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Finite Volume Method for Diffusion Equation: Steady diffusion in unstructured 

meshes Part 5 

 

Hello everyone, let us get started. So, welcome to another lecture as part of our course 

ME6151: Computational Heat and Fluid Flow. 
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So, in the last lecture or in the previous lectures, we have been looking at gradient 

calculation methods and we looked at two different methods of gradient calculation; one 

was the Green-Gauss or the gradient theorem approach and the other one was the least-

squares approach. 

The motivation to look at the Green-Gauss or least-squares approach these gradient 

calculation methods was that we needed to calculate grad of phi right which was required 

not only by the secondary gradients that we got as part of the unstructured, non-orthogonal 

mesh. 

But also the gradients of the phi are required from different perspectives right either if you 

have a looking at a turbulence modeling or if you are working with a non-Newtonian fluid 



or if you are looking at a large dissimulation all these things would require you to calculate 

the gradient of the dependent variable grad u or grad phi and so on. So, as a result, we had 

to calculate gradient at the cell centroids ok. 

Then, we looked at these two methods. In the Green-Gauss method, we use the gradient 

theorem approach or the Green-Gauss theorem wherein the volume integral of the scalar 

is written as a surface integral right. 

And then, we calculated what is the gradient and in the least squares approach, we found 

a least squares error fit for all the data points and we found one simplified matrix that is a 

transpose ag equals a transpose b right that was a kind of a 2 by 2 matrix that we have to 

solve at each and every cell; in order to obtain this vector g which is basically 
∂ϕ

∂𝑥
 and 

∂ϕ

∂𝑥
 

ok. So, we kind of discussed these things in the last lectures. 
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So, let us move on and so, in today’s lecture, we are going to look at the influence of 

secondary gradient on the coefficients. So, up till now, we have been saying only that the 

secondary gradients will make that the solution may not be bounded right that the 

guarantee that the solution is bounded will be taken away if you have secondary gradients 

is what we have been saying till now. 

But we have not actually proved it or looked into why it may happen so. So, that is one 

thing we are going to see today. And other thing we are going to look at is how do you 



implement a solution procedure or how do you program it the solution procedure for 

solving a diffusion equation on unstructured mesh does not matter whether it is a 

orthogonal mesh or a non-orthogonal mesh. So, only if you have as long as you have an 

unstructured mesh, can I go ahead and implement it and what is the way if it is to be done 

ok. So, this is another thing we are going to look at in today’s lecture. 
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So, let us so, that means, the brand questions we address in today’s lecture are the first one 

is that boundedness is not guaranteed even if the source terms are absent in the context of 

unstructured non-orthogonal meshes, why is it so? Why is boundedness not guaranteed? 

That is the first question we will address in today’s lecture. 

And after finishing that part, we will move on to how do I program for diffusion equation 

on unstructured meshes ok. Is it the same way I would program on a structured mesh or is 

there something different? Is there something that can be done differently which will 

enable us to run the program with let us say; let us say; let us say the program will be faster 

or it can be; it can be little more memory efficient or it can be better from the algorithm 

point of view ok.  

So, all these things we will kind of consider and then code, how do I code for diffusion 

equation is the second question we will address in today’s lecture ok. So, by the way, this 

is the this how do I program is how it is done in all the software that that are out there ok. 



So, this is the same method that we are going to discuss which is basically belongs to the 

unstructured solution methods alright. 
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Let us move on with the first question. Let us look at the influence of secondary gradients 

on the coefficients ok. So, here we consider a on the left-hand side, we show a mesh here. 

This is basically what I would like to call it as a curvilinear mesh, but that is uniform so; 

that means, these cells are pretty much uniform, they are of the same size approximately, 

but then, the mesh need not be orthogonal ok, the mesh is non-orthogonal. 

For example, if you connect the cell centroids, the area may not be in the exact same 

direction. So, we are choosing this simplified geometry in order to understand the effect 

of influence. So, we are looking at a uniform mesh that is non or need not be orthogonal 

that is non-orthogonal. 

So, as usual we have our cell P that is right here and it also has the east cell, west cell, 

north cell and the south cell and we also have the corner neighbour’s here which are the 

northeast, northwest, southeast and southwest and also we have the east face which has 

two vertices a and b, this is the same nomenclature we have been following till now. 

And we also have these blue lines which are basically η equal to constant and the black 

lines which are basically ξ equal to constant; that means, if you move along the ξ equal to 



constant, η increases and if you move along this η equal to constant, ξ increases. So, the 

secondary gradients would lead to the calculation of 
∂ϕ

∂η
 on the east face right. 

Now, how do we calculate this? We looked at this calculation method a while back uh, we 

can do it in two ways; one is basically calculate what is ϕ𝑎 and ϕ𝑏, essentially interpolate 

ϕ𝑎 from its neighbor’s that is a P east, south east and south and interpolate ϕ𝑏 from P east, 

north east and north and then using these interpolate values at a and b, we can calculate 

what is 
∂ϕ

∂η
 in this direction on this faced e; on this face e right. 

Now, another approach is of course, to directly calculate the gradients at the adjacent cell 

centroids that is 
∂ϕ

∂η
|
𝑃
 at P and 

∂ϕ

∂η
|
𝐸
 at E right calculate it at this location and at this location 

and then, linearly interpolate them. So, we take the first approach here in order to 

understand.  

So, in the first approach, we can write ϕ𝑎 as ϕ𝑃 plus ϕ𝐸 plus ϕ𝑆𝐸 plus ϕ𝑆 divided by 4 

because we are saying this is a uniform mesh. If it were; if it were not uniform mesh, then 

you would get instead of one-fourth, you would get these lengths right that are multiplying 

these length ratios that are multiplying ϕ𝑃, ϕ𝐸, ϕ𝑆𝐸 and so on ok. 

Similarly, ϕ𝑏 can be calculated as one-fourth of the neighbor’s that is ϕ𝑃, ϕ𝐸, ϕ𝑁𝐸 and ϕ𝑁 

ok. So, essentially, we got values for phi and ϕ𝑏 from linear interpolation. Now, what is 

the definition for 
∂ϕ

∂η
 on the east face? That is nothing, but ϕ𝑏 minus ϕ𝑎 upon Δη right. So, 

that is 
∂ϕ

∂η
|
𝑒
 equals ϕ𝑏 minus ϕ𝑎 by Δη. 

Now, we plug in what is ϕ𝑏 and ϕ𝑎 from the values we have obtained before; that means, 

we plug it in these two, then this would give us to ϕ𝑃 gets cancelled when you say ϕ𝑃 

minus ϕ𝑎 here ϕ𝑃 gets cancelled, similarly ϕ𝐸 gets cancelled and we are left with these 

two quantities with a positive sign and these two with a negative sign right divided by 4 

times Δη. 

So, what we get for 
∂ϕ

∂η
 on the east face is 1 upon 4 Δη times ϕ𝑁𝐸 plus ϕ𝑁 minus ϕ𝑆 minus 

ϕ𝑆𝐸 that is what we get alright fine. 
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So, this is what we got for the secondary gradient that is 
∂ϕ

∂η
 on the east face which is 1 4 1 

over 4 Δη of ϕ𝑁𝐸 𝑝𝑙𝑢𝑠 ϕ𝑁 minus ϕ𝑆𝐸 minus ϕ𝑆 ok. Now, what do you notice in this 

equation? Is does this equation look fine? Well, it is fine from mathematical approach 

point of view, but is it fine from our finite volume method point of view? 

What about the coefficients for ϕ𝑆 and ϕ𝑆𝐸? Do they look ok? Do they look fine? No, they 

do not look fine because there are there is a negative coefficient that is multiplying them 

that is the coefficient for ϕ𝑆𝐸 would be 1 by 4 Δη right. 

So, similarly for ϕ𝑆 would be 1 by 4 Δη. So, this negative coefficients is not good for us 

because if we have negative coefficients, then what it means is that if this value goes up; 

goes up in the previous iteration, then the value of ϕ𝑏 right which is basically calculated 

because of 
∂ϕ

∂η
 can go down because of there is a negative sign right. 

So, essentially this kind of behavior is not encouraged in our finite volume especially when 

you have, when you are solving diffusion equation alone right. So, essentially this will 

lead to oscillations and this is the reason why boundedness is not guaranteed right because 

an increase in the value of ϕ𝑆𝐸 or ϕ𝑆 could lead to a value decrease in value of ϕ𝑃 at a next 

iteration right. So, this leads to oscillations and as a result the boundedness is property is 

not guaranteed. 



If you go back, all the coefficients we had before were all positive right. If you look at 

𝑎𝑃ϕ𝑃 = ∑  anbϕ𝑛𝑏 + 𝑏 all the anb’s were positive right, but that is not the case here which 

will lead to oscillations. So, that is the reason why we said boundedness is not guaranteed 

if you have secondary gradients; that means, if you have a non-orthogonal mesh, 

boundedness is not guaranteed ok, but then that is not so bad. 

(Refer Slide Time: 11:06) 

 

So, let us see what is the total value of the secondary gradient, it is not just 
∂ϕ

∂η
 right. So, 

essentially if we go right what is the secondary gradient value that is SG f equals minus Γ𝑓 

A𝑓 dot A𝑓 by A𝑓 dot 𝑒ξ; 𝑒ξ dot 𝑒η 
∂ϕ

∂η
 on the face east right, this is the total value of the 

secondary gradient that means, the magnitude of secondary gradient is proportional to so, 

whatever you calculate here times this guy times is proportional to 𝑒ξ dot 𝑒ξ right, this is 

the controlling factor which will contribute what percentage of the value of the secondary 

the 
∂ϕ

∂η
 goes into the second gradient right. 

So, for example, if you have an orthogonal mesh, this is of course, 0; that means, whatever 

you calculate does not go into the property at all, but if you have a non-orthogonal mesh, 

then if you have a good quality mesh, then this will still be very close to 0 let us say it is 

0.1 or 0.05 or something close to 0. As a result, the secondary gradients influence will be 

very small on the solution for good quality meshes ok. So, that is one reason why you 



should have a mesh that is as much orthogonal as possible in almost all the cells ok. So, 

that is one reason to avoid boundedness problems. 

Therefore, but anyway even if it is small, effect is small, the boundedness is not guaranteed 

because it depends on the quality of the mesh. So, it is not absolute. For example, in the 

context of orthogonal meshes, we said boundedness is always guaranteed right irrespective 

of the mesh I mean of course, the mesh is always orthogonal ok.  

So, but in the context of non-orthogonal meshes, boundedness is not guaranteed, but if you 

have a good quality mesh, the influence of second gradients is small as a result, you would 

not get very large oscillations in the solution ok. So, that is the influence of secondary 

gradient alright. So, that answers our first question, why boundedness is not guaranteed if 

you have a non-orthogonal mesh. 
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Let us move on to the second question that we wish to answer in this lecture today that is 

how do I program for diffusion equation on unstructured meshes? Well, of course, one 

way is to go about the way you are doing it right now I mean for structured measures that 

is basically again start off with the equation 𝑎𝑃ϕ𝑃 = ∑  anbϕ𝑛𝑏 + 𝑏 and write such an 

equation for each and every cell right.  

So, for each and every cell, you would write such an equation and then, you will go cell 

by cell. You will start from let us say cell 1 that you have and then, move on to cell 2, cell 



3 and so on and when you go to every cell, you would calculate what is a and b. Let us say 

cell 1 has four neighbors. 

You will calculate what is a 1, a 2, a 3, a 4 all these four neighbor’s and then, you would 

calculate what is 𝑎𝑃, you calculate what is b, the contributions coming from the source 

terms and then, you assemble this equation right numerically and then, once you have all 

the equations, you can use some method Gauss-Seidel or something and solve for it. 

But what we see is that this is not a very good way, or it is not an ideal way if you have to 

code up for an unstructured mesh ok. Why is it so? One is from the calculation perspective; 

the other is from the solution perspective ok. So, essentially from the point of view of the 

algorithm or what we have devised, it is better to do it in a different way rather than visiting 

each and every cell and also from the point of view of calculations, the number of 

calculations involved can also be reduced if you do it in a; in a different way ok. 

Now, essentially coming back to this question, how do I implement solution of diffusion 

equation unstructured measures, now in order to understand this, let us first take a look at 

a structured mesh ok. So, I am basically looking at a structured mesh that is one-

dimensional ok, but that is non-uniform, you can see the widths are all different for every 

cell. 

Now, what we see here on the top is the same mesh as what we see at the bottom ok. So, 

these are basically the same mesh. Only thing is that in the top row here, we are solving 

for the P cell that is this bigger cell 1 and in the bottom row here we are solving for this 

neighbor of this guy that is 2. This is our primary cell ok. 

So, that is what we are solving for and the deltas for these cells are Δ𝑥𝑃 and Δ𝑥𝐸, these are 

the widths of the cells and similarly when you are solving for P face, we have east and 

west and the neighbors are east and west for the P cell and of course, this cell is east to the 

east. So, we call it east-east and we are here for the second cell, this is basically the primary 

cell, then this is our east cell, this is our west cell and this is our west of west ok. So, we 

just change the nomenclature here, but it is the same mesh we are talking about in both of 

these things and then distance between the P cell and the E cell is Δ𝑥𝐸  ok. 

So, let us see if you are writing, if you are discretizing the cell 1, what is our 𝑎𝐸; what is 

our 𝑎𝐸? 𝑎𝐸 is nothing, but 
Γ𝑒Δ𝑦

δ𝑥𝑒
 right. So, that is Γ𝑒 on the face and Δ𝑦 this height and δ𝑥𝑒 



is this distance ok. Now, when you; when you are done with cell 1, when you go to cell 2, 

what would be the coefficient for a west? 𝑎𝑊 would be Γ𝑤 that is on this particular face Δ𝑦 

this height times δ𝑥𝑤 that is this width. 

Now, what we see is that this is we are just calling with a different name, but the numerical 

values of these are same as what we have before because we are referring to the same face 

right. So, essentially, 𝑎𝑊 is nothing, but same as 
Γ𝑒Δ𝑦

δ𝑥𝑒
 right. It is basically the same face, 

same distance, same gamma we are referring to, but it is now going into the coefficient for 

west coefficient for the next cell right so; that means, we are actually duplicating these 

calculations because we are doing using the same numbers, calculating the same fraction 

and then doing it twice.  

Once when we are at cell 1 and we are calling it an a east and second one when we are at 

cell 2 and we are calling it a west so, we do not have to do this thing. If I can do it once 

for the face and kind of send this contribution to the neighboring cells, then I can actually 

save one multiplication and one division here right which are extra which need not be done 

that will certainly speed up the calculation. 

And also, there is another way to look at this thing. This is basically what we are saying is 

that this these coefficients have come out to be the same because of some under ruling 

principle. What is the principle? Basically, the conservation of fluxes right whatever is the 

flux that is leaving here is entering this cell that is why these coefficients have come out 

to be same right because your gamma grad phi on the face is basically leaving from cell 1 

and we it is entering cell 2, that is why it is the same flux that left cell 1 entering cell two 

and as a result, the coefficients are the same ok. 

So, what we just looked at is basically both the cells have the same contribution ah. So, 

instead of calling them with east and west, we could have defined 𝑎𝑓 which is basically 

calculate 
Γ𝑒Δ𝑦

δ𝑥𝑒
 and the same a f can be given contributed to as a east for cell 1 and a west 

for cell 2 right we could have done that, that is essentially what we plan to do or what we 

do for unstructured meshes ok. So, once I think this part is clear, the remaining things are 

straight forward ok. 
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So, let us move on. So, what this kind of discussion suggests is that we can associate the 

coefficients with the faces rather than with the cells right. Instead of calling 𝑎𝐸 and𝑎𝑊 to 

belong to the cells, we can say that these actually belong to the faces right, the common 

face defines what will be the coefficient for east and what will be the coefficient for west. 

Now, let us look at the discrete equation. So, in the derivations, we got this discrete 

equation which is sigma f, (Γ∇ϕ)𝑓 plus (𝑆C + SPϕP)Δ𝑉 equal to 0 right. So, this is the flux 

right that we got. So, for any face, the flux Γ∇ϕ is leaving the cell P and entering the cell 

east right that is what we have, it is basically conservation of fluxes times the source term 

is balanced right that is the conservation statement. 

Now, instead of if you have instead of having a structured mesh, if you have an 

unstructured mesh, then Γ∇ϕ for a particular face is leaving the cell 𝐶0 and it is entering 

the cell 𝐶1 right or it is leaving the cell 𝐶0 and it is entering the cell 𝐶2 right some other cell 

and so on ok. Now, this is because of the statement of conservation right. Because the 

same flux is whatever is leaving cell 0 is entering cell 𝐶1.  

Now, associating the fluxes with faces right rather than with the cells requires of course, 

this requires you to maintain a list of your faces; that means, you need to have a face-based 

data-structure. Let us say up till now, you only had a cell based data structure. For example, 

you had I have 10 cells so, I will call my a east with a east of 10 in which your 0, 1, 2 all 

these things led to different cells.  



Now, you would call them as faces as well right, you need to maintain a face based data 

structure; that means, you need to know what is the faces you have and which faces have 

what cell neighbors right for example, face f has some cell neighbor 𝐶0 and cell 𝐶1, next 

face f 2 has cell 𝐶0 and cell 𝐶2 and so on right. So, that connected information you need to 

know when you are dealing with unstructured measures ok. Let us say we know that from 

some mesh generation software or whatever you write ok. 

Now, of course, this method of associating the coefficients to the faces rather than to the 

cells saves us from multiple calculations of the same quantity right because this gamma 

grad phi that we calculate for one face is basically going into two different cells ok. So, 

that way we can say computation that let us say per cell we can you save maybe in this 

context we can save like two, one multiplication and one division essentially, two floating 

point operations.  

Of course, it is it depends on if it is unstructured you have more terms here to evaluate as 

well and also it is prone to lesser errors because now you have the same flux that you 

calculate is going into both of them. So, it is kind of probably less error alright. 
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So, with this motivation now, let us look at what how do you calculate the a neighbor ok. 

So, a neighbor is basically, if you have a structured mesh that is as shown in equation 4, 

anb equals 
Γ𝑓A𝑓

δ𝑥𝑓
 that we have already seen. But, if you have an unstructured mesh, what 



will be your anb? anb is basically coming from your primary gradient coefficient right, 

from the primary gradient term that is anb equals 
Γ𝑓

Δξ

𝐴𝑓⋅𝐴𝑓

𝐴𝑓⋅𝑒ξ
 right that is your primary gradient 

coefficient that is anb ok. 

Now, we can of course, calculate anb for a face f that is between cell 𝐶0 and 𝐶1 right just 

like we have calculated for cell P and cell east, we can calculate this for a particular face 

because when I am in a particular face, I know what is gamma on the face, I know what is 

Δξ the distance between 𝐶0 and 𝐶1, I know what is Af
⃗⃗  ⃗ and 𝑒ξ. 

Now, once I know all of these things, I can calculate what is anb. Now, this anb contribution 

has to be given to both the cells that share the face right. So, these cells 𝐶0 and 𝐶1 share the 

face. So, this anb I calculated up in equation 5 here, I would simply assign it to the anb of 

𝐶0 cell and also I will assign it to anb of 𝐶1 cell right. So, essentially, these two are different, 

this is anb for 𝐶0 cell and this is anb for 𝐶1 cell ok.  

Now, see we are we are not going cell by cell, we are going by face and we are accessing 

cells from the faces right that is what we are doing ok that is so far so good. So, we found 

a way how to do this thing. 
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Now, let us say we have an unstructured mesh that is shown on the left hand side here 

something like this where 𝐶0 is the primary cell we are focusing on and then, we have these 

three faces that is f1, f2, f3 and which share cells 𝐶1, 𝐶2, 𝐶3 ok. So, that means, when I 



calculate a f1, I need to add, assign that value to anb for 𝐶0 and anb for 𝐶1, anb we mean 

anb for 𝐶0 to 𝐶1 and anb for 𝐶1 we mean 𝐶1 to C 0 right. 

For example, this anb can be a 01 right that is basically coefficient of the 0 for one cell 

right. Similarly, this can be a 10 this could be coefficient of one, 1st cell to the 0th cell 

right. So, that is anb for 𝐶1. We will assign this for both the cells. Similarly, when we go 

to the next face f 2, we calculate what is a f2 from the original expression that is 
Γ𝑓

Δξ

𝐴𝑓⋅𝐴𝑓

𝐴𝑓⋅𝑒ξ
 

and then, assign it to anb for 𝐶0 and anb for this is; this is for anb for 𝐶2, this also should 

read 𝐶2 not 𝐶1 alright. 

Now, what we see here is that the magnitude and sign of anb is the same for both the cells 

right. f1 we are not changing anything; we are assigning the same value to both 𝐶0 and 𝐶1. 

Similarly, whatever you calculate for a f2, we are assigning it to 𝐶0 and 𝐶2 right we are not 

changing why is this? 

Why is this? Actually, this is happening because although we calculate from anb from this 

cell, when we go here there are some things certain things that are changed right for 

example, you’re a f now points this way and so on. So, this contribution is the same for 

both cells because if we look at let us say two triangles in isolation that is on the next page 

here ok. 
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So, here we have 𝐶0 cell, 𝐶1 cell and when you have and the black lines here indicate the 

black arrows indicate the entire nomenclature Af
⃗⃗  ⃗, 𝑒ξ, 𝑒η with respect to 𝐶0 cell that is also 

shown in black and blue lines indicate Af
⃗⃗  ⃗, 𝑒η, 𝑒ξ with respect to 𝐶1 cell. So, how would you 

draw this when you are on, when you consider 𝐶1 as your primary cell and how will you 

draw this when you consider 𝐶0 as your primary cell ok. So, that is what is black and blue 

lines indicate. 

Now, we are calculating anb from that is basically we are calculating 𝐴𝑓 when we are 

sitting on 𝐶0 right with respect to 𝐶0 because let us assume that we are calculating with 

respect to 𝐶0; that means, our 𝑒ξ points in this direction, the black direction and 𝐴𝑓 points 

in this direction and then we calculate some a nb. Now, that anb we are saying is the same 

as the anb you would calculate, when you are sitting on 𝐶1 and you calculate from f. 

Because when you calculate from 𝐶1 perspective from this f, 𝐴𝑓 actually points this way 

and your 𝑒ξ now points this way right, but this would come out to be the same because if 

you go back to this calculation, what is the primary gradient contain anb contain? Γ𝑓, this 

is the same for both the cells whether you sit on 𝐶0 and 𝐶1, Δξ is the same, what about Af
⃗⃗  ⃗ 

dot Af
⃗⃗  ⃗? Af

⃗⃗  ⃗ dot Af
⃗⃗  ⃗ although it is changing direction right from black to blue, but this 

magnitude is always the same because the squared quantity. 

Now, what about Af
⃗⃗  ⃗ dot 𝑒ξ? Af

⃗⃗  ⃗ dot e xi is something that we have to look at. Af
⃗⃗  ⃗dot 𝑒ξ, when 

you calculate from 𝐶0 is basically pointing this way and 𝑒ξ pointing this way right. So, 

there is some acute angle between them now when you switch to 𝐶1 what would this be? 

This would be Af
⃗⃗  ⃗ is pointing this way and 𝑒ξ is pointing this way. So, both of them flip 

their sign as a result and they maintain the same angle right. 

As a result, Af
⃗⃗  ⃗ the dot product of Af

⃗⃗  ⃗ and 𝑒ξ would come out to be the same and as a result, 

whatever we calculate on the face with respect to either cell would be the same contribution 

for both the cells right that is basically anb would be the same whether you are sitting on 

𝐶0 and calculating it on 𝐶1 and calculating it. 

Because Af
⃗⃗  ⃗ dot 𝑒ξ both the vectors change sign and as a result, this will come out to be the 

same that is something you have to verify once again alright. So, because both Af
⃗⃗  ⃗ and 𝑒ξ 



reverse directions, when we move from 𝐶1 to 𝐶0 this quantity a nb would remain the same 

whether you calculate from 𝐶0 side or 𝐶1 side for the face f. 

Now, what now what we need to do? We need to of course, visit each and every face in 

this fashion. Once you visit each and every face in this fashion, when you finish visiting 

all the faces that completes the calculation of anb for all the cells. For example, this cell 

has one 𝑎𝑃 that is a 0 and it has three neighbors so, they will have a 01, a 02, a 03 right 

three neighbors, but three neighbors will be populated when you have already visited f1, 

f2 and f3 right. Similarly, once you; once you visit all the faces, then for every cell their 

neighbor coefficients would be have been filled already right by the time you finish, you 

have filled all the neighbor coefficients for all the cells right. 

Do you see the difference? If in the original cell centered or cell-based approach you would 

go to every cell and populate the neighboring coefficients for every cell. But in this case, 

you are visiting faces and populating in pairs the neighbor coefficients for those cells 

which are shared, which are sharing that face right. So, the pattern is different, but once 

you finish all the visiting all the faces, you have already assigned all these cell neighboring 

coefficients ok. This is faster, do you see why?  

This is faster because you are not calculating again for every cell and also you are assigning 

both of them at once right rather than going here and calculating three and coming here 

and calculating three, you are going here and assigning two of them right. So, by the time 

you finish three faces, you actually assigned 6 coefficients right fine alright. Then, let us 

move on. 
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So, this is about the primary gradient right, we are talking about in a non-orthogonal mesh 

then, you also have the secondary gradient coming into play right because we said 

implementation on unstructured meshes, you have gamma grad phi can be written as some 

coefficient times 
∂ϕ

∂ξ
 plus some coefficient times 

∂ϕ

∂η
 right. So, you have these two. So, we 

have already looked at how to deal with 
∂ϕ

∂ξ
. 

Now, what about the secondary gradient? Now, how do you calculate this term for the 

cells? Of course, you can go to again every cell and calculate, but that is not the motivation, 

we want to calculate from the face-based data-structure because SG is also associated with 

the face between the cells because that is why we write secondary gradient sub f right. So, 

this is also associated with the face. So, it would save us computational time if you can 

calculate it once and assign it to both the cells that share the face ok. 

So, where does the; where does the secondary gradient term go in the equations? So, we 

know the second integration is minus Γ𝑓 𝐴𝑓 dot 𝐴𝑓 by 𝐴𝑓 dot 𝑒ξ dot 𝑒η 
∂ϕ

∂η
|
𝑓
. 
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Now, why does the secondary gradient term go? Does it go into the matrix a? No, it does 

not. It goes into the right-hand side right that is the b term; it goes into the b term fine ok. 

So, SG f goes to the b term; that means, the b term also contains not only the secondary 

gradient term, but also other quantities.  

What are the other quantities that the b terms for the cells contain? They contain the source 

term as c times delta v of course, and also, they also contain some contribution from the 

any Dirichlet boundary conditions if you have right. So, those also will go into the b term. 

So, as a result, we cannot simply assign the secondary gradient into the b term of any cell 

rather we have to add to the existing b value ok. 

Therefore, instead of assigning, add to the existing value because the b term already 

contain some values from the boundary conditions, from the source terms and so on so, 

you cannot overwrite it with only the secondary gradient term ok. So, as a result, I would 

calculate what is the secondary gradient term for a particular face and I would add that 

contribution to the 𝐶0 cell, I will add b equals b the existing value of let us say source terms 

Dirichlet boundary conditions and so on plus second gradient. For cell 1, I would subtract 

the second gradient from whatever I have calculated for the particular face while sitting 

on cell 0. 

Why do I subtract it here? Why not add it just like the primary gradient? Ok. So, this is 

again goes back to the figure ok, we have this figure where the black lines are all 



definitions for Af
⃗⃗  ⃗, Af

⃗⃗  ⃗, 𝑒η for 𝐶0 cell and the blue lines are the definitions when you are 

sitting on the 𝐶1 cell. Now, what is the, we are only calculating let us say from one cell and 

then, we are trying to assign it for both the cells right that is the issue here. 

Now, one thing we have to keep in mind is that we are keeping the a 𝑒η direction the same 

for both the cells ok. I am assuming that 𝑒η is the same direction as we have had before 

this is one assumption we are doing. Now, what about the secondary gradient term?  

So, gamma f does not change for the cells whether you are sitting on 𝐶0 or 𝐶1 you calculate 

this is the same, Af
⃗⃗  ⃗ dot Af

⃗⃗  ⃗ does not change the same thing, what about Af
⃗⃗  ⃗ dot 𝑒ξ? Af

⃗⃗  ⃗ dot 𝑒ξ 

dot both of them change signs so, as a result, there is no problem so, this entire thing 

remains the same that is why, our primary gradient was coming out to be plus sign for both 

of them. 

But what about 𝑒ξ dot 𝑒η? What about this quantity? This we have to see. What about 
∂ϕ

∂η
? 

This quantity would remain the same right. You would calculate from ϕa and ϕb and 

calculate the gradient; this is the same for whether you calculate from a cell or from b cell 

ok.  

What about 𝑒ξ dot 𝑒η? So, 𝑒ξ dot 𝑒η, when you are calculating from 𝐶0 side for the face f, 

𝑒ξ is pointing this way, 𝑒η is this way whereas if you have let us say gone to the next cell 

and try to calculate secondary gradient for this space, then 𝑒ξ would point in this direction 

and 𝑒η would still point in the same old direction right because we are assuming that it 

points in this section. 

As a result, what happened to the angle? Earlier, 𝑒ξ dot 𝑒η had this angle here some acute 

angle, now 𝑒ξ it is on my obtuse angle and then, now, 𝑒ξ dot 𝑒η has this angle right. So, 

there is a change in angle here by 180 here. So, as a result, 𝑒ξ dot 𝑒η would change sign 

when you go from 𝐶0 to 𝐶1 because of the assumption that 𝑒η is still pointing in the same 

direction ok. So, as a result, you have to add it to the b 0 cell and subtract it from the b 1 

cell right. Is this clear? 

So, when you move, we are trying to calculate f from one cell and assign it to the both 

cells right. So, as a result, all these terms will remain the same except for 𝑒ξ dot 𝑒η ok, 𝑒ξ 

dot 𝑒η is flipping because 𝑒ξ is flipping, but 𝑒η is not. As a result, 𝑒ξ dot 𝑒η would give you 



a sign change which needs to be accommodated in the calculation. So, because SG f is 

calculated from 𝐶0’s perspective, that is why we are subtracting it off here right.  

Of course, if you calculate again go back to 𝐶1 and calculate then this will be plus only 

right that we are not doing here ok. So, that means, the primary gradient can be directly 

assigned, but the secondary ingredient has to be added to one cell, the b term of one cell 

and subtract it from the b term of the other cell ok. So, that is what we kind of discussed 

till now fine. 
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Then, what we assume is that through the grid generation software or through the cells we 

create, we have a list of faces in the mesh that we have generated. That means, we know 

either through an array or through a linked list, what are the faces we have in the mesh.  

Now, the cell neighbors for these faces are also maintained. For example, you go to your 

particular face, you know who are your cells 𝐶0, 𝐶1 and go to another cell, you know is 

your 𝐶0, 𝐶2 and so on. So, and also, we have a list of cells in the mesh ok; that means, 

either through an array or a linked list, we maintain list of cells. Now, these cells are 

formed because of the faces. So, we can go from cells to faces and faces to cells in terms 

of the connectivity fine alright. 

So, having given that we know all these three that we have, then how do we approach in 

writing a solution algorithm for unstructured measures? Essentially, you visit all the faces 



and when you visit every face in the mesh, you calculate what is anb, what is b for the cells 

right and then, assign it to anb for both the cells. And, b once you calculate what is second 

gradient, you assign it to one cell, add it to one cell, subtract it from the other cell and keep 

doing this.  

Once you finish all the visiting all the faces, you have got a nb calculated for all the cells 

and b the contribution of secondary gradient is also added for all the cells right that is done. 

Then, what we do is we will not visit then, we will not go to the faces, we will go to a list 

of cells. So, we visit each cell, and we calculate aP ok. How do when I calculate anP?  

Now, every cell got anb is populated. So, I can go simply sum all the anb’s that cell has 

and that summation minus SP times Δ𝑉0 will give me what is aP right. Of course this has 

to be modified if you have a boundary condition, a cell that is near the boundary. Because 

your contributions would change right because you would have if it is a Dirichlet, you 

would get an extra quantity here and so on that has to be done, we are talking about an 

interior cell in this particular context alright. 

Now, then visit each cell and calculate the contribution of 𝑆C and add it to the b term right. 

The b term now already contains the secondary gradient component. Now, add 𝑆C times 

Δ𝑉0 to the b for every cell ok. Now, we are going cell by cell. So, when we visited the 

faces, we populated the anb’s and b’s and then, when we are going by cells, we are 

calculating what is aP and what is updating b for every cell right alright. So, till now, there 

is no duplicacy as this right, we are doing everything once and then using it as much as 

possible. 

Now, of course, the second gradient f needs to needs gradient calculations and ∇ϕ at cell 

centroids these were somehow already calculated before we go to this step right. Because, 

you already know what is your calculate, what is ∇ϕ before this step and then using ∇ϕ, 

you have calculated what is SG f and then you populated anb and b and so on right.  

Now, of course, these equations have to be modified, if you have to incorporate the 

boundary cells right, if you have be incorporate the Dirichlet boundary condition or 

Neumann boundary condition, these have to be changed. I think that we understand fine. 

So, that is the overall algorithm. 
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Let us look at the complete algorithm as it stands for solving diffusion equation on an 

unstructured non-orthogonal mesh ok. So, what do we do? Initially, we start off with phi 

at the cell centroids right that is the 1st step because if you want to use a an iterative based 

method, you guess what is phi at the cell centroids and also at the face centroids where 

you have to apply a Neumann boundary condition right or a mixed boundary condition. 

So, an 1st step is to guess phi at the cell centroids. 

Now, the 2nd step is basically calculate a gradient of the phi. Why do we do this thing uh? 

Because we need this in the secondary gradients, we need this in all other terms that might 

go into b right. So, using either gradient theorem or using least squares method, you 

calculate what is ∇ϕ so, once you with the initial guess that you have alright. Then, we 

calculate all the coefficients.  

So, for calculating the coefficients, we first traverse through the faces. So, we have a list 

of faces. So, if I use f face here as my index i, so, I am going from face 1, 2, 3 and so on 

to n faces which is basically the total number of faces I have in a particular mesh ok. So, 

that is what we do, we traverse through the faces one by one. 

And when we are at the face f, we calculate anb that is we calculate 𝐴𝑓 and assign it to 

both the cells 𝐶0 and 𝐶1 as it is, then you calculate what is secondary gradient and you add 

it to the 𝐶0 cell that is b0 and you subtract it from the b1 cell, b1 equals b1 minus second 

ingredient of f, b0 equals b0 plus secondary gradient of f. So, we do this thing this is 



basically calculating the coefficients and filling them right that is done. Then, we are done 

visiting all the faces. 

(Refer Slide Time: 43:22) 

 

What we do next? Next is to look at cells right. So, we go to each and every cell right, 

traverse through the cells for cell is my index here some kind of i or j 1, 2, 3 and so on so, 

cell go from first cell, second cell, third cell and all the way to n cells that you have and 

your here is where we are calculating the central coefficient that is 𝑎𝑃, 𝑎𝑃 equals sigma anb 

which were already populated in a visit to the cells through the faces minus SP times Δ𝑉 

right this is basically the source term that is going into 𝑎𝑃. 

Now, of course, we have to also add the b term that is b plus 𝑆C Δ𝑉 right this is what we 

do for the b term and 𝑎𝑃 term, when we are visiting cells alright; that means, now in a way 

by calculating anb, b and 𝑎𝑃, we have actually formed this equation in a virtual manner 

right. 

We have nowhere written this equation as it is, but we have updated these values; that 

means, we have this everything that we want in this particular equation to be solved right 

that means we have 𝑎𝑃ϕ𝑃 = ∑  anbϕ𝑛𝑏 + 𝑏 all the coefficients are non known and also the 

phi and b’s are known from the guess values.  



So, we are now ready to solve this equation for ϕ𝑃 for every cell ah for this particular 

iteration right. Essentially, we can use Gauss-Seidel or Gauss-Seidel successive or 

relaxation or under relaxation and then, calculate what is ϕ𝑃 for the entire cells right. 

Now, once you do that, you check for convergence. Check for convergence meaning you 

have two convergences especially, here you converge everything, you solve for ϕ𝑃 not 

changing between iterations now, that ϕ𝑃 you check it with the whatever is the guest value 

in step 7 right.  

Now, this of course, would not be the same so, it would so, although the Gauss-Seidel has 

converged this would be different because the guess value will be different from this 

converged value, then if it is not the same then you go back to step 2 right, step 2 is what? 

Then, with the new values that you got for phi, you calculate ∇ϕ and then, follow down 

the same process and then again solve for Gauss-Seidel, obtain new phi values at all the 

cell centroids and move on ok. 

Now, you see here there are two iterations what we call as inner iterations which are 

basically for solution of the Gauss-Seidel right. This is let us say some 1000 iterations, 

these are all the inner iterations. Now, once you come out, you are doing this if not go to 

step 2, this is basically the outer iteration right which is basically telling you that you have 

to keep doing this for several iterations until you converge to some value. Now, we are 

talking about a steady diffusion equation only right.  

But we still have two iterations that is because we are using an iterative method for the 

solution. The other one is because we have a non-orthogonal mesh. Now, these outer 

iterations are required; are required if you have non-linearity in your problem right. If you 

have non-linearity, you need these order iterations anyway that is one particular case. If 

you have a linear problem and if you have a orthogonal mesh, then you do not have to 

have this outer iterations right because everything you are solving for is correct.  

But if you have still a linear problem, but if you have a non-orthogonal mesh, then you 

still have to have outer iterations because the secondary gradients are calculated in a 

deferred correction method right, we are calculating the secondary gradients the ∇ϕ is 

calculated with the guess value. So, as a result, even if you have a linear problem, if you 

have a non-orthogonal mesh then you would still require outer iterations ok. 



But if you have a linear problem on an orthogonal mesh, then you do not need the outer 

iterations is that clear need for the outer iterations. So, the need for the outer iterations is 

even for steady state problems either non-linearity or non-orthogonality would demand the 

outer iterations fine alright. So, that is how you would code a diffusion equation on an 

unstructured mesh that is either orthogonal or a non-orthogonal ok. So, this could be a 

good method to implement yeah so, for your project maybe let us see. 
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So, concluding remarks are basically in this lecture, we learned about how secondary 

gradients create unboundedness and then, how do you program for diffusion equation on 

general unstructured meshes using a face-based and a cell-based data-structure approach 

ok.  

So, we have answered these two questions in today‘s lecture alright and this kind of 

finishes our chapter 3 on the diffusion equation ok. So, we have discussed all the 

structured, unstructured meshes, steady, unsteady diffusion equation and we have looked 

at the stability and the accuracy all these things for the diffusion equation alone ok. 

So, in the next lecture, we are going to look at, we are going to start the next chapter that 

is chapter 4 that is for convection, convection and convection diffusion. So, that will be 

our discussion for next lecture alright. So, I am going to stop here, thank you. If you have 

questions write back to me, we will, we can discuss them ok. 



Thank you. 


