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Good morning. Let us get started. So, today we are going to discuss about the gradient 

calculation right because in the last lectures we saw that calculation of secondary gradient 

would actually mean that calculation of a face gradient right, that is what we kind of 

reduced in the last class. 
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So, calculation of secondary gradient on the faces was reduced to the calculation of 

gradient of the scalar on the face right in the ξ direction right. So, this is a gradient on the 

face in the face normal direction that is what we wanted to calculate. If we can calculate 

this then the secondary gradient can be evaluated accordingly right. 

So, today we are going to look at gradient calculation. So, one of the reasons to calculate 

gradients is of course, the it is requirement in the calculation of secondary gradient ok. So, 

secondary gradient calculation requires the gradients of the dependent variable on the 

faces, right. There are several other instances where the gradients of the dependent variable 

are required. 



And, those are for example, let us say if we have if you are solving for complete Navier–

Stokes equations right. Then we have we need to calculate what is the pressure gradient 

right. So, in the calculation of Navier–Stokes equations we have the pressure gradient term 

which is needs to be calculated.  

Now, we also note that it is not just the gradient in the direction of the face that is required, 

but rather the gradient in all the directions right all the components of the gradient are 

required here all the i, j, k components are required not just in the direction of the face as 

is required by the secondary gradient ok. 

Further let us say if you have a non-Newtonian model for your viscosity. So, if you have 

a non-Newtonian model for your viscosity, then we again would need gradients of 

velocities right because your gradients of velocities are required in the non-Newtonian 

coefficients that have to be calculated. So, as a result we need to calculate what are the 

gradients of the velocity right. Here u would be your phi right is required. Similarly, if you 

have let us say if you are solving for turbulent flows. 

(Refer Slide Time: 03:02) 

 

Let us say if we have a statistical models and let us say something like a Reynolds-

averaged Navier–Stokes model something like a K epsilon model or something like that 

then the production terms in these turbulence models would also require the calculation of 

the gradients ok. So, the gradient of the velocity vectors are required in evaluating the 

production terms of the RANS models.  



And, further let us say if you have a large eddy simulation model something like a 

Smagorinsky model or so, then the sub grid scale stresses that we get that is the τ𝑖𝑗 the sub 

grid scale τ𝑖𝑗 superscript SGS would also require the filtered velocity gradients ok. So, 

which are the basically the dependent variables that, we are solving for ok. So, we would 

need gradients in any one of these instances or in all of these instances ok. 

So, as a result we need to kind of seek a particular way or a method of calculating the 

gradients for the dependent variable ok. So, that is the motivation to kind of come up with 

a method that can calculate the gradients of the dependent variables.  

So, there are several methods of course, to calculate the gradients, but we will only look 

at couple of standard methods and this is an ongoing area of research. So, they you will 

see research articles coming in with new methods to calculate the gradients which are more 

accurate and so on ok. 

So, we will only look at 2 standard ways of calculating the gradient. The 1st one is the 

gradient theorem approach. This is also known as the Green–Gauss method and the other 

one we will look at is known as the least squares method or the least squares approach. 

These are 2 standard gradient calculation methods that are also available if you use any 

simulation software as well ok, fine. 
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Let us look at the gradient theorem approach or the Green–Gauss method ok. So, in this 

we kind of invoke the gradient theorem to calculate the gradient of the dependent variable 

phi ok. So, we have already seen the Gauss divergence theorem right in which we 

converted a volume integral into a surface integral for if you have a volume integral in the 

form of divergence of a vector right, then you could convert into a surface integral right. 

But, gradient theorem is something different right. Gradient theorem is for gradient of a 

scalar integrated on a on a closed volume right let us say. So, we are considering a closed 

volume right that is enclosed by surfaces ok. These surfaces are enclosed it completely 

close the volume ok, there are no openings. 

So, we consider a cell of to be of the same have to have the same property then if we have 

a closed volume Δ𝑉0 what would the gradient theorem say or the Green–Gauss theorem 

say. So, we have a Δ𝑉0 volume right, in this volume we want to calculate gradient of a 

scalar; ϕ is my scalar and dV would be the differential volume right. What would gradient 

theorem relate this gradient of the scalar to the surface integral as? 

So, up till now we saw what is ∇ ⋅ ϕ⃗⃗  right if we had ∇ ⋅ ϕ⃗⃗  we wrote it as ϕ⃗⃗ ⋅ 𝑑𝐴⃗⃗⃗⃗  ⃗ right or ∇ ⋅ ϕ⃗⃗  

right some kind of vector, right, in the Gauss divergence theorem.  

But, now we are talking about gradient theorem right where ϕ is a scalar and the gradient 

of the scalar is what we are calculating in the volume of the cell right that is Δ𝑉0, what 

would this be related to? This would be can be converted also into a surface integral right 

integration on the area integral over the control surface, what would be the quantity here? 

ϕ𝑑𝐴⃗⃗ ⃗⃗  , is that correct? Is it correct dimensionally? What is on the left hand side? 

Student: (Refer Time: 08:21). 

You get a vector, right? Gradient of a scalar, what is on the right hand side? Right it is also 

a vector. You are adding the phi on essentially on the all the areas right ok. You are 

summing it up alright, now. If I assume that the gradient of the dependent variable phi is 

a constant in the entire cell, right. I am essentially making a mean value approximation.  

So, essentially this is the gradient theorem which relates gradient of a scalar integrate over 

the entire volume to be equal to some of the scalar multiplied by all the vector differential 

areas on the entire surface right, that is what the theorem says. Now, if I use a mean value 



approximation and say that the ∇ϕ at the cell centroid is a representative of the entire cell, 

right and ∇ϕ remains a constant inside the particular cell that we are talking about ok. 

Then I can how do then can I rewrite this integral into something else? Can I evaluate this 

integral? ∇ϕ is constant wherever you go in the cell then what would be this integral? 

Student: ∇ϕ. 

∇ϕ times. 

Student: (Refer Time: 09:40). 

Δ𝑉0, right. So, this would be ∇ϕ times Δ𝑉0 and this is ∇ϕ0, right essentially that is for the 

cell equals. Again if I use a mean value approximation right for the phi on the faces right 

let us say my control surface is made up of several areas several faces and all these faces 

are planar faces. 

And, the value of the face of the phi on the face is basically taken as the face centroid value 

right if I do that can I replace this integral into a summation? Right this will be a summation 

sigma f right and what would be this?  

This would be ϕAf
⃗⃗  ⃗, right. This is ϕAf

⃗⃗  ⃗ summation f right here actually this control surface 

integration has 2 components one is integration over the little area other is sum of all these 

areas right for the ϕ times Af
⃗⃗  ⃗ ok. So, this is the discrete form of the gradient theorem.  

Now, do you see why it is useful to calculate why is this a method to calculate the 

gradients? You will see it right away because what are the inputs for this? 

Student: ϕ. 

ϕ is the input right which we already know from the previous iteration value or the current 

iterate value. Do we know Af
⃗⃗  ⃗? 

Student: Yes. 
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We know areas; what about the cell volumes? We know and what do we need to calculate? 

∇ϕ right, we just need to calculate this ∇ϕ of 0, right at the cell centroid that is as simple 

as that. Of course, we do not know phi exactly on the faces right that is one thing we do 

not know because phi is only stored at where? 

Student: Cell centroid. 

At the cell centroid. So, we need to kind of devise a way of calculating ϕ interpolate it to 

the faces from the cell values that we need to do ok. 

(Refer Slide Time: 11:34) 

 



But, if I rearrange this equation we can say grad phi for any cell can be calculated as 1 by 

Δ𝑉0 summation f, ϕfAf
⃗⃗  ⃗ bar ok. Of course, we need to come up with an interpolation scheme 

to evaluate ϕf from the ϕ0 and ϕ1 values.  

So, let me begin with a crude approximation ok. Let me assume that I would calculate my 

ϕf as an arithmetic average of the ϕ0 and ϕ1 values ok. Now, this is not correct, right. 

This is only correct if you have. 

Student: (Refer Time: 12:15). 

Uniform cells. If you do not have uniform cells this has to be replaced with a. 

Student: (Refer Time: 12:20). 

A linear interpolation right, need not be harmonic mean. It can be it mean it is not 

arithmetic mean, it will be a linear interpolation. You need to get a factor f right which is 

basically the distance between the face and the cell centroid p and 1 minus f and so on, 

right. So, as of now I am assuming that it is just an arithmetic mean of the cell values we 

know that this is not correct if you have non uniform meshes ok. 

But, what we will do is we will try to improve this phi f little later in a different way ok. 

So, this is. So, I assume ϕf to be the cell centroid values average and now can I use this ϕf 

values in the equation above and calculate the gradients? Of course, I can calculate, right. 

If I do that then I am going to get ∇ϕ at every cell that I have right. 

So, if I have a cell bounded by 5 faces this will be summation of the ϕfAf
⃗⃗  ⃗ on all the 5 faces 

right divided by the volume that will give me gradient and so on right. Then this way I can 

calculate what is the gradient of the dependent variable ϕ. Of course, we know that this is 

not quite correct, right. 

So, what we do is we try to improve this by saying that if you look at the cells let me draw 

typical cell here. So, this is the face centroid let us say, this is the face centroid and this is 

the cell centroid. So, we are talking about C0 and this is the face f this is our Af
⃗⃗  ⃗ and this is 

my C1 right, that is what I have and this is the face centroid ok. So, and these distances are 

not the same ok. 



So, then what I would do is I would say I would draw a line connecting the cell centroid 

C0 to the face centroid I would call it as Δ𝑟0
⃗⃗ ⃗⃗⃗⃗ , and I would call connect the cell centroid to 

the face centroid I would call it as Δ𝑟1
⃗⃗ ⃗⃗⃗⃗  ok. These are 2 vectors that connect the cell centroids 

to the face centroids which can be done ok. 

Now, can I use Taylor series expansion not in just 1D, but a general Taylor series and 

relate what is the value of ϕ1 from ϕ0 right. If it were a 1D we know that how to do it 

right essentially ϕe is ϕe was writ10 as how much ϕP or something right plus we wrote 

how.  
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We wrote it as 
∂ϕ

∂x
|
𝑃
 at p right times Δ𝑥 right and so on, right. We could do it in a 1D 

expression or we had used 𝑥 − 𝑥𝑃 right, if it were not the east face ok. 

Similarly, can I use now I cannot use 1D because this is connecting Δ𝑟0
⃗⃗ ⃗⃗⃗⃗  right which is a 

particular vector. So, can we use a general Taylor series and relate what is ϕf or evaluate 

what is ϕf purely from ϕ0 values. So, I want to reconstruct phi on the faces from ϕ0, can 

I do that? Of course, we can do it right. So, we just expand this thing. 

So, this will be in a similar sense ϕ0 plus what would this be? It should be ∇ϕ0 dotted with 

Δ𝑟0
⃗⃗ ⃗⃗⃗⃗ , is that correct? Essentially we get terms like 

∂ϕ

∂x
|
𝑃
 times Δ𝑥 plus 

∂ϕ

∂y
|
𝑃
 times Δ𝑦 plus 



∂ϕ

∂z
|
𝑃
 times Δ𝑧 if it were 3D, right essentially that will be the dot product of the Δ𝑟⃗⃗⃗⃗  with the 

3-dimensional gradient ok.  

Of course, if you want to do it a higher order terms you would have ∇2ϕ0 and so on right 

which we are not writing here, fine ok. Then can we do the same thing can we reconstruct 

the ϕf from ϕ1? Yes.  

Student: (Refer Time: 16:40). 

We can do that ok. So, what will that be? That would be ϕf equals ϕ1 plus ∇ϕ1 dotted with 

Δ𝑟1
⃗⃗ ⃗⃗⃗⃗  plus higher order terms, is that correct? My I have chosen Δ𝑟0

⃗⃗ ⃗⃗⃗⃗ , Δ𝑟1
⃗⃗ ⃗⃗⃗⃗  to always point to 

the phase centroid from the cell centroids ok. So, we do not have any confusion now can 

I now I have just computed what is ∇ϕ at each and every cell right that is grad phi 0 is 

calculated, ∇ϕ1 is calculated. These are known, right. 

And, the these vectors are also known from the mesh that we have created. Do we know 

the guess values for ϕ0, ϕ1? We know these things right. So, now, can I calculate what is 

my improved value on the face as an average of these two? Right ok. So, that means, I can 

calculate my improved  ϕf as  ϕ0 plus ∇ϕ0 dotted with Δ𝑟0
⃗⃗ ⃗⃗⃗⃗  plus  ϕ1 plus ∇ϕ1 dotted with 

Δ𝑟0
⃗⃗ ⃗⃗⃗⃗  right divided by 2 ok. 

Now, this is not as crude as we had started off with, right? We started off with only the 

first terms in here right only we said phi f equals  ϕ0 plus  ϕ1 by 2, but now we have a an 

extra term here which is the second term in the Rayleigh series expansion. We have a little 

bit improvement compared to what we had started off with, right ok. 

So, now the general algorithm is use this ϕf back in the equation back into this equation 

and calculate what is the improved cell centroid values ok. So, in the process we have set 

up a an iterative scheme where we start off with a crude approximation for  ϕf right, use 

that calculate the gradients. Use the gradients again to improve  ϕf and then update the 

gradients right. 

Now, this can go on for few iterations until we reach a converged gradient values ok, but 

generally you do not do more than couple of iterations, 2 to 3 iteration is sufficient. Why 

are we iterating here actually? What is the need for iterations here? Which term is actually 

making us to do this iteration?  



Essentially the approximation for phi f that is the truncating the terms in the Taylor series, 

that is what is making it ok. So, essentially couple of iterations is enough.  
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So, 2 to 3 iterations are sufficient that is what is done in the actual solvers if you look at. 

So, if I were to write a general algorithm for this, what would that be? That would be so, 

this is gradient theorem approach, what do we do? What is the first step in the algorithm? 

You calculate you guess what is you evaluate what is ϕf from the existing ϕ0 ϕ1 using 

arithmetic average, right? What is the next step? Calculate what is gradients of phi this is 

gradient of phi at the cell centroids using Δ𝑉0 sigma f, ϕfAf
⃗⃗  ⃗ right. 
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Then once we have calculated gradients for all the cells improve ϕf using what? Using ϕf 

equals ϕ0 plus ∇ϕ0 dotted with Δ𝑟1
⃗⃗ ⃗⃗⃗⃗  did we use Δ𝑟1

⃗⃗ ⃗⃗⃗⃗  or Δ𝑟0
⃗⃗ ⃗⃗⃗⃗ ? Δ𝑟0

⃗⃗ ⃗⃗⃗⃗  plus ϕ1 plus ∇ϕ1 dot Δ𝑟1
⃗⃗ ⃗⃗⃗⃗  

divided by 2.  

Now, use updated ϕf and calculate essentially go back to step 2 right that is basically go 

back to step 2 go to step 2 and repeat ok. Usually couple of iterations are sufficient to get 

a converge to grad phi fine, questions on this? Is it clear? Ok. So, if I give you some mesh 

with these area vectors that you can calculate and some phi values you can calculate what 

are the gradients using this approach right you can also code it up, fine alright. 

So, this method is very generous generic method kind of works. It is a generic method and 

works on unstructured meshes ok. So, we do not need any special features here right it 

kind of works on general unstructured meshes alright, ok. Let us move on to the next 

method that is the least squares method. Any questions till now? Easy? Ok.  
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Let us look at the second method that is the least squares method. Now, the idea in the 

least squares method is to reconstruct the neighboring value of ϕ, ok. So, essentially 

reconstruct neighboring cell value from the present cell value.  

Now, how do you reconstruct this accurately gives you the value of the gradient, ok. So, 

we want to calculate what is ϕ at 1 cell 1 from ϕ0 using certain gradient ∇ϕ0 ok. Now, we 

want to calculate this evaluate this ϕ1 as accurately as possible, then what would be my 

∇ϕ0, that is the idea ok. So, essentially evaluate or obtain ∇ϕ0 such that you reconstruct 

neighboring cell value from present cell value accurately ok. Then, let us have look at a 

particular mesh configuration. Let me draw a mesh here.  
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I would use some mesh we have not seen till now something like this ok. So, we have a 

mesh here that need not necessarily have the same number of edges I created some mesh 

here, fine. So, let us call this as 𝐶0 the value here would be ϕ0 and let us call this as 𝐶1, 𝐶2, 

𝐶3, 𝐶4, 𝐶5, 𝐶6 and so on right. This can be very different. 

Now, I also want to draw some lines here that is basically we want to calculate what is ϕ1 

from ϕ0 using the gradient at ϕ0 right, that is what we want to do. So, let me connect 𝐶0 

and 𝐶1 using 1 vector this is basically Δ𝑟0
⃗⃗ ⃗⃗⃗⃗  or Δ𝑟1

⃗⃗ ⃗⃗⃗⃗ , ok. Let me call it Δ𝑟1
⃗⃗ ⃗⃗⃗⃗  ok, can we obtain 

Δ𝑟1
⃗⃗ ⃗⃗⃗⃗ ? We can right, we know the cell centroid values.  
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So, if I were to calculate what is phi at 1 from phi at 0, how do I obtain this using general 

Taylor series? ϕ1 equals ϕ0 plus what do I need to know? 

Student: Gradient. 

Gradient at phi at cell centroid, this would be plus ∇ϕ0 dotted with. 

Student: Delta r 1. 

Δ𝑟1
⃗⃗ ⃗⃗⃗⃗ , right? That is correct ok; that means, now Δ𝑟1

⃗⃗ ⃗⃗⃗⃗  definition is different from what we 

had before right, earlier Δ𝑟1
⃗⃗ ⃗⃗⃗⃗  was connecting the cell centroid 𝐶1 to the face centroid here it 

is the distance or the vector connecting 𝐶0 to 𝐶1 right the cell centroid vector. 

What about phi at 2? Can I obtain phi at 2 from ϕ0 and the gradients? I can, right; phi at 2 

would be phi 0 plus ∇ϕ0 dot Δ𝑟2
⃗⃗ ⃗⃗⃗⃗  in which case I have to define what is Δ𝑟2

⃗⃗ ⃗⃗⃗⃗  as line 

connecting 𝐶0 and 𝐶2 right and so on and I would have Δ𝑟3
⃗⃗ ⃗⃗⃗⃗ , Δ𝑟4

⃗⃗ ⃗⃗⃗⃗ , Δ𝑟5
⃗⃗ ⃗⃗⃗⃗  and Δ𝑟6

⃗⃗ ⃗⃗⃗⃗  and so on as 

many number of neighbors I have. 

Let us say if I have M neighbors, I would have to have M of these equations, but there is 

a problem that we can see right away, right. There is a problem in this approach ok, we 

will come to that problem.  



So, essentially the idea is now how do I obtain this value, this is the unknown the ∇ϕ0 such 

that I can accurately calculate not only ϕ1, but also ϕ2 and also ϕ3, right and so on because 

all of these would use the same gradient at the cell center 𝐶0 right. 

So, I need to calculate ∇ϕ0 as accurately as possible such that this gradient value at the cell 

centroid will give me or will help me reconstruct the neighboring cell values correctly in 

some sense, right ok. 
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That means, if I have let us say a j a neighbor ϕj would be what ϕ0 plus ∇ϕ0 dot Δ𝑟𝑗
⃗⃗ ⃗⃗  ⃗, right 

and similarly, if I have m neighbours this would be the Mth equation right this would be 

the Mth equation if I have M cell neighbours right that share a face ok. That means, how 

many equations do I have? How many equation do I have? 

Student: M. 

M equations I have M equations alright. Now, what would be let us say I will consider a 

two-dimensional situation. We are talking about a calculate the gradients in two-

dimensions ok, then what is my ∇ϕ0? What is the definition for ∇ϕ0? î
∂ϕ

∂x
|
0
+ ĵ

∂ϕ

∂y
|
0
 at 0 

right, this remains the same.  
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What about Δ𝑟0
⃗⃗ ⃗⃗⃗⃗ ? If you were to write it as a vector this would be îΔ𝑥0 + ĵΔ𝑦0 oh sorry we 

do not have Δ𝑟0
⃗⃗ ⃗⃗⃗⃗  right we have Δ𝑟1

⃗⃗ ⃗⃗⃗⃗ . So, all these should be sub once alright. So, this is 

îΔ𝑥1 + ĵΔ𝑦1 right, what is Δ𝑥1? 

Student: (Refer Time: 29:21). 

𝑥1 minus 𝑥0 right, the x component distance between cell 1 and cell 0 fine. So, we have 

this. So, what is this product ∇ϕ0 dot Δ𝑟1
⃗⃗ ⃗⃗⃗⃗  that we have in each of these terms, right, we 

have we have this product here right, what would this be? This would be basically Δ𝑥1. 

Student: (Refer Time: 29:48). 

Sorry, Δ𝑥1
∂ϕ

∂x
|
0
 plus. 

Student: Delta. 

Δ𝑦1
∂ϕ

∂y
|
0
 right that is what we have; that means, I can rewrite this equation. If I send this 

ϕ1 to the right hand side or ϕ0 to the left hand side I can rewrite this equation this particular 

equation as what? As Δ𝑥1
∂ϕ

∂x
|
0
 plus Δ𝑦1

∂ϕ

∂y
|
0
 equals how much? ϕ1 minus ϕ1 right. 



Similarly, I can write an equation for the second cell value that we reconstruct as Δ𝑥2
∂ϕ

∂x
|
0
 

plus Δ𝑦2
∂ϕ

∂y
|
0
 equals ϕ2 minus ϕ0 alright and so on. Δ𝑥𝑀

∂ϕ

∂x
|
0
 plus Δ𝑦𝑀

∂ϕ

∂y
|
0
 equals ϕM 

minus ϕ0 if we have M cells, right? Or this would be j for a particular jth cell ok. 

Now, we have as many equations as we have number of neighbors, number of face 

neighbors ah, but what is the unknown in this?  

Student: Phi. 

Phi, is phi the unknown? 

Student: (Refer Time: 31:18). 

∇ϕ is the unknown right 
∂ϕ

∂x
|
0
 and 

∂ϕ

∂y
|
0
 at cell 0 right, this is the unknown. ϕ1, ϕ0 are known 

from the current iteration values and deltas are known as the from the mesh ok. So, these 

are all known. So, that means, if I were to write this in a matrix form, can I write it in a 

matrix form? 

Student: Yes. 

How many equations I have? M equations. So, how many rows should my matrix have? 

Student: M rows. 
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M rows and what are the coefficients? Δ𝑥1, Δ𝑦1, Δ𝑥2, Δ𝑦2 and so on Δ𝑥𝑀 Δ𝑦𝑀. This is my 

matrix times what would be the other vector that I have? 
∂ϕ

∂x
|
0
 this should be a column 

vector or a row vector? 

Student: Column vector. 

Column vector. 
∂ϕ

∂y
|
0
 equals what would be on the right hand side?  

Student: (Refer Time: 32:18). 

ϕ1 minus ϕ0, ϕ2 minus ϕ0 and so on; ϕM minus ϕ0, right. This is what I have right. I have 

a matrix equation which has M rows and how many columns? 2 columns this is an M by 

2 matrix and I have an unknown vector here which is 2 columns sorry 2 rows and 1 column 

and then here I have M rows and 1 column ok. So, we have a M by 2, 2 by 1 and M by 1 

vectors and matrices here. 

In general, what is the in a two-dimensions what is the minimum cell neighbors I would 

have? What is the cell the smallest cell that you can take?  

Student: (Refer Time: 33:02). 

With minimum number of faces? 

Student: 3. 

3, right? It is a triangle right. So, in general M is the number of rows would be greater than 

2 right, this is always greater than 2 right because you have at least 3 faces for a triangle 

ok. How many unknowns I have here? 

Student: (Refer Time: 33:20). 

2 unknowns; how many equations I have? 

Student: M. 

M equations; I have M equations and 2 unknowns, can I solve for the system? 

Student: Yes. 



Uniquely, can I solve this? This you cannot solve right because if you use 2 equations you 

get a solution; you get 2 other equations, you get another solution. You cannot satisfy all 

these equations at once right; that means, this is a what type of a system? 

Student: Over specified. 

Over specified system, right. So, this is basically over determined or over constrained 

system for which we cannot you do not have unique solution right. Because, if we take 2 

sets of equations you would get one solution which will satisfy only those 2 equations and 

not the other ones right.  

So, this is nothing new to you because you have already come across such systems many 

a times, right. When you do an experiment you end up having.  
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Let us say if you are doing an experiment. You get some values here for the let us say phi 

and some x values you got some values here, right and you have to fit a essentially you 

have to find one equation one straight line that passes through all of these things, right? 

But, you cannot find one equation that passes through all of these things because you have 

too much data, right. What do you do in that case? 

Student: (Refer Time: 34:48). 



You would find a, you would kind of minimize the error the square of the error in an 

absolute sense square of the error minimize it and draw a line, right. Now, that line would 

it pass through any solution? 

Student: (Refer Time: 35:01). 

It would not it will not; it will not satisfy any of the points, right, but it will be in a sense 

it will have the least error possible right. So, essentially you would say I have calculated 

the equation, this is my equation right. So, this is my what do you call? Least square fit, 

right. This is the least square fit line which will not satisfy any of them, but it will have the 

least error if we consider one by one right. 

In fact, that is what we have in the present situation, right. We have too much data and you 

have to calculate what is 2 components of the gradients right for the dependent variable. 

We just have to calculate 
∂ϕ

∂𝑥
, 
∂ϕ

∂𝑦
 from these M equations. 

So, what we set out to do is we try to minimize this error and calculate what would be 

these gradients which will be in a least square sense reconstruct the neighbouring values 

accurately, ok. Is the method clear? What it is trying to do? We will do the remaining part 

of it the minimization of the error and so on alright ok. Questions on this part, till now? 

So, essentially trying to minimize the error; error meaning from the line that we intend to 

fit between the data alright minimize the error ok. Questions? Ok, I want you to say 

something about this matrix.  

So, essentially this matrix as it is cannot be solved right can you invert it and calculate no 

essentially you have you have you have to use any 2 equations and solve it right that is 

understood. Let us give the some names for this matrix. Let us call sorry, let us call this 

matrix as A and the gradient matrix as some g and this we would like to call it as this is 

from some delta of phi right. So, let us call it as some d, A, g. A is the coefficient matrix, 

g is the gradients, d is the delta of the phi (∇ϕ) ok; that is what we have fine alright. 

Let us can then move on to what do we do in this context? So, we have to reduce the error 

or minimize the error and the equation we are working with is basically Δ𝑥𝑗
∂ϕ

∂x
|
0
 plus 

Δ𝑦𝑗
∂ϕ

∂y
|
0
 equals ϕj minus ϕ0, alright, that is the equation we are working with. 



Let us call this as say equation 1 ok. I can rewrite this equation as to calculate the residual 

or the error. So, what I mean is now if you know what is 
∂ϕ

∂x
|
0
 and 

∂ϕ

∂x
|
0
 at 0 correctly, you 

will this equation will be balanced right and if it is not the correct value then it will not be 

balanced.  

There will be some error, right. ϕj minus ϕ0 would be different from what you get on the 

left hand side right, depending on how well you calculate these guys right ok. So, what I 

do is I will define an error or a residual in the context of the in the context of computational 

methods you would call a residual as whatever is the difference between left and right hand 

sides in an equation, ok. So, or an error saying that the difference between the left side and 

the right side is my error at that cell or at that face ok. 

So, I would like to call it as some residual Rj; Rj is basically I bring the right hand side to 

left hand side. So, this will be Δ𝑥𝑗
∂ϕ

∂x
|
0
 plus Δ𝑦𝑗

∂ϕ

∂y
|
0
 minus ϕj minus ϕ0 is my residual 

right. So, if I use 2 equations and calculate these gradients this residual would be 0 for 

those 2 cells right, but that is not what we are trying to do. 

We are trying to calculate the gradients such that this Rj is minimized in a least square 

sense, fine; that means, of course, this is just one equation. We have M face neighbors. 

(Refer Slide Time: 39:46) 

 



So, what would be the total residual R or the square of the residual R? I would like to call 

it as Rj square summed for all the j goes from 1 to M right. So, sigma Rj
2 would be my 

square of the error right, yes, ok. So, this is how much? This would be sigma j goes from 

1 to M. Let me also write 
∂ϕ

∂x
|
0
 as some variable a 

∂ϕ

∂y
|
0
 as another variable b ok. A and b 

are the unknowns that we intend to get out of this problem ok. 

So, this is a times Δ𝑥𝑗 plus b times Δ𝑦𝑗 minus ϕj minus ϕ0 whole square is what we have 

to minimize right for this least square error, right. This error is now squared. We have to 

find the least value for that alright. How do you do least squares when you have 2 

parameters? 

Student: Differentiate the error. 

Differentiate the error. 

Student: (Refer Time: 41:04). 

With respect to the unknown that you want, right. Unknowns that you want to calculate. 

(Refer Slide Time: 41:10) 

 

So, that means, the we need to calculate what is 
∂𝑅

∂𝑎
 and set it to 0 right and then 

∂𝑅

∂𝑏
 and set 

it to 0 that is what we do. So, we already have the square of the error, we would calculate 

the least value by differentiating it minimum value ok. So, what would be these equations? 



∂𝑅

∂𝑎
 equals 0 what would this be? This would be summation would stay as it is right, you 

have a summation. This would be 2 times 𝑎Δ𝑥𝑗 plus 𝑏Δ𝑦𝑗 minus ϕj minus ϕ0 times what.  

Student: (Refer Time: 41:53). 

Times Δ𝑥𝑗 equals 0, what is the other equation? Sigma j equals 1 to M 2 times  𝑎Δ𝑥𝑗 plus 

𝑏Δ𝑦𝑗 minus ϕj minus ϕ0 times Δ𝑦𝑗 equals 0, ok. So, we have 2 multiplying in every term. 

So, 2 can be thrown out alright. So, this can be taken away because it is there in every term 

in the summation ok. 

Now, we got couple of equations. So, how many equations we have? 

Student: 2. 

2 equations because we have a summation for each equation ok. We have only 2 equations 

and how many unknowns we have? 

Student: 2. 

(Refer Slide Time: 42:49) 

 

Only 2 unknowns ok. So, we have now reduced the problem you see right ok. This is 

basically sigma j equals 1 to M, how much would this be? This would be 𝑎Δ𝑥𝑗 square 𝑏Δ𝑦𝑗 

minus ϕj minus ϕ0 times Δ𝑥𝑗 right equals 0. What is the other equation? Other equation is 



sigma j equals 1 to M 𝑎Δ𝑥𝑗Δ𝑦𝑗plus 𝑏Δ𝑦𝑗
2 minus ϕj minus ϕ0 times Δ𝑦𝑗 equals 0 right, that 

is what we have ok. 

We have 2 equations and 2 unknowns. Now, can I try to write this in a matrix form? I can 

ok. So, that would be we have these terms right. So, the kind of terms we have are basically 

if you look at if you look at the first equation, how does these terms look like? This will 

look like Δ𝑥1
2 right plus Δ𝑥1Δ𝑦1 plus delta the from the for the first equation it will be Δ𝑥1

2 

plus Δ𝑥1Δ𝑦1 and then Δ𝑥2
2 plus Δ𝑥2Δ𝑦2 and so on, right that is what we would get. 

For the second equation you would get Δ𝑥1Δ𝑦1 plus Δ𝑦1
2, right. This is what you would 

get right plus Δ𝑥2Δ𝑦2 plus Δ𝑦2
2 of course, I have not writ10 a and b here, ok. I just wrote 

the coefficients for a and b and these are again multiplying with a and b. 

Can I get this from the matrix we have? 

(Refer Slide Time: 44:42) 

 

So, we have a matrix what is the matrix A that we have? A is Δ𝑥1 Δ𝑦1 Δ𝑥2 Δ𝑦2 and so on 

Δ𝑥𝑀 Δ𝑦𝑀 right. This is an M by 2 matrix right. What would be if I were to write a transpose 

as Δ𝑥1 Δ𝑦1 Δ𝑥2 Δ𝑦2 and so on Δ𝑥𝑀 Δ𝑦𝑀? This would be a 2 times M matrix right 2 by M 

matrix. 

What would be A transpose times A? Would that give you these equations right? 



(Refer Slide Time: 45:35) 

  

So, that means, if I write this as A transpose A would be would be what? Essentially 

multiply this guy with this guy right, plus the second one plus the first one with the second 

column right that is your first row right A transpose A, would be what?  

Student: (Refer Time: 45:54). 

Do you see that you would get Δ𝑥1
2 plus Δ𝑥2

2 and so on Δ𝑥𝑀
2  plus the first row again 

multiplying the second column would give you Δ𝑥1 Δ𝑦1 Δ𝑥2 Δ𝑦2 and so on Δ𝑥𝑀 Δ𝑦𝑀, do 

you see that? Do we get that? Yes or no? Yes, ok? 

What about the second row? Second row would be this one multiplying the first column 

right that would be the mixed values Δ𝑥1 Δ𝑦1 and the plus the second row multiplying the 

second column, that would give you the delta y squares ok. So, I can write this of course, 

I have the a and b which are nothing, but just 2 values right which are the same for every 

term. So, I can put them as a column vector similar to what we had before. 



(Refer Slide Time: 47:02) 

 

I can rewrite these equations that we have essentially these 2 equations that we have as 

what? I can rewrite this as A transpose A times the gradient right that is basically gives 

you, what will be the size of the matrix A transpose A? 

Student: (Refer Time: 47:13). 

2 by 2 because we have 2 by M by M by 2 this will be 2 by 2. So, this will be a 2 by 2 

matrix and what is g? 
∂ϕ

∂x
|
0
 and 

∂ϕ

∂y
|
0
, this is 2 cross 1 equals, what is on the right hand side? 

Student: A transpose. 

This is ϕ0 minus ϕ0 times Δ𝑥𝑗, right. So, you are multiplying Δϕ with Δx and this in the 

second equation you are multiplying Δϕ with Δy and you are summing it, right. So, what 

would that be? 

Student: A transpose. 

A transpose times. 

Student: Phi. 

So, if I were to here if I were to write partial phi just the phi this is basically phi what 

values go here? 



Student: (Refer Time: 48:05). 

ϕj minus ϕ0 right is what goes in here. So, this is basically ϕ1 minus ϕ0 ϕ2 minus ϕ0 and 

so on ϕj minus ϕ0, right. Each of them multiplying with 2 rows will give you the 2 

equations, do you see? Ok. So, this is nothing, but our d or A transpose times d right that 

is your Δϕ. This is your Δϕ1 Δϕ2 and so on ΔϕM which is basically ϕ1 minus ϕ0, ϕ2 minus 

ϕ0 and so on.  

Now, what is the size of this equations here this matrix here? 2 by 2 matrix 2 by 1 and then 

we have. 

Student: 2 by 1. 

2 by 1 right. So, this is basically a 2 by 2 matrix that is all, right. So, and what do we need 

to do? We need to have we will have such a system, only one system for the entire mesh 

or will it be different for different cells? 

Student: (Refer Time: 49:13). 

It will be different for different cells right. So, essentially you will have one 2 by 2 such 

system for every cell in the mesh right, you would calculate that and then let us say if you 

have a fixed mesh the mesh is not changing, what will be the matrix A? Will that be will 

that remain the same always? 

Student: Yes. 

The mesh is not changing, A only depends on Δ𝑥 and Δ𝑦. 

Student: Yes. 

Right. So, can you pre calculate A transpose A and store it? 

Student: Yes. 

Yes you can. So, you do not have to do this all the time. So, this can be pre calculated right 

ah. Right hand side needs to be updated as your phi changes right and you need to calculate 

what is gradient, ok. So, in fact, you can even pre calculate what is A transpose A is inverse 

as well right because it just 2 by 2 system, right. 



Does not matter how many faces you have, it is always a 2 by 2 system. So, you can 

calculate this and calculate it is inverse and calculate what is the gradient values right; that 

means, for every cell you just go and solve the system once and get the gradient values 

fine. And, the g thus obtained would satisfy none of these equations. It will satisfy only 

these equations in a least square equations ok. So, that is the essence of the least squares 

method ok. Questions?  
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Now, what would happen will this actually work for a let us say a structured rectangular 

mesh? Would it actually work? Would this method work for let us say a Cartesian mesh 

that is also uniform? Will it actually work for Cartesian structured or it will only work for 

unstructured? It should work for Cartesian structure, it is not a surprise. 

But, then what will happen if you have a Cartesian structured mesh which is also uniform? 

What will happen to this matrix A? What about Δ𝑥1 Δ𝑥2? 

Student: (Refer Time: 51:42). 

All are the same, then what will happen to the matrix A? 

Student: (Refer Time: 51:48). 

Then, what will happen to A transpose A? 

Student: Drawn in vertical? 



Would it become singular? 

Student: Yes. 

Then you said it will work for Cartesian structure, right? Now, we just saying that it is it 

will become singular, there is a catch here. What is the catch? They are not the same 

because.  

Student: (Refer Time: 52:07). 

No, the way we have drawn the vectors are all different what will be delta x what will be 

Δ𝑥1 and Δ𝑥1? 

Student: (Refer Time: 52:15). 

They would point in the opposite direction. So, delta x 2 would be minus of Δ𝑥1 if you 

have let us say Cartesian mesh, right, in which case the rows are not the same right. You 

would have let us say Δ𝑥1 is 2 you would have 2 and Δ𝑦1 is 0 let us say the cells are in the 

along the x axis, we would have 2 0 and the other one would be minus 2 0 right and so on. 

As a result when you take A transpose A you would end up with a identity matrix, right. 

You have 1 0 minus 1 0 and so on, you would end up with an identity matrix with a uniform 

cell size that is delta x right and that is why it would work, right.  

So, do not get confused this delta x is not just is not always it is basically defined in a way 

that it connects the current cell centroid to the neighbouring cell centroids ok. Do not use 

the your own definition of delta x here, fine. So, that is important here fine, that is the case 

it will work for anything. 

Yes? 

Student: Sir, delta a term we will be considering only face neighbours, right? 

Only the face neighbours, yes. I think I have drawn I have not drawn it nicely. Actually 

this cell is little complicated this is not there. But, the thing is, I mean this cell is not there 

we are only considering the face neighbors.  

The figure is drawn little complicated, but in this context you may have to use the vertex 

neighbour also because this is it is because we are not using a lead interpolation between 



the faces as such. So, it can you can still consider this thing right you can still be left over 

there. It is just that the other cells are not drawn in a similar way, right. Other questions? 

So, it will work for regular structured, Cartesian, uniform, non-uniform, everything 

unstructured and so on ok, fine, alright ok. I am going to stop here. See you guys in the 

next lecture.  

Thank you. 


