝑤 is positive, then 𝑎𝑃 is something I 

have written, else it will be blah blah blah right; either if F𝑤 is positive, contribution has 

to go to 𝑎𝑃, if it is negative contribution has to go to 𝑎𝑊.  

We will look into that. So, if we go back to the original equation, if I consider only the 

west face terms; that means I have (Γ∇ϕ)𝑤 ⋅ Aw minus (ρ𝑢⃗ ϕ)𝑤 ⋅ Aw, right. So, this is the 

diffusion term, this is the convection term; plus we have three other terms like this 

corresponding to three different faces, plus we have the source term right, we have the 

source term plus equals 0, right.  



So, essentially we brought the convection term to the right hand side to be on the same 

side as the diffusion term. Now, what is Aw here? Aw is minus î times Δ𝑦, right. That means, 

what would happen to this entire term of convection? This would become a plus because 

a w is now minus; this will become a plus ρ𝑢𝑤Δ𝑦ϕ𝑤 right, phi on the west face. So, what 

is ρ𝑢𝑤Δ𝑦? This is Fw, so we can write this as plus Fwϕ
𝑤

.  

Now, if Fw is positive, if Fw is positive; then who what would be the upstream direction 

for Fw? It would be, if Fw is positive; the upstream direction would be Fwϕ
𝑤

, right. This is 

the one, because, it has to be the, right. I think it has to be Fwϕ
𝑤

; is not it? Because you 

have west p and east; if Fw is positive, then it has to be Fwϕ
𝑊

 and if Fw is negative, then it 

has to be Fwϕ
𝑃
, right. It has to be Fwϕ

𝑃
, if Fw is negative, is that correct.  

So, that means, what I am saying here is that; because if you see your mesh has w and then 

you have a p cell right and then you have the east cell, right. So, you have the w cell, the 

west cell. So, if Fw is positive, it is going this way right; that means your phi w has to be, 

phi little w has to be phi w, right. So, this is when it is positive and if Fw is negative, it is 

going this way; then your face value of lϕ𝑤 has to be equal to ϕ𝑃 right, that means what I 

have here.  

So, this is when Fw is greater than or equal to 0, and this is when Fw is less than 0, right. If 

it is less than 0, ϕ𝑤 would be equal to ϕ𝑃, alright. But both contributions are now plus 

values; I think this has to be changed, this is not correct. So, if Fw is positive right, then 

this is not correct; essentially this has to be, if Fw is positive, then a𝑊 has to have a𝑊 plus 

Fw right, because this contribution goes into a𝑊 with a positive sign, right.  

And if Fw is negative; so this is not correct here. So, you need to modify this, this is not 

correct; this is when Fw is, this is when Fw is less than 0; then the condition is that. If it is 

less than 0, then the contribution has to go to Fw; this because it is multiplying ϕ𝑃 it has to 

go to the right hand side. So, it has to go to the right hand side that is why there is a minus. 

So, a𝑃 would be equal to a𝑃 minus Fw and otherwise if Fw is greater than or equal to 0; 

then your Fwϕ
𝑤

 would be equal to Fwϕ
𝑊

for the west, that means the contribution is going 

to a𝑊.  

So, you need to fix this one, but otherwise this is fine. I hope you understand this part here, 

alright. So, now, you need to of course write two more such expressions; one for the north 



face and one for the south face which I am not going into it right now as such, but you can 

reduce it and write it the same way alright, ok. Now, alright; so this is one way to 

implement the convection diffusion equation.  
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The other way to implement is basically to get rid of all these if else statements; you can 

write one particular general algorithm for the upwind difference equation by defining, by 

defining a Max function. What is a Max function? Max function is something that finds a 

maximum of two variables, this is very much available in either c or in Fortran’s.  

So, this is or in C plus plus. So, Max a, Max of a, b if where a and b are two real numbers; 

then it would give you a, if a is greater than b or it will give you b, if not. So, essentially 

whichever is the maximum will be returned by the Max function. Now, this can be a very 

good tool to compactly write the upwind difference scheme rather than writing so many if 

else statements, ok. So, instead of writing so many if else statements, we can just write a 

very compact method for the upwind difference team using this Max function, alright.  

So, I am going to kind of tell you what it is and then you have to double check; you have 

to verify whether it is correct or not, ok. So, essentially we seek to write a p phi p equals 

sigma a n b phi n b plus b, ok. 
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And our a neighbors, a capital E is now D east right; this is basically what is D is? This is 

coming from your diffusion, right. These, these components are coming from your, coming 

from your diffusion right; these are all coming from your diffusion and then this is the 

convection part, right.  

So, we would not worry about these things, which is basically same as before. Now, in the 

convection part what we say here is that, in the convection part; we know that depending 

on the direction of F𝑒, the contribution will either go to 𝑎𝐸 or it will go to 𝑎𝑃, ok. So, what 

we do is, let us say if your F𝑒 is positive, if F𝑒 is positive; that means it is in the positive x 

direction, then the contribution has to go to 𝑎𝑃, right. That means, if F𝑒 is positive, Max of 

minus F𝑒 comma 0 would return what? This would return how much? This would return a 

0, right.  

Because F𝑒 is positive, minus of positive and 0 maximum is 0. So, 0, that means 𝑎𝐸 will 

have no contribution; because the contribution of positive F𝑒 has to go to; has to go to 

what? F𝑒 times ϕP right; because ϕeis now ϕP, because F𝑒 is positive, that means F𝑒 has 

to go into the contribution for 𝑎𝑃 right, it has to go into contribution for 𝑎𝑃.  

So, as a result, we add F𝑒 here in the 𝑎𝑃 equation, ok. So, basically this is bringing in only 

D𝑒. So, the D𝑒 goes in here minus SPΔ𝑉𝑝 plus F𝑒, ok. I am only focusing on right now on 

the east face. So, I am only looking at a east this guy and the 𝑎𝑃, alright. Now, that is fine 



if your F𝑒 is positive. What if F𝑒 is negative? Then the contribution has to be added to a 

east and there should be no contribution to a p.  

But because we have written it here, this may not be correct. So, let us check that. So, if 

F𝑒 is negative, what will be returned with maximum of minus F𝑒 comma 0? What will this 

function return, if F𝑒 is negative? F𝑒 is negative, this function will return minus F𝑒 right; 

because F𝑒 is negative, this will return minus F𝑒 is not it, because minus F𝑒 would be 

greater than will be bigger than 0,  

So, if minus F𝑒 comes into play, your a𝐸  equals D𝑒 minus F𝑒; would that be the same as 

what we had before, right? So, if F𝑒 is negative a𝐸  equals a𝐸  minus F𝑒, that is correct; that 

means this is fine. But what will what is the contribution for a𝑃? a𝑃 has to be 0. So, this 

brings in a east brings in D𝑒 minus F𝑒. So, we have D𝑒 minus F𝑒 here plus we have this F𝑒. 

So, F𝑒 gets cancelled with this extra F𝑒 minus F𝑒 coming and then we essentially have D𝑒; 

that means there is no contribution of F𝑒 going into a𝑃. Do you see how it is working; yes, 

alright. The same is the case for F west. Let us say if F west is positive, F𝑤 is positive; that 

means what will this be? This will be F𝑤 is positive; so this would what will be returned 

would be F𝑤 and this term would evaluate to F𝑤, because it is positive, the upwind direction 

would be phi w, right.  

So, essentially the contribution has to go into a𝑊, right. Contribution has to go to a𝑊; that 

means F𝑤 is positive, Max of this would be F𝑤 and it would read F𝑤ϕ𝑊. So, essentially a𝑊 

will have a contribution. So, but when that aw gets added here; this will be D𝑤 plus F𝑤, 

but there is a minus F𝑤. So, as a result, there is no contribution to a𝑃, ok. Now, what about 

if you have F𝑤 is negative? This is let us say minus F𝑤 is negative; then what will be 

returned by this Max of F𝑤 comma 0, 0, right.  

F𝑤 is negative. So, Max of F𝑤 comma 0 will return 0, right; that means there is no 

contribution to a𝑊. Because if F𝑤 is negative; then what will be the total value? F𝑤ϕ𝑃 right; 

that means there is a contribution going to a𝑃, isn’t it? Ok. So, that means, a west will have 

no contribution; but when you come here, there is a contribution of, there is nothing that 

is coming into ∑anb through these guys, but there is minus F𝑤. Minus F𝑤, because it will 

be gone to the other right hand side.  



So, that means, minus F𝑤ϕ𝑃 and then F𝑤ϕ𝑊 is that correct of what we had; if F𝑤 is positive, 

then the contribution has to go to 𝑊 which is a𝑊 plus ϕ𝑊 and if it is negative, it has to go 

to minus F𝑤. So, this is correct, fine. So, what we discussed is collaborates with this 

function. Now, I am not doing it for these two quantities here.  

So, you have to do it yourself for the north face and for the south faces. So, for the north 

face and for the south face you have to do it yourself; verify whether this is working or 

not. As a result what we have is, we have a nice compact algorithm without having all 

these if else statements; we just have a Max function, we code it up and then both the 

diffusion and convection parts come into play here.  

So, we have a𝐸 , a𝑊, a𝑁, a𝑆 and a𝑃 would be equal to ∑ anb minus SPΔ𝑉𝑝 plus F𝑒 minus F𝑤 

plus F𝑛 minus F𝑠 ok, this is required and b equals SCΔ𝑉𝑝, alright ok. 
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That is kind of very compact thing than the if else statements. What about the coefficients 

now? So, if you look at the coefficients; what is the property you have? All the coefficients 

are now positive, isn’t it? If F𝑒 is like, the diffusion coefficients are always positive, these 

are always positive. What about the convection parts coming into play? If this is negative, 

this will become positive, it will be returned; if this is positive, this will be 0 right, either 

this is always positive or 0 that is what is happening.  



That means, all a east, a west, a north, a south would always be either 0 or positive right; 

that means, we will have 0 or positive contribution coming from the convection terms, that 

means anb are all positive. Now, what repercussions does it have on the Scarborough 

criteria and on the boundedness if they are all positive? We are happy; because if they are 

all positive, we can satisfy some of these properties. Let us say if there is no source S 

equals 0 and the and for the incompressible flow, it satisfies continuity equation.  

So, if the underlying flow field that is given to us; let us say satisfies the continuity 

equation, right it satisfies the mass conservation. That means, if it satisfies mass 

conservation; what will happen to this term here? That we have the F e minus this entire 

term would be; would be what? Would be equal to 0; because it satisfies mass continuity 

and the source term is also 0. So, this term is also not there, right.  

In that context, what would be your 𝑎𝑃? 𝑎𝑃 equals ∑  anb right; if there is no source term 

and the given flow field satisfies continuity equations, then 𝑎𝑃 equals ∑  anb. We also note 

that all the anb’s are positive, all the anb’s are positive; that means 𝑎𝑃 = ∑  anb and also we 

have 𝑎𝑃ϕ𝑃 = ∑  anbϕ𝑛𝑏.  

So, essentially it is satisfies Scarborough criteria. So, Scarborough criteria is satisfied right, 

in equality, satisfied in equality.  
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What about boundedness? Of course, it is also boundedness is guaranteed right; because 

𝑎𝑃ϕ𝑃 = ∑  anbϕ𝑛𝑏, so boundedness is also guaranteed, alright. So, what we see is that, we 

have now developed a new scheme which satisfies this Scarborough criteria as well as 

boundedness, which is much better than what we had before and they seems to be there is 

no condition on the coefficients, right. 

And mesh can be taken to be anything, right. Unlike central difference scheme, where the 

mesh size is kind of restricted by the cell Peclet number that we have. So, far so good, but 

it turns out that the upwind difference scheme is quite diffusive ok; it is very very diffusive 

and even with we are taking say finer grids, this can actually smear out the discontinuity.  

So, if there is a discontinuity in the problem and there is no diffusion given; let us say 

gamma equal to 0 and there is a discontinuity in the solution of phi, then it can actually 

smear the discontinuities. So, it turns out to be very diffusive. This we will explore this 

behavior with an example problem little later.  

So, that because of this UDS is can be used as an initial solution, but it is quite diffusive. 

As a result we will look for some of the high order upwind difference schemes which are 

better in terms of not having such high diffusion, such as the UDS.  

So, we look for some higher order schemes as well little later in the course. As of now we 

have learned these two schemes. So, one is the central difference scheme, the other is the 

upwind difference scheme, ok. So, both of them we have looked at in terms of their 

properties and how to implement them in a particular code.  
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Let us move on to the next concept, that is basically we have not actually looked at what 

will be the order of accuracy of these central difference scheme and the upwind difference 

scheme.  

So, the order of accuracy, again for this I would resort to a basically a uniform mesh and I 

would also look at a 1 dimensional problem with let us say uniform properties in order to 

look at the order of accuracy. So, we have a 1 D problem with uniform mesh that is Δ𝑥 is 

it is the same for all the cells and then we have the P cell, E cell, W cell and the east and 

west faces here. Now, as usual I would use the Taylor series expansion here.  
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So, use Taylor series expansion and then using this, expand ϕ𝑃 about ϕ𝑒 ok; that means 

ϕ𝑃 is ϕ𝑒 and the distance is minus Δ𝑥/2. So, this will be minus Δ𝑥/2 
dϕ

dx
|
𝑒
 at the east face 

plus 
1

2!
(
Δ𝑥

2
)
2

 
d2ϕ

d𝑥2|
𝑒
 on the east face plus order Δ𝑥3 and so on.  

Similarly, let me expand ϕ𝐸 about ϕ𝑒, ok. So, this would be at a distance of plus Δ𝑥/2. So, 

ϕ𝐸 would be ϕ𝑒 e plus Δ𝑥/2 
dϕ

dx
|
𝑒
 on the east face plus 

1

2!
(
Δ𝑥

2
)
2

 
d2ϕ

d𝑥2|
𝑒
 and so on you get all 

positive coefficients here; you get a negative here and this also has to be a negative, fine.  
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Now, from one of these equations, we can write let us say ϕ𝑒 equal to ϕ𝑃 plus some order 

Δ𝑥, right. If you send these guys to the left hand side, then ϕ𝑒 equals ϕ𝑃. Now, what are 

we doing? We are saying in the upwind difference scheme; let us say if your F𝑒 is positive; 

we are saying take ϕ𝑒 equal to ϕ𝑃.  

So, what does that mean? That means, by this approximation, what is the order of accuracy 

of the scheme? Order of accuracy is only order Δ𝑥 right, it is only order Δ𝑥. So, that means, 

if upwind difference scheme is only first order accurate. Similarly, if F𝑒 is less than 0; we 

say that ϕ𝑒 equals ϕ𝐸 that also gives you an order Δ𝑥 for the downwind for the upwind 

direction right, if the mass flow rate changes.  

So, upwind difference scheme is only first order accurate in space ok, that needs to be kind 

of understood. Then, what about the central difference scheme? Central difference scheme 

what we are doing is that, we are saying ϕ𝑒 equals ϕ𝑃 plus ϕ𝐸 by 2.  

Then let us add these two equations and divide by 2; that means add equation 1 and 

equation 2 divided by 2. Then we can write what is ϕ𝑒 equals; ϕ𝐸 plus ϕ𝑃 by 2 and there 

is a 2 times ϕ𝐸 by 2. So, this will be ϕ𝑒, this term gets cancelled; because we are adding 

and this term becomes Δ𝑥2/8 here and 8 here.  

So, this will be Δ𝑥2/4; but then we are dividing by 2, so this will be Δ𝑥2/8. 
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And when we send to the right hand side, what we get is a minus Δ𝑥2/8 
d2ϕ

d𝑥2|
𝑒
 and the next 

term here would be order Δ𝑥4, ok. That means, in a central difference approximation; when 

we say ϕe equals ϕE plus ϕP by 2, the truncation error we are making is basically order 

Δ𝑥2, right.  

So, this is the truncation error we are making, this is only this is about second order 

accurate, ok. So, what we see is that, although CDS is second order accurate, it comes with 

a condition on the simulation on the mesh refinement; whereas upwind difference scheme 

is only first order accurate, but it has no condition.  

However, upwind different schemes are very diffusive. We will also see that the central 

difference schemes kind of are kind of dispersive or basically they produce oscillations; if 

you do not meet the Peclet number criteria, ok. 

So, essentially the question remains is; then how do I solve for convection? What we are 

saying is that if you use CDS, there is too much restriction and if you use upwind difference 

scheme, then there is too much diffusion; what do I do? Then the answer is you go for a 

higher order scheme, that is constructed based on the upwind difference schemes ok, that 

is the kind of answer.  

So, look for higher order schemes which we will learn in little while into the course ok, in 

the few more lectures in the course, alright.  
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Let us look at this then the final part of today’s lecture, that is basically an example 

problem. So, what we want to discuss is, let us look at pure convection ok; that means we 

are setting gamma equal to 0, there is no diffusion, there is no source term.  

So, basically no source and no diffusion, ok; so, it is only pure convection; that means the 

equation and it is also steady. So, what we are solving for is basically ∇ ⋅ (ρ𝑢⃗ ϕ) = 0 ok, 

just convection. And the given velocity field is basically is something that is flowing at 45 

degrees right; we have 1i ̂ + 1j.̂ So, it is flowing at theta equal to 45 degrees from the x axis.  

So, this is the flow field, it kind of goes this way and leaves the domain. We are also 

considering a square domain with dimensions L by L, that is what we are considering and 

there is no diffusion; but we are interested in how does the scalar get transported. So, we 

have the scalar given a value of ϕ equals 0 on this vertical boundary, ok. So, it is basically 

given a value of ϕ equals 0, if I were to draw it with blue. 

So, the value of ϕ on this vertical boundary is 0 and the value of ϕ on the horizontal 

boundary is given as 1. So, we are interested in if there is no diffusion; how does this 1 

value and this 0 value get convected into the domain because of this flow field? Well, it is 

very simple, if you essentially release some dye here; this dye is going to convect and it is 

not going to diffuse, because there is no diffusion.  

So, that means, everything and because the flow is angled at 45 degrees; everything that 

originates from here would go and this would, this entire thing would get filled up with ϕ 

equals 1. So, this entire thing would be phi equals 1 and whatever is on the top would be 

ϕ equals 0, right. So, essentially this entire thing would be filled with ϕ equals 0 and right 

this entire thing would be filled with phi equals 0.  

But then there is no diffusion, that is why you will see an abrupt jump in the; along the 

diagonal you would see an abrupt jump between ϕ equals 1 and ϕ equals 0 right, there is 

an abrupt jump. However, if there was some diffusion; then there will be a kind of a layer 

that gets formed between these two right, which would in which the value of ϕ would 

change from 1 to 0 through some diffuse layer.  

Now, the thickness of this layer would depend on the amount of diffusion you have. If you 

have larger diffusion, this layer would be thicker and thicker or in limit of gamma equal 



to 0, this will also be 0, right. So, this layer kind of thing would exist in which the ϕ value 

will change from 1 to 0 in this particular dial on the diagonal.  

But for the present problem, we do not have this gamma. So, as a result there is no such 

layer, ok. So, this is the exact solution. Now, if you were; if you were to calculate the cell 

Peclet number, which is given by 
ρ|𝑢|δ𝑥

Γ
; what would this value be?  

This will be infinite or if I write a Peclet number for the entire domain, instead of 

calculating the length scale as δ𝑥; if I take the length scale as capital L, this entire thing 

would come out to be also infinite.  
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So, the Peclet number is infinite; then what does that mean? Peclet number is infinite; then 

e cell, then what would be the, what should be δ𝑥 right? What delta x should I take; if I 

am using central difference scheme, what delta x should I take? There is no δ𝑥 I can take, 

because which satisfies this problem; because Peclet number is infinite, that means δ𝑥 has 

to be 0.  

So, even if I take smaller and smaller mesh, it will never satisfy this condition of Peclet 

number less than 2 right; because gamma itself is 0, as a result δ𝑥 has to be also 0. But 

then that is impossible; that means for any δ𝑥 that we take, we are going to see some kind 

of oscillations if you solve this problem using a central difference scheme.  



And we will see that if you solve this problem using an upwind difference scheme; then 

what you see is that, you see some kind of an artificial diffusion which is not there in the 

original problem specification, right.  

So, let us say if I were to travel along this vertical line ok; I go from y equals 0 to y equal 

to L, what will be the solution ϕ change look or look like? So, ϕ would be equal to 1 all 

the way to y by 2 and it will be equal to 0 from y by 2 to y L, is not it? So, this will be 0 to 

L by 2, ϕ would be equal to 1 and L by 2 to L, ϕ would be equal to 0.  

So, essentially we see a step function with 1 here and 0 here; that would be the exact 

solution that is expected from this problem, ok. We would kind of draw that. So, the exact 

solution is given by as we go along y axis; if I plot the phi, then the exact solution is ϕ 

equals 1 until I reach L by 2 and then it will suddenly drop to 0 and it will come to some 

value here.  

Now, if you solve this problem using let us say 15 by 15 cells using both the central 

difference scheme and the upwind difference scheme; what you notice is that, with the 

central difference scheme the results are shown in red here. What you get is, you can you 

get some kind of an oscillations, ok. So, you see these artificial oscillations are false 

dispersion; this is what we call it as this behavior of oscillation we call it as dispersion.  

And if you had solved this using upwind difference scheme; what you see is that, you 

essentially get a smooth curve right that kind of goes like this, which shows there is some 

diffusion in the problem, right. But however, there is no diffusion right; but we know that 

the gamma is equal to 0, right. So, what we see here is basically some kind of a numerical 

diffusion that is basically an artifact of the upwind difference scheme, ok. So, that is what 

we see here.  

So, as a result this is not; this is not, none of these things kind of give an exact solution, 

ok. So, that is the behavior. Now, these two behaviors are known as either artificial 

numerical or false dispersion, which is this one, the oscillations, the Gibbs phenomena we 

see here and then the artificial or numerical dissipation which is given by the upwind 

difference scheme.  
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Now, these two is what we will elaborate in the next lecture; but it is good to know that 

this kind of behavior exists, when you try to solve a pure convection problem with any of 

these schemes, ok. Now, one question you may have is; what if there is some diffusion 

that is given in the problem statement, instead of taking gamma equal to 0?  

Now, depending on the value of gamma you have, the upwind difference scheme will still 

produce some more diffusion. Now, depending on the value of gamma you have and 

depending on the δ𝑥 that you take to particularly satisfy Peclet number less than 2; you 

may or may not see these oscillations coming because of the central difference scheme.  

So, that is the answer. We will see depending on how it goes; we probably we will solve 

one assignment problem on this convection diffusion problem also. Then, I am going to 

stop here; because that is kind of the end of whatever we want to discuss for today, then I 

will talk to you in the next lecture, alright. 

Thank you. 


