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Lecture - 29 

Finite Volume Method for Convection and Diffusion: Discretization of steady 

convection equation 

 

Hello everyone, welcome to another lecture as part of our Computational Heat and Fluid 

Flow, ME 6151 course. Let us get started.  
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So, today, in the last lecture, we looked at the influence of secondary-gradients on the 

coefficients right, we kind of reasoned out that secondary-gradients create negative 

coefficients which may lead to oscillations as a result it is kind of a good practice to have 

a good quality mesh right which is kind of as orthogonal as possible. And then we have 

also looked at the solution algorithm for implementing a diffusion equation on 

unstructured meshes right.  

We said instead of going through a cell centered approach, if we traverse the mesh through 

a face based approach, then access the cells and fill in the coefficients, and then go to the 

cells and calculate the central coefficients, so ap coefficients and so on, then that is a better 

way of solving the unstructured problem right that is what we have kind of discussed in 

the last class. So, we have also finished the chapter 3 which is on the diffusion equation. 
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So, today we are going to look at the next chapter that is the chapter on convection. 

Essentially, we are going to look at the convection and diffusion as part of chapter 4. So, 

the two specific things that we will discuss today is the first is the discretization of the 

convection term right which we have not seen till now on a structured Cartesian mesh ok.  

So, we will kind of go back to the structured mesh to start with, then we will learn how to 

discretize the convection term on a structured mesh, thereafter we will introduce the 

unstructured or a non-orthogonal mesh ok, so that is kind of the steps we will take. And 

we will also look at a particular scheme for discretizing the convection term that is the 

central differencing scheme ok. So, these are the two things we are going to see in today’s 

lecture alright. Let us get started. 
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So, we will start with our general scalar transport equation ok. So, general scalar transport 

equation is written here right. So, basically the general scalar transport equation or the 

convection diffusion equation as it is known as right is written here in which the first term 

is the uncertainty term that is 
∂

∂t
(ρϕ) plus the second term is the convection term that is 

∇ ⋅ (ρ𝑢⃗ ϕ). And on the right hand side, we have the diffusion term that is ∇ ⋅ (Γ∇ϕ) plus 

𝑆ϕ right. 

So, this is the equation we have kind of started off with. We already know how to solve 

the or taken by account the unsteady part and the diffusion terms right. These two things 

we already know. The only thing we did not know is how do I now include the convection 

term in there which will allow us to solve the entire general scalar transport equation right 

or the convection diffusion equation ok, so that is the thing. 

So, essentially we already know how to discretize the this part right ok. Now, here when 

we solve this problem, you see that we have a velocity field that is introduced. So, as far 

as the convection diffusion is concerned, we will assume that u bar is a known quantity 

ok, so that is what we will assume. We will assume that u bar is known ok, that means, the 

underlying flow field is known. However, let say in a real flow field, in a real flow field, 

u will be an unknown right. This will be an unknown which we have to calculate ok.  



 

 

And the question we are interested in basically is how is this phi that we have right how is 

this phi getting transported in the presence of a known flow field. So, essentially u bar is 

known and how is my phi getting transported that is the real question we are asking. And 

what we do is initially we will assume that we will not we do not have the unsteady term 

in here ok. So, we will only solve for a steady convection diffusion equation ok.  

Later on of course, we can introduce the unsteady part as we have done for our pure 

diffusion equation ok, so that is what we would be we would be doing. So, let us start off 

with the two-dimensional structured mesh as shown here right. 
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This is the same mesh we had before. Essentially we have a Cartesian mesh with either 

uniform cells or non-uniform cells. And we have the primary cell P on which we are 

focusing our discretization on and then we have an east cell, west cell, north and the south 

cells, and the corresponding faces are the little e, little w, little north, and little south ok. 

And the width of the cell in the x-direction is Δ𝑥, and the width of the cell in the y-direction 

is Δ𝑦.  

And of course, the other terminology which is the distance between P and the east cell in 

the x direction would be equal to δ𝑥𝑒, and this would be δ𝑥𝑤, this would be δ𝑦𝑛, and this 

would be δ𝑦𝑠, all those terminology would be valid here as well I am not repeating those 

terms here ok. 



 

 

So, assuming that we are not interested in right now in the unsteady part, we can write the 

steady diffusion convection diffusion equation like this. So, basically ∇ ⋅ (ρ𝑢⃗ ϕ) = ∇ ⋅

(Γ∇ϕ) + 𝑆ϕ that is basically the same equation that we have here. However, we notice that 

we have now introduced a new variable right that is your that is your rho right. 

So, this is a new variable that we have introduced, up till now we only had gamma that is 

the diffusion coefficient of the flow right now with convection we are addressing the 

density of the of the flow field ok. So, we also saw the density gets introduced even if you 

have an unsteady term in the past in the past lectures right, so that is what we have already 

seen. 

So, it is good to keep in mind that the rho is introduced ok and then the velocity vector that 

we have that is 𝑢⃗ . I can of course, write it as î𝑢 + j𝑣̂ ok. So, we have basically two scalar 

components u and v, and u bar would be the velocity vector that is in this particular case 

as far as the as far as the solution is concerned. This is basically is known right. So, 

basically u is known right, 𝑢⃗  is known right, for this for the solution of general scalar 

transport equation alright. 

Then what is the first step in finite volume method? The first step is basically to integrate 

the convection diffusion equation on a control volume that is basically this control volume 

that is if I integrate this you have integral CV ∇ ⋅ (ρ𝑢⃗ ϕ) dV equals on the right hand side 

control volume ∇ ⋅ (Γ∇ϕ) dV plus integral on the control volume 𝑆ϕ dV right ok. 

Again what we what we know is we already know how to solve for the diffusion part right, 

that is ∇ ⋅ (Γ∇ϕ) dV plus 𝑆ϕ dV equals 0 is what we already know right. So, we already 

know how to solve for solve for this term right. We already know solving for this term ok. 

So, we will not worry about that part, rather we will worry about the convection term that 

is ∇ ⋅ (ρ𝑢⃗ ϕ) dV.  

So, we will invoke the Gauss divergence theorem just the way we have done it for the 

diffusion term here, we will do it for the convection term. So, invoking the Gauss 

divergence theorem the convection term here can be rewritten as instead of a volume 

integral, we can convert it to a surface integral of ρ𝑢⃗ ϕ dot dA⃗⃗⃗⃗  ⃗ right. So, dA⃗⃗⃗⃗  ⃗ is now your 

area vector. 



 

 

And again assuming that the this quantity that we have is a constant on the on the faces 

that these are control surface is made up of. And that constant can be represented using the 

face centroid value. We can transform this continuous integral into a discrete summation 

of sigma over f, (ρ𝑢⃗ ϕ)𝑓 ⋅ Af
⃗⃗  ⃗ right. Af

⃗⃗  ⃗ is basically the area vectors for each of the faces that 

is east, west, north and south which we already know right ok. 

So, for example, what would be Ae
⃗⃗ ⃗⃗ , Ae

⃗⃗ ⃗⃗  would be Δ𝑦 î right similarly An
⃗⃗ ⃗⃗   would be Δ𝑥 j ̂

right. All these things are already known ok. So, now, we have to focus on basically 

evaluating this quantity right that is basically (ρ𝑢⃗ ϕ)𝑓 ⋅ Af
⃗⃗  ⃗ on all the faces. So, once we 

once we know how to solve this, then we can actually solve for the convection diffusion 

equation ok. So, let us move on with our this quantity.  
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So, we can rewrite this quantity as basically we say sigma f, (ρ𝑢⃗ ϕ)𝑓 ⋅ Af
⃗⃗  ⃗ right. And we 

also have to realize that this term this particular term is on the left hand side of the original 

equation ok. So, if you go back to the equation, the entire diffusion and the source terms 

are on the right hand side, whereas this convection term is on the left hand side ok.  

So, this is important because when we try to assemble the coefficients later on, then we 

have to know on which side of the equals equation is this particular term is right because 

then only we can get the coefficient signs correctly ok, so ok. 



 

 

So, we have the faces the faces are basically east, west, north, south, and then the area 

vectors are all known Ae
⃗⃗ ⃗⃗  equals Δ𝑦 î; Aw

⃗⃗ ⃗⃗  ⃗ equals −Δ𝑦 î; An
⃗⃗ ⃗⃗   equals Δ𝑥 j;̂ and As

⃗⃗⃗⃗  equals 

−Δ𝑥 ĵ right, so that we already know. And 𝑢⃗  is also known; 𝑢⃗  is basically î𝑢 + j𝑣̂. This is 

also already known. 

So, can we write this one particular term of this summation? Out of the four terms, we 

have we will write first for the east face. So, for the east face, this, this will read as (ρ𝑢⃗ ϕ)𝑒 ⋅

Ae
⃗⃗ ⃗⃗  bar right. So, this is basically we know this thing as a bar is Δ𝑦 î, 𝑢⃗  is î𝑢 + ĵ𝑣. So, the 

only term that survives would be î dot î. So, u times Δ𝑦 is the only term that survives v 

times 0, so that would not survive. So, we can write this as (ρ𝑢⃗ ϕ)𝑒, where u is this scalar 

component of 𝑢⃗  in the i direction times Δ𝑦 right. 

So, now you know that this have to be has to be evaluated on the east face right ok. Of 

course, I can rewrite this as ρ𝑢𝑒 u evaluated on the east face times Δ𝑦 times ϕ𝑒  right. So, 

phi value on the face e, ϕ𝑒  right ok. So, now, this quantity if you look at this is ρ𝑢𝑒Δ𝑦 this 

is basically the area, this is density. So, density times velocity times area what would this 

quantity be?  

This quantity is nothing but your density times velocity times area would be your mass 

flow rate right, so that is your mass flow rate. We would like to represent it using a quantity 

F capital f sub e, F𝑒 that is the mass flow rate on the east face is F𝑒 ok. 

So, if I use F𝑒 instead of ρ𝑢𝑒Δ𝑦, then I can write this entire quantity as F𝑒 times ϕ𝑒  is what 

I can write this as. So, that means, one of the terms out of this four terms we have comes 

out to be F𝑒ϕ𝑒. Where F𝑒 is the mass flow rate times phi is the scalar so far so good. But 

what about ϕ𝑒?  

Do we know the value of ϕ𝑒? We do not know, because phi is only stored where it is only 

stored at the cell centroids right, it is not stored at the faces. Of course, we can somehow 

interpolate the value of ϕ𝑒  that is what we would do. So, that is what needs to be done ok. 

So, how do we interpolate for ϕ𝑒  kind of determines the kind of convection scheme we 

are talking about ok? So, as far as the convection term is concerned, we get we got one 

term that is F𝑒 times ϕ𝑒  ok. 

Now, let us now look at the diffusion term as well because when we write the equations 

we want to introduce a slightly different notation than what we have used for the pure 



 

 

diffusion equation. So, if you look at the diffusion equation on the right hand side, what 

we have is (Γ∇ϕ)𝑓 ⋅ Af
⃗⃗  ⃗ right so for all the faces. Again if I consider the east face, this 

would come out to be Δ𝑦î.  

This has two components, so the only component that survives is the 
∂ϕ

∂x
|
𝑒
 right. So, this 

will be Γ𝑒A𝑒
∂ϕ

∂x
|
𝑒
 on the east face. Now, how do we calculate 

∂ϕ

∂x
|
𝑒
 on the east face? Using 

linear profile assumption right. 

So, now what you can see is that for convection, we need to use a model to calculate this 

dependent variable itself right. So, we for ϕ𝑒  itself, you would need a you need an 

assumption, whereas for the diffusion terms you would need an assumption for the gradient 

of the phi right, so that is the difference between the convection and the diffusion terms. 

For the dependent variable itself, here you would need a model; here for the gradient of 

the dependent variable, you would need a model right.  

So, we have used a linear profile assumption, and we can write this as 
(ϕ𝐸−ϕ𝑃)

δ𝑥𝑒
. And A𝑒 is 

nothing but your Δ𝑦 right Ae
⃗⃗ ⃗⃗  is your Δ𝑦î, but A𝑒 is your scalar value. So, we have this 

value. 

Now, just like we have used a notation for the mass flow rate that is multiplying ϕ𝑒  as 𝐹, 

let us introduce another term for this coefficient that is multiplying the ϕ𝐸 and ϕ𝑃 as the 

diffusion flux coefficient that we call it as D𝑒 ok.  

So, this is the diffusion flux coefficient on east face, basically 
Γ𝑒Δ𝑦

δ𝑥𝑒
 right. So, if I plug in 

this, we can rewrite this equation as D𝑒 times (ϕ𝐸 − ϕ𝑃), so far so good. So, we have now 

looked at discretization of the convection term and the diffusion term on one particular 

face that is the east face alright. 
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Let us also kind of define a non-dimensional number that would be that would be an 

indication of the relative strengths of the convection and the diffusion terms which we 

would call it as a Peclet number which is based on the cell dimension. So, we will call it 

as a cell Peclet number ok. 

So, going by definition the Peclet number, we would like to define it as the ratio of the 

convection to the diffusion coefficients that is F to the D right. Whereas, we know what is 

the mass flow rate, the mass flow rate is basically F𝑒 equals ρ𝑢𝑒Δ𝑦, and the 

coefficients. D𝑒 for the diffusion flux is 
Γ𝑒Δ𝑦

δ𝑥𝑒
 right.  

So, we can calculate now what would be the cell Peclet number. So, this is ρ𝑢Δ𝑦 upon 

ΓΔ𝑦

δ𝑥
. So, delta y gets cancelled. So, what you get is 

ρ𝑢δ𝑥

Γ
 ok. So, this is your cell Peclet 

number.  

We need this in order to know whether it whether the problem is a convection dominated 

problem or if it is a diffusion dominated problem depending on the value of the cell Peclet 

number ok. So, that is going to define the relative strength of these two these two physical 

quantities alright. So, we define this. 

Now, let us get back to our discussion. Basically we have now discretized on only for the 

east face. Now, what do we have to do? We have to do the same thing. Essentially, we 



 

 

have to introduce a model for ϕ𝑒  right. And then once we introduce a model for calculating 

phi on the east face, we have to write equations for all the faces that is for west, south and 

north, and then assemble all of these together, and then put them in a form that is 𝑎𝑃ϕ𝑃 =

∑  anbϕ𝑛𝑏 + 𝑏 plus b ok. So, that is what we are going to do next ok. 
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Now, ϕ𝑒  is basically we need to write the face value in terms of the cell centroid values 

that is basically where we have ϕ𝑒  stored right. Now, how do we write this? Actually 

determines the convection scheme ok. So, how we are going to write this is going to 

determine the convection scheme ok. So, so, the convection scheme we would use would 

be based on how the face phi value will be written in terms of the cell values ok.  

But for the face gradient 
∂ϕ

∂𝑥
, we have already introduced a model that is the linear profile 

assumption right. The linear profile assumption is already introduced. What is, what is the 

linear profile assumption we have used can be called as what kind of scheme can we call 

the linear profile assumption as maybe you have to kind of think and come back ok.  

Now, essentially once we introduce a convection scheme, once we decide on how we 

calculate ϕ𝑒  in terms of the cell values, what we need to do is, we need to do similar right 

similar equations for the west, north, and the south faces. Collect all the terms and then 

formulate the final discrete equation for every cell that is what we would do. 



 

 

Now, that means, we would introduce one particular scheme which we call it as a central 

differencing scheme ok. Now, assume that we have a uniform mesh ok. If we have a 

uniform mesh, then ϕ𝑒  can be written as ϕ𝐸 plus ϕ𝑃 by 2. Now, this we can write assuming 

that phi varies linearly between the cell centroids which is also the same assumption we 

have used in evaluating the face gradients ok. 

So, if you have a uniform mesh and if you assume that phi varies linearly between the cell 

centroids; we can write the face value ϕ𝑒  as ϕ𝐸 plus ϕ𝑃 by 2 ok, very good. Well, we want 

to do this because our eventual equation is in terms of the cell centroid values for ϕ𝑃, ϕ𝐸, 

ϕ𝑁, and so on right, only then this can go into the matrix right alright. 

So, so this particular scheme of taking it as the linear average is known as central 

differencing scheme if you have a uniform mesh; otherwise this will be basically in terms 

of the linear interpolation right ok. Now, if you introduce this, then what will happen to 

the convection transport through the particular face e through the face east? In the face 

east, the east face has basically the convection term is F𝑒 times ϕ𝑒  right, so that is what 

we have from we have reduced rho u bar phi dot e dot A e bar as F e times phi east right. 

Now, if I introduce ϕ𝑒  equals ϕ𝐸 plus ϕ𝑃 by 2, then I can write this F𝑒ϕ𝑒  as F𝑒 times ϕ𝐸 

plus ϕ𝑃 by 2 right, that is my I am just substituting for phi east as ϕ𝐸 plus ϕ𝑃 by 2. Now, 

what about this coefficient F𝑒, is this known or unknown? This particular F𝑒 equals ρ𝑢𝑒Δ𝑦, 

is this known or unknown? This is known, because density is known, area is known for 

the purpose of the convection diffusion equation, we know that the velocity vector is also 

known ok.  

So, essentially this coefficient F𝑒 is known and so is the diffusion coefficient D𝑒 ok. So, 

these two are known fine. So, we have now introduced a model for the east face. Can the 

same model be extended for other faces, for example, for the west face? Yes, this can be 

only is only thing is that for west face ϕ𝑤 would be half ofϕ𝑊  plus ϕ𝑃 by 2 right ok. 
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So, if we do the same thing, we can now formulate the total problem ok. So, coming to the 

discrete equation, so the total discrete equation would read as bringing the convection term 

to the right hand side ok. So, earlier this was on the left hand side with equals these two 

right now I brought this to the right hand side with a minus. So, what we have is sigma f, 

(Γ∇ϕ)𝑓 ⋅ Af
⃗⃗  ⃗ minus sigma f, (ρ𝑢⃗ ϕ)𝑓 ⋅ Af

⃗⃗  ⃗ plus (𝑆C + SPϕP)Δ𝑉 ok.  

Now, you already know this last term and the first term right this is what we have been 

doing in the diffusion equation. Now, the only extra term is this one which is rho u bar phi 

times dotted with Af
⃗⃗  ⃗ that is the only extra term alright. 

Now, let us consider only the east face ok. Let us consider the only the east face, and also 

only consider these two terms – the diffusion and the convection. So, these two would read 

it as (Γ∇ϕ)𝑒 ⋅ Ae
⃗⃗ ⃗⃗  minus (ρ𝑢⃗ ϕ)𝑒 ⋅ Ae

⃗⃗ ⃗⃗  right that is what we have. And we have written this 

diffusion as using linear profile assumption D𝑒 times ϕ𝐸 minus ϕ𝑃, and this as F𝑒 times 

ϕ𝑒  ok.  

So, if you, if you plug in these two, what we get is for D𝑒 we have 
Γ𝑒Δ𝑦

δ𝑥𝑒
 times ϕ𝐸 minus 

ϕ𝑃 minus F𝑒 times ϕ𝑒  is ϕ𝐸 plus ϕ𝑃 by 2 right, this is what we have for these two terms 

alright. Now, can we write a similar expression for the west face? Yes, we can. So, this 

has this is of course, a mistake; this has to be supposed to be w, this should be w ok, ok.  



 

 

Now, this would be (Γ∇ϕ)𝑤 ⋅ Aw
⃗⃗ ⃗⃗  ⃗ minus (ρ𝑢⃗ ϕ)𝑤 ⋅ Aw

⃗⃗ ⃗⃗  ⃗ ok. So, that would be equal to what 

would this quantity? This would be minus why minus? Because Aw
⃗⃗ ⃗⃗  ⃗ would be −Δ𝑦î . So, 

this would be −
Γ𝑒Δ𝑦

δ𝑥𝑒
 times 

∂ϕ

∂x
|
𝑤

 on the west face would be ϕ𝑃 minus ϕ𝑊 by δ𝑥𝑤. And 

then here also A𝑤 would be a −Δ𝑦î, so that minus and this minus would make it a plus and 

this we would call it as F𝑤, F𝑤 times ϕ𝑤 would be what ϕ𝑤 would be ϕ𝑊 plus ϕ𝑃 by 2 

right that is what we have. 

Now, notice here, here we got a minus, here we have got a plus. Similarly, here we have 

got a plus and we have got a minus here ok. So, there is some small difference between 

the east and west ok. Now, what is the definition F𝑤 is ρ𝑢𝑤Δ𝑦; and of course, Aw
⃗⃗ ⃗⃗  ⃗ equals 

−Δ𝑦î ok.  

So, with these two things, we now kind of wrote for the west face as well. Can you write 

for the north and south faces similarly? Yes, you can write, but we have to keep in mind 

the corresponding plus minus sign. So, maybe you should try writing it out as well as a 

verification, as of now I am going to assemble all of these things ok. 
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So, this is basically 𝐷𝑒 right, this is 𝐷𝑒 times ϕ𝐸 minus ϕ𝑃 minus 𝐹𝑒 times this thing ok. 

And what about this thing this will be minus 𝐷𝑤 time’s ϕ𝑃 minus ϕ𝑊 plus 𝐹𝑤 times ϕ𝑊 

plus ϕ𝑃 by 2 ok. So, if I assemble all of these things what do we have? We have 𝐷𝑒ϕ𝑒  



 

 

minus ϕ𝑃 minus 𝐹𝑒 times ϕ𝐸 plus ϕ𝑃 by 2 plus 𝐷𝑤 here I have changed the ϕ𝑊 and ϕ𝑃 

the order of ϕ𝑊 and ϕ𝑃 that is why I could get a plus here instead of minus ok. 

And we have plus 𝐹𝑤  time ϕ𝑤 plus ϕ𝑃 by 2 plus the north would be similar to the east face 

ok, this is what we have to verify ok. The north would be 𝐷𝑛 ϕ𝑁 minus ϕ𝑃 minus 𝐹𝑛 times 

ϕ𝑁 plus ϕ𝑃 by 2 plus what would be the quantity for south, south would be it would this 

would actually south also would come to be −
Γ𝑠Δ𝑥

δ𝑦𝑠
, but I would write with a plus with 

these two flipped ok.  

So, this would be 𝐷𝑠 times ϕ𝑆 minus ϕ𝑃 plus 𝐹𝑠 times ϕ𝑆 plus ϕ𝑃 by 2. So, this is basically 

coming from your diffusion terms and the convection terms. And we have of course, the 

(𝑆C + SPϕP)Δ𝑉 equal to 0 ok. So, this is the final equation alright. 

But what do we want our equation to be written as? We want it to be written as 𝑎𝑃ϕ𝑃 =

∑  anbϕ𝑛𝑏 + 𝑏 right. So, what should I do now? We have to send all the ϕ𝑃 coefficients 

and ϕ𝑃 to the right hand side, and leave all remaining things on the left hand side ok. So, 

if we do that, what will be the coefficient for ϕ𝐸? ϕ𝐸 will get D𝑒 minus phi east will get 

F𝑒 upon 2 right that is what phi east will get ok.  

What about the coefficient for ϕ𝑃? When you send it to the right hand side, this becomes 

a plus, and this becomes a plus as well. For ϕ𝑃 that will be D𝑒 plus F𝑒 by 2 would be the 

coefficient for ϕ𝑃. And the coefficient for phi east is D𝑒 minus F𝑒 by 2. You see there is a 

difference between the coefficients now ok. 
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So, if I were to write it as 𝑎𝑃ϕ𝑃 = ∑  anbϕ𝑛𝑏 + 𝑏, the coefficient for 𝑎𝐸 would be this east 

phi east remains on the left hand side. So, this will be D𝑒 minus F𝑒 by 2 ok, and a west 

would be D𝑤 plus F𝑤 by 2 ok; a north would be D𝑛 minus F𝑛 by 2; and a south would be 

D𝑠 plus F𝑠 by 2 very good. Now, what about 𝑎𝑃? 𝑎𝑃 basically has a similar contribution, 

but these a plus minus for F𝑤 getting flipped, because consistently for all the diffusion 

terms ϕ𝑃 has a minus right, so that takes care of the same term for same coefficient as 

here. 

But here we see that ϕ𝑃 has a plus, so as a result this part of the convection that is going 

into the contribution of the neighbouring coefficients would change its sign when it goes 

to the coefficient of a𝑃 right ok. So, what is the coefficient for a a𝑃? a𝑃 would be D𝑒 plus 

F𝑒 by 2, because this goes to the right hand side, this becomes plus, this becomes plus. 

And then D𝑤 minus F𝑤 by 2 plus D𝑛 plus F𝑛 by 2 plus D𝑠 minus F𝑠 by 2 minus of course 

we have our SPΔ𝑉 as well right this becomes minus ok.  

Now, what do you see here? What you see here is basically a𝑃 is not now, not the 

summation of the neighbours, is not it? Because you cannot write this as a summation 

because this is minus, whereas you have a plus, here you got a plus, you got a minus. So, 

when you had only the diffusion term in there, then this could have been this was written 

as a𝑃 equals ∑  anb right, but now it is not the case. So, but we have only different values 

here. Of course, we can now make it actually a summation of a and b. So, by adding and 



 

 

subtracting certain quantity that is nothing but this plus half F𝑤, F𝑤 by 2 can be written as 

F𝑒 minus F𝑒 by 2 right. I can write this. 

Similarly, this minus F𝑤 by 2, I can write it as minus F𝑤 plus F𝑤 by 2 right. I can basically 

add and subtract these quantities ok. So, I can write like this and in which case D𝑒 plus F𝑒 

by 2 is written as D𝑒 minus F𝑒 by 2 plus F𝑒 right. But then this quantity is now what? This 

quantity is nothing but your a east right. This is nothing but your a east.  

Similarly, this quantity is now nothing but your a west, and this is your this is your a north 

here, and this quantity is now your a south ok. Of course, now we have introduced this 

extra terms which have to be taken out. So, this is F𝑒 minus F𝑤 plus F𝑛 minus F𝑠 is the 

extra term that we have introduced in the process, but nonetheless we can write now a𝑃 as 

a𝐸, a𝑊, a𝑁, a𝑆 summation minus SPΔ𝑉 plus this extra terms right that we have introduced. 

For example, what are the extra times that we have introduced, we have introduced this 

quantity, this quantity, this quantity and this quantity ok. These are the four quantities that 

is F𝑒 minus F𝑤 plus F𝑛 minus F𝑠 ok. This entire thing is extra which we have introduced. 

But barring this a𝑃 is now equals ∑  anb minus SP. So, this particular quantity has some 

significance which we will see in little while ok.  

What is this quantity F𝑒 is the flow rate, mass flow rate through east face. F𝑤 is also mass 

flow rate through the west face. And F𝑛 mass flow rate to the north face, and F𝑠 is the mass 

flow into the south face ok. So, that means, mass flow rate through east minus west plus 

north minus south that is the quantity we are talking about ok, very good alright. 
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Then what is our b? b of course, is your 𝑆C times Δ𝑉. And 𝑎𝑃 is your now ∑  anb minus 𝑆P 

Δ𝑉 plus this quantity ok. Now, because the c, these are all the mass flow rates through the 

faces right, so these are basically the mass flow rates that are going out of the domain.  

Let us say if your u is positive u and v are positive, then this is the total mass for it that is 

going out of the out of the control volume right, because ρuΔ𝑦 is u is positive, then it is 

basically ρ𝑢⃗  dot Ae
⃗⃗ ⃗⃗  right which will give rise to ρuΔ𝑦 that will be a positive quantity. So, 

that means, this entire thing is basically the net mass that is entering and leaving through 

the control volume through all the faces. 

Now, if the given velocity field 𝑢⃗ = î𝑢 + j𝑣̂ satisfies continuity let us say if satisfies mass 

conservation, then what will this quantity be? The amount of mass leaving through the east 

face minus the amount of mass essentially this is the amount of mass entering through the 

west face plus the amount of mass leaving through the north face and the amount of mass 

entering through the south face, this is basically the conservation of mass right. This has 

to go to 0, if the given velocity field 𝑢⃗  satisfies continuity ok.  

So, that means, this would be 0 if you have a velocity satisfying flow field that is given to 

you for which you have to calculate the transport of the scalar ok. So, that means, that 

means, this quantity would go to 0 if you have a continuity satisfying velocity field ok, 

that you have to verify once again alright now ok. 



 

 

So, now, in all these quantities we have just literally listed out what is D𝑒 and F𝑒, but the 

definitions are we already know right. D𝑒 would be 
Γ𝑒Δ𝑦

δ𝑥𝑒
; D𝑛 would be 

Γ𝑛Δ𝑥

δ𝑦𝑛
. And similarly 

F𝑒 is ρ𝑢𝑒Δ𝑦; F𝑤 would be ρ𝑢𝑤Δ𝑦; F𝑛 will be ρ𝑣𝑛Δ𝑥 and so on right. So, these are all 

known values because density is known, velocity is known, diffusion coefficient is known 

ok, so all these are known fine. So, essentially we have now formulated the equation. 
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Let us make few comments ok. The comments are now 𝑎𝑃 is not just summation ∑  anb 

minus SPΔ𝑉 like we what we have seen before, but we have this extra quantity ok and 

what about the coefficients? The coefficients are 𝑎𝐸 equals 𝐷𝑒 minus 𝐹𝑒 by 2, where 𝐷𝑒 

and 𝐷𝑒 are known. Similarly, a north is 𝐷𝑛 minus 𝐹𝑛 by 2, where 𝐷𝑛 and 𝐹𝑛 are known ok.  

Now, what about the coefficients? Do the coefficients look ok? They do not really look 

ok. Because if you consider let us say your velocity field is sum 2 times i plus 3 times j 

where u and v are both positive quantities ok. So, basically your velocity is going in the 

positive quadrant direction right.  

It is basically has 2, 2 i plus 3 j, it is going something like this. Then is that means, if you 

have this your all your flow rates are now positive right, because your 𝑢𝑒, 𝑢𝑤, 𝑣𝑛, 𝑣𝑠, so 

that all are positive, so these are all positive quantities. And diffusion is always a positive 

quantity right. Then is this coefficient 𝑎𝐸 always positive? Need not be right. 
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Because, if F𝑒 is greater than D𝑒 by twice of D𝑒, then this; actually can become negative, 

because these two are positive quantities. Now, D𝑒 is positive, F𝑒 is positive, but the 

magnitude of F𝑒 can be more than if it is more than 2 times D𝑒 then this coefficient 

becomes negative, then a becomes c less than 0. Similarly, if F𝑛 is greater than 2 times D𝑛, 

then even a north can become this should be a north ok. So, this should be a north, a north 

can become negative right. 

Now, of course, I have assumed, the I have assumed that the u and v are here positive 

quantities. If you assume u and v are both are negative quantities, then instead of 𝑎𝐸 and 

𝑎𝑁, you would get a south a west and a south to be the quantities that may become negative 

right. Because if you go back if you assume you know u to be negative, then this always 

becomes positive, and this always becomes positive. Whereas, this will become now 

negative right, because u is negative.  

So, your 𝐹𝑤 would come out to be negative, and this would come out to be negative alright, 

so that, that still happens. So, that means, what we have is we have the coefficients are not 

guaranteed to be positive. And the coefficients are not guaranteed to positive depending 

on the relative importance of the convection and the diffusion ok, that is what we see ok 

What about this Scarborough criteria? If these becomes negative what will happen to 

Scarborough ok? Let us say the source is 0, source is 0 and if we have continuity satisfying 

flow field this is 0, sum of the coefficients  anb are negative. So, 𝑎𝑃 will be equal to ∑  anb, 



 

 

because you have let us say some coefficients minus 2, plus 3, minus 1, plus 2 something 

like that you would get some value of 2 or something for 𝑎𝑃 ok, 𝑎𝑃 will be equal to ∑  anb. 

But in the Scarborough criteria would be modulus sigma of ∑  anb by modulus of 𝑎𝑃. This 

will not be satisfied, because now 𝑎𝑃 will come out to be smaller than some of the modulus 

of the negative values right. The moment you have negative values this will this although 

𝑎𝑃 equals ∑  anb, this will not be satisfied right. This will be less than or equal to one will 

not be satisfied. So, with the negative coefficients, your Scarborough is not satisfied. 

What about boundedness? Your boundedness is also not satisfied because now anb some 

of these are negative as a result your boundedness is also not satisfied, only if you have all 

positive quantities the ϕ𝑃 value will lie between all the phi and bs right ok. So, that means, 

your Scarborough and boundedness are not going to be satisfied, as a result you cannot 

solve for this if your coefficients become negative ok.  

So, in order to make sure that the coefficients do not become negative, of course, we have 

to do something like this. We have to choose always F𝑒 is less than 2 times D𝑒, that means, 

F𝑒 by D𝑒 is less than 2. But of course, we know what is F𝑒  by D𝑒, F by D, we have defined 

it as a cell Peclet number. So, cell Peclet number has to be always less than or equal to 2. 

But what is the cell Peclet number? Definition, the definition is 
ρ𝑢δ𝑥

Γ
. But what is known 

and what is unknown in this? Velocity field is given. So, you cannot change it. You can, 

you cannot say I will solve for a different problem. Density is also known; gamma is 

known right.  

So, the only control you have is basically δ𝑥. You have to choose your mesh such that 

your δ𝑥 is such that this comes out to be less than 2 Γ by ρ𝑢 ok, only then your coefficients 

will not become negative. And as a result, you can use central difference scheme for 

solving for convection diffusion equation ok. 

This actually puts a very stringent restriction on the mesh because your gamma is usually 

very small. And depending on how large your velocities are, your δ𝑥 has to be made much 

much finer ok. So, as a result, the central difference; central difference in scheme for 

convection equation comes with a very big restriction on the mesh size that you can take 

in order to solve for it successfully without having any divergence ok; so, alright. 



 

 

Then that is all for today. So, I am going to stop here. So, in next class, we will see another 

discretization scheme for the convection term that is basically your upwind differencing 

scheme which will not come with a similar kind of which will not have these kind of 

restrictions.  

So, we were going to look at that in the next class, alright, thank you. And if you have any 

questions, write back to me on my email ok, or else we will see if we can setup a Google 

chat or something like that, alright. 

Thank you. See you, talk to you in the next class. 


