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Finite Volume Method for Diffusion Equation: Steady diffusion in unstructured 

meshes Part 3 

 

Good morning, let us get started. So, we were continue our discussion on Steady diffusion 

discretization for unstructured non-orthogonal meshes ok.  
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So, this is steady diffusion on unstructured non-orthogonal meshes ok, fine. So, what the 

equation that we have kind of derived is basically sigma f (Γ∇ϕ)𝑓 ⋅ Af plus (𝑆C + SPϕ0)Δ𝑉0 

equals 0 right that is the equation we have. 

And we are working with the diffusion flux term. And the diffusion flux term we have 

seen that we can write this as (Γ∇ϕ)𝑓 ⋅ Af as some quantity right some quantity times (ϕξ)𝑓  

right that is the gradient in the xi direction plus some other quantity times (ϕη)𝑓
 right, 

these specific quantities we have derived in the previous lectures right. So, we have done 

that decomposed this into the xi direction and eta direction.  

And then what we said is of course, the derivative in the xi direction can be written in 

terms of the cell values right using a linear profile assumption (ϕξ)𝑓  can be written as ϕ1 



 

 

minus ϕ0 upon Δξ right that is what we have said. And we called this first term which is 

multiplying (ϕξ)𝑓  as the primary gradient right.  

So, this we said as the primary gradient. And the second term we said this is the or 

secondary gradient ok. Now, we devoted a considerable amount of time in understanding 

how to calculate the secondary gradient itself right. So, this term itself.  
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Now, the secondary gradient term we denoted using SG sub f this we said actually will 

come out to be minus Γ𝑓 Af dot Af by Af dot 𝑒ξ right that is what we have and times 𝑒ξ dot 

𝑒η times (ϕη)𝑓 right. 

This is the coefficient that we will have for the secondary gradient. And we said calculating 

this would be straightforward if you have a any 2D mesh whether it is structured or 

unstructured, or if you have a 3-dimensional structured mesh right. Whereas, if you have 

a 3-dimensional unstructured mesh, then selecting the two directions on the plane right 

which is eta and zeta may not be unique, as a result we may not be able to find it in one 

particular wave for all the cells right. 

So, we said ok, then a one good way to calculate this is basically somehow we can calculate 

the total face gradient, and then subtract of the component of the xi direction from this 

total gradient right that is what we kind of wrote this. 



 

 

So, if we have a let say in general a 3-dimensional unstructured mesh, then we said the 

secondary gradient can be calculated using Γ𝑓 (∇ϕ)𝑓 dot Af. So, this is the total transport 

of ϕ right through the face f. And we said this minus the gradient in the primary direction 

right, so that would give you what is the gradient, what is whatever is the transport in the 

secondary direction ok. 

So, this minus the gradient in the primary direction would be Γ𝑓 upon (ϕξ)𝑓  Af dot Af upon 

Af dot 𝑒ξ times we said (∇ϕ)𝑓 is what we would calculate on the face. Then if we were to 

subtract of the gradient in the primary direction this would the 𝑒ξ right that will give you 

the value times Δξ right, that is your term.  

So, this is your primary value. And this term is your total gradient on the face right ok. So, 

essentially the total minus the xi direction we will give you the entire secondary gradient 

term that is this term right that is what we said. 

Of course, now we said we do not know the phi value itself that is the unknown, but we 

are now talking about calculating the value of gradient of ϕ right so which needs to be 

somehow computed on the face. So, now, the calculation of secondary gradient is reduced 

to the problem of calculation of gradient of ϕ on the faces right. If we can somehow 

calculate the gradient of the ϕ on the faces, then we can calculate the secondary gradient 

term right. 
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Again we say that using an approximation if we have if the gradient of phi can be assumed 

to be constant in a cell, if it can be assumed to be constant in any cell, then the gradient on 

the face can be written as an arithmetic mean of the gradients on the of the cell values ok, 

because grad phi itself will be a constant or the entire cell right. Then the average of these 

two would give you the gradient on the faces ok, that means, we have to somehow calculate 

this gradient at cell centers right. 

So, essentially for all the cells we have to somehow calculate this gradient ok. This we will 

see little later how to calculate this we will address it little later. As of now if there is a 

method by which we can calculate the gradients at the cell centers, we can calculate the 

gradients at the faces which further can be used in calculating the secondary gradients. 

Yes.  

Students: Why (Refer Time: 06:52)? 

Why arithmetic means. So, essentially you have you have two cells, and the gradient is 

assumed to be constant over these entire cells. So, then the face value could be taken as 

the arithmetic mean of these two.  

Students: (Refer Time: 07:12). 

So, we are assuming that this ∇ϕ reminds a constant over the entire cell. 

Students: (Refer Time: 07:21). 

Yes. So, this distance. 

Students: (Refer Time: 07:26). 

So, even if it is not equal what is ∇ϕ? ∇ϕ is assumed to be constant over the entire cell, but 

I am assuming that it is constant. So, whatever is the distance it does not make a difference 

right. So, for example, even if I have a if there is a variation of grad phi inside, then there 

will be a an effect of the distance right I am assuming that grad phi is constant over the 

entire cell. So, wherever I go whether I come here I go here wherever I go it will be the 

same value that is what I am assuming right. 

Grad phi is a constant for the entire cell as a result I can take an average right. Now, if it 

is not constant then of course, you have to take a kind of a linearly interpreted value ok. 



 

 

Other questions, is it clear the concept of coming to the concept of gradient of calculations 

gradient of phi from the motivation of the secondary gradients right? Ok, fine ok. Then let 

us move on all right. So, we have all these values. Then let us write to try to write a discrete 

equation which will be for a non-orthogonal meshes ok. 
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So, let us assemble all these things and write the discrete equation for non-orthogonal 

meshes ok. So, just like before up till now we have been talking about let say one face f 

here right, but actually you would have several faces and several cells right.  

You will have another cell here, another cell here, as a result you will have this could be f 

1, this could be f 2 and f 3 you would have cell 𝐶2, and 𝐶3 and so on right, you will have 

several cells and several faces. So, you have to do a summation of the gamma grad phi’s 

right, so that has to be done. So, that we have to do it, because we have only dealt with one 

particular face between 𝐶0 and 𝐶1 ok. 

Then if we write similar equations for each of the faces and then kind of assemble them. 

So, considering all faces f for the cell, and then assembling them we would write the 

equation the discrete equation for the cell 𝐶0 right. And we would like to put it in the 

standard form that is our 𝑎𝑃ϕ0 = ∑  anbϕ𝑛𝑏 + 𝑏 ok.  
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Where anb’s are the coefficients for the neighboring cell values. So, those will be given as 

anb would be what? Would be coming from your primary gradient right. 

(Refer Slide Time: 10:32) 

 

So, whatever was this primary gradient how much was this? This was Γ𝑓 upon, so this 

entire term right, we wrote it as Γ𝑓 by (ϕξ)𝑓  Af dot Af by Af dot 𝑒ξ times ϕ1 minus ϕ0 right. 

This is what we have written.  



 

 

That means, what is the coefficient here this entire term in the parentheses is the coefficient 

that is going into anb right that is for as the coefficient of ϕ1 a 1 and then this will also 

going into aP as a coefficient of ϕ0, but a p terms would go to the right hand side right. So, 

what would be your anb now? anb is just this term right, and is what we have to write. 

So, that means, anb would be Γ𝑓 upon delta xi f Af dot Af upon Af dot 𝑒ξ. Where f is for the 

face when you consider 𝐶0 and the neighboring cell right, and the neighboring cells are 1, 

2 all the way to let say if we have M neighbors, then this would be the face f between 𝐶0 

and that neighbor right. 𝐶0 and 𝐶1 could be the face f between 𝐶0 and 𝐶2 could be f2 and 

so on right. So, we have several of these that is your anb.  

We do not have any contribution from incoming from the secondary gradient right into the 

aP, because we said the all the contributions coming from the secondary gradient would 

go into b term ok. This will going to b as a result we do not have anything there ok. Then 

what else will what else will be expressions for aP? 

Student: Summation anb. 

Summation anb because sigma anb all the neighbors what else will go into aP.  

Student: Plus. 

MinusSPΔ𝑉0 right that is what will go into aP. What will be the contributions for b?  

Students: Secondary gradient. 

Secondary gradient ok. Before that we have the.  

Student: SC. 

Source term also, so SCΔ𝑉0. And then we have how many secondary gradients only one 

neighbors right. So, essentially it would be summation of all the secondary gradients for 

all the faces right. So, that could be plus sigma nb (𝑆𝐺)𝑓 right. Would it be plus or minus?  

Students: Plus. 

It should be plus right, because there is the secondary gradient we have denoted it as plus 

the minus entire thing we denoted it as plus and it remains on the left hand side right as a 



 

 

result this is plus fine. Anything else or is it all? So, the primary gradient went into a0 anb’s 

and aP secondary gradient went into b and the source terms, that is alright, there is nothing 

left over ok. So, all these things are there.  

That means if we look at it the equation as such is very similar to the orthogonal system 

of equations right. Even if we had an orthogonal system we had 𝑎𝑃ϕ𝑃 = ∑  anbϕ𝑛𝑏 right. 

So, this is similar to similar in structure to an orthogonal system right ok. What about the 

you know the Scarborough criteria or the summation properties? 

(Refer Slide Time: 14:18) 

 

So, let say we do not have source terms. In the absence of source term; that means, your 

entire 𝑆̅ equals 0, what is your 𝑎𝑃? Is a p summation of ∑anb or no? Yes, it is 𝑎𝑃 is 

summation of ∑anb. So, Scarborough is satisfied in. 

Students: Inequality. 

Inequality ok. Equality is satisfied. What about boundedness?  

Students: Boundedness. 

Boundedness, that means, you have source equals 0 right. So, essentially source is 0. So, 

this term is 0, this term is 0, then 𝑎𝑃ϕ0 = ∑  anbϕ𝑛𝑏 plus is b 0 now? 

Students: (Refer Time: 15:12) secondary gradient, secondary gradient. 



 

 

b is not 0; b has secondary gradient right. So, that means, ϕ𝑃 or ϕ0 is not just ∑  anbϕ𝑛𝑏 

right which was the case in the context of orthogonal meshes right. 
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So, here our equation is ϕ0 equals ∑  anbϕ𝑛𝑏 + 𝑏 upon aP right. This is still not equal to 0 

because of secondary gradients right. As a result, is it bounded?  

Students: No. 

No, it is not; boundedness is not guaranteed right. Now, what about SG? SG, what terms 

would go into secondary gradient? Some coefficient right times what is the derivative that 

is multiplying these coefficient, 
∂ϕ

∂η
. Now, how do you calculate 

∂ϕ

∂η
? 

Students: Previous value. 

Previous values, but those are also neighbors of these cells right, but they may not be the 

face neighbors, they could be the. 

Students: Vertex neighbors. 

Vertex neighbors, we are sharing the same vertex. So, as a result, SG will also have values 

from ϕ right coming into play. And these phi neighbors will actually contribute to the 

secondary gradient as well right. So, in some sense we can think of the boundedness as not 



 

 

just by the face neighbors, but also with the cell vertex neighbors as well might be there 

right.  

But the thing is it is still not a it may not be bounded because it is not the property of sigma 

anb by aP equal to 1 is not satisfied for those coefficients right. As a result boundedness is 

not guaranteed, is not assured right, because ϕ0 is not just sigma anb by aP times ϕ𝑛𝑏 plus 

you have this b term which has the secondary gradients, as a result boundedness is not 

assured.  

And we will see a little later that the computation of calculations of the secondary gradients 

will produce oscillations ok, oscillations in phi values ok. Essentially in the calculation of 

phi when you use the secondary gradients, it will produce some oscillations. As a result 

the boundedness is not guaranteed ok, this we will see a little later. So, that means, if you 

have a non-orthogonal mesh, that means, boundedness is not assured right you can still 

have slightly higher values than your neighbors right. 

Now, how do you get rid of this thing? I mean how do you make sure that boundedness 

will always happen depending on the mesh you use right? If we have a good mesh as close 

are possible to an orthogonal mesh, then you would have this boundedness criteria satisfied 

right; otherwise, you will still introduce some error in the solution ok. There are several 

ways you can get rid of this problem by having limiters and things like that, we will see 

that little later in the course ok. Yes, questions. 

Students: So, like (Refer Time: 18:22) steady state because then the solution will be 

boundedness (Refer Time: 18:26). 

In the context of yes, if you have a steady state solution it has to be bounded that is what 

it should happen if you have a very good mesh right. But in this context, if you have if the 

mesh is has these problem with secondary gradients, then it need not be bounded right that 

is what the essentially that is the problem with non-orthogonal meshes. The non-

orthogonality will come into play as a numerical artifact right. So, you still get a steady 

state solution, it is just that it may it will not be bounded.  

Students: (Refer Time: 18:57) incorrect. 



 

 

It is actually incorrect because it is not bounded, but you will still get a steady state solution 

for that right, only way you can improve you say that through having a better mesh quality 

ok. Other questions? So, that means, if you emphasizes on the need for a good mesh to 

start with right.  

The same thing if we had an orthogonal mesh let say Cartesian mesh or something, then 

you would have got like a beautiful result with satisfies the physics right ok. Other 

questions? Ok, so in this context, we have boundedness is not guaranteed, but this 

Scarborough is satisfied right that is kind of there fine ok.  

Then one more thing that remains is basically looking at the boundary conditions in the 

context of non orthogonal meshes ok. Up till now we have talked about any interior cell 

right. Now, how do we do this for a boundary cell ok? So, let us look at extension of this 

to discretizing boundary fluxes.  
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So, that is boundary flux calculation that means, we are looking at a particular cell that has 

one face as a on the boundary right, it could be one of the Dirichlet boundary conditions 

or any other boundary conditions that we have seen ok.  

So, I would draw here again a particular typical cell. So, typical cell is let us say this way 

and this is my cell centroid, the area vector is here we call it Ab
⃗⃗⃗⃗  which is again pointing 



 

 

away from the cell outwards from the cell, and this is our 𝐶0 cell right, and the face centroid 

is somewhere here ok. 

And the line connecting the cell centroid to the face centroid now defines the direction 𝑒ξ 

right. If it were interior, the line connecting the 𝐶0 to 𝐶1 defined our 𝑒ξ; now we do not 

have an i bar right, because this is a boundary right and these are the interior faces ok.  

What about 𝑒η, 𝑒η would be tangential to the face as before, so that means, this is my 𝑒η. 

And now again, Ab
⃗⃗⃗⃗  is not need not necessarily be parallel to 𝑒ξ right; the line connecting 

the cell centroid to the face centroid, need not be parallel to the Ab
⃗⃗⃗⃗  that is where we have 

a non-orthogonal mesh, yes question. 

Students: (Refer Time: 21:48) eta. 

Sorry, it should be eta fine, good ok, anything else ok. So, this is 𝑒η we have 𝑒ξ, and this is 

need not be 90 degrees ok, alright. 
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So that means, the discrete equation that we have can be written as sigma (Γ∇ϕ)𝑓 dot Af 

ok, this is over all the interior faces, I would like to call it as interior ok. So, essentially I 

am separating the diffusion flux for the interior faces that is for let us say, this face and 

this face; and for the boundary face separately that means, plus I would have (Γ∇ϕ)𝑏 ⋅ Ab.  



 

 

Let us call this face as b ok, this is my face b; so the diffusion flux is now written out 

separately that means, this summation the first one only goes around how many faces here? 

Students: 2. 

2 faces. So, plus we have 𝑆C + SPϕ0 times Δ𝑉0 equals 0 right that is our discrete equation 

for a boundary cell. Now, do we know how to calculate the first term here for all the 

interior faces, we know right that is what we have been discussing till now. So, this is 

already know how to discretize this thing, know this thing, fine.  

So, only thing we have to discuss is the boundary term, (Γ∇ϕ)𝑏 ⋅ Ab right. Now, this will 

be very similar to what we have done in the context of an interior face, but with very few 

subtle changes here and there which we will see that means, we have to now discuss how 

do I calculate, (Γ∇ϕ)𝑏 ⋅ Ab, ok.  

So, again this can be written in terms of two gradients right; one is along ϕξ and one is 

along ϕη, just like what we have done for any interior cell right. So, the same steps follow 

right, we have done whatever we have done for the interior face can be done for the 

boundary face right; only thing is that instead of Af, you have now Ab ok. And of course, 

how do you define the distance here, what is Δξ; would be the distance between the face 

centroid and the? 

Students: Cell centroid. 

Cell centroid, this is like your Δ𝑥 by 2; if you had a you know Cartesian mesh right, so this 

is basically (ϕξ)𝑏
 which will connect the cell centroid to the face centroid fine, alright.  

Then I can again decompose this into two components one is along ϕξ, other one is along 

ϕη; and I can write the same thing that would be Γ𝑏 𝐴𝑏 dot 𝐴𝑏 by 𝐴𝑏 dot 𝑒ξ right that is the 

first term I have; times ϕξ on the face b right that is the first term primary gradient I would 

get, minus I would get (Γ∇ϕ)𝑏 ⋅ Ab upon 𝐴𝑏 dot 𝑒ξ times 𝑒ξ dot 𝑒η, ok.  
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Times (ϕη)𝑏
 right, those are the two components we would get if you follow the same 

process we have done for the interior face ok, with only changes being you would use Ab 

instead of Af right for a boundary face, fine ok. Then what about the first term, how do we 

calculate (ϕξ)𝑏
, because we have a boundary face just like the structured or the Cartesian 

meshes, we would also somehow store a value of this on the face right, we would also 

store a value irrespective of the boundary condition. 

The boundary condition can be a Dirichlet, Neumann or a mixed, but we will still show 

store a value of ϕ on the face right, you remember. If it were Dirichlet of course, ϕb would 

be known; if it were not Dirichlet, we would somehow calculate it right by the balance of 

the fluxes.  

So, ϕb on the face will be stored and it will be updated, and we also know what is ϕ0 at 

the cell centroid 𝐶0, right. Now, how do I calculate 
∂ϕ

∂ξ
 on the for the boundary face?  

Students: ϕb. 

ϕb minus.  

Students: Phi.  

ϕ0, upon? 



 

 

Students: Δξ. 

Δξ. 

Students: b.  

b ok, fine. So, we have this thing that means, what about the primary gradient term; if I 

write it here, this would be Γ𝑏 by Δξb Ab dot Ab by Ab dot 𝑒ξ times ϕb minus ϕ0 right that 

is what we have, is not it that is the primary gradient, ok. What about the secondary 

gradient, now how do we calculate this guy; this is our secondary gradient.  

Essentially, we are burdened with the same problem as we had with the interior faces right 

that means again if it is a structure, if it is a 2D mesh, we can ask or somehow calculate 

(ϕη)𝑏
 along the tangent; if it is a 3D structure, again we can somehow calculate it; but if 

it is 3D unstructured, then we have to go to this business of calculating the total value 

minus subtracting the primary gradient ok. So, we will do all that so that means, calculation 

of secondary gradient for boundary is also the same thing. 

So, if it is 2D structured or unstructured, this can be calculated using interpolation; if it is 

3D structured, also this can be calculated; but if it is 3D unstructured, then we do not have 

a unique way of defining the two secondary directions, as a result we will resort to 

calculating the total minus the primary that is going to give us the secondary ok, so we will 

resolve to a new different method. Now that means, I can rewrite the secondary gradient 

as what, if I were to write this as (𝑆𝐺)𝑏.  
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This can be written as, the total transport of phi through the boundary face that will be how 

much (Γ∇ϕ)𝑏 ⋅ Ab right that is the total transport of phi through the boundary face minus 

what would be the one going through the primary direction that will be Γ𝑏 upon Δξb A𝑏 dot 

A𝑏 upon A𝑏 dot 𝑒ξ (∇ϕ)𝑏 dot 𝑒ξ times? 

Student: Delta. 

Δξb ok, we can again calculate it this way fine. Now, I do not have gradient of phi on the 

face, boundary face to calculate as a linear interpolation of the two cells right. So, I would 

make an assumption here and I would say that the gradient of phi on the boundary face 

would be just equal to gradient of phi of the cell 𝐶0 ok, because I do not have a gradient 

on the other side; I do not have see one cell right, because that is a boundary face, so I 

would make this assumption and approximation. 

Then I can rewrite this as, Γ𝑏 grad ϕ0 dotA𝑏 minus Γ𝑏 by Δξb A𝑏 dot A𝑏 upon A𝑏 dot 𝑒ξ ∇ϕ0 

dot 𝑒ξ Δξb, ok. A ∇ϕ0 is already calculated right, somehow through some gradient 

calculation method fine, so far so good. This is very much same as the how we dealt with 

the interior faces, any interior face ok. 

Now, let us look at a specific boundary condition, so this is how we discretize the boundary 

fluxes. Now, let us look at a specific boundary condition, let us call it as the Dirichlet 



 

 

boundary condition that means, we are talking about Dirichlet boundary condition. What 

is a Dirichlet boundary condition in this context, what is specified?  

Students: Phi b. 

Phi b would be known, this means ϕ𝑏 is ϕ𝑏 known right, this will be known ok. If this is 

known, let us look at what will happen to the primary gradient term. So, we come back 

here this is the coefficient right, what will be the contribution of the primary gradient, 

where all the primary gradient terms go, ok. ϕ𝑏 is known right, this is known, this is not 

an unknown anymore; ϕ0 is it unknown or known? 

Students: Unknown. 

Unknown right, this is unknown. So, what will be what will be the contribution of primary 

gradient to what terms? 

Students: a p. 

𝑎𝑃, because there is a ϕ0 term; so there will be a contribution to 𝑎𝑃 which is about this 

value, this value what do you usually call 𝑎𝑏 right, 𝑎𝑏 is what we call this is 𝑎𝑏; 𝑎𝑏 

contributes to 𝑎𝑃, what else will be there to? 

Students: b term. 

b term, right. 

Students: b term. 

What will be the b term? 

Students: 𝑎𝑏. 

𝑎𝑏 times phi b known would go to b. 

Students: b term. 

Right, because this is known now, this is a Dirichlet boundary condition. Everybody with 

that yes that means, this is contributing to two terms that is 𝑎𝑃 and b right, to both of them. 



 

 

What about the other term that is the secondary gradient, where will this guy go; (𝑆𝐺)𝑏, 

secondary gradient on the boundary, where will this term go?  

Students: b. 

Goes to the b always as it is fine, so that means we can now ready to write the discrete 

equation that means, if you have a Dirichlet boundary condition, we know what is ϕ𝑏 is 

ϕ𝑏 known right, this is a known value. Then we are ready to write the discrete equation 

ok, so what would be the discrete equation it would be we want it to come. 
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And fit in the same form that is 𝑎𝑃ϕ0 = ∑  anbϕ𝑛𝑏 + 𝑏 right, we always wanted to come 

and fit in the standard form. Now, what will be anb; anb would be same as before right. So, 

this would be Γ𝑓 by Δξf Af dot Af by Af dot 𝑒ξ for all the neighbors.  

But what are all these neighbors now, these are only the interior faces so that means, 1, 2 

all the way to M minus 1 if you have one boundary face; if you have two boundary faces, 

it will be different right. If you have a corner cell, where there are two boundary faces, you 

have to say M minus 2 and then include those boundary effects ok, fine. Let us say we are 

talking about now one cell here, what about 𝑎𝑃? So, these are the interior faces only, what 

about 𝑎𝑃 term, 𝑎𝑃 would be? 

Students: Summation. 



 

 

Summation of? 

Students : 𝑎𝑛𝑏. 

𝑎𝑛𝑏 where, n b goes from 1, 2 all the way to M minus 1.  

Plus.  

Students: 𝑎𝑏. 

𝑎𝑏 ok, this goes to if you have one boundary face, this will go to 𝑎𝑏; what else? 

Students: SP. 

Minus. 

Students: SP. 

SP. 

Δ𝑉0 that is all right, that is all will be there ok. What about the b term?  

b term would have. 

Students: Gamma (Refer Time: 34:43). 

𝑆C times. 

Students: Δ𝑉0. 

𝑆C times Δ𝑉0 source term, what else? 

Students: Secondary gradient. 

Secondary gradient coming from interior faces right as before that means, sigma nb, (𝑆𝐺)𝑓, 

where nb are the interior faces again; let us call it as nb interior what else? 

Students: 𝑎𝑏ϕ𝑏. 

𝑎𝑏ϕ𝑏 that is plus or minus? 

Students: Plus. 



 

 

Plus. 

Students: Plus. 

This is 𝑎𝑏ϕ𝑏 anything else; what about the secondary gradient for the boundary face, would 

that be there? 

Students: Yes. 

That should all with that will be here. 

Students: Yes. 

That means plus S G boundary alright; if you have one boundary face or sigma (𝑆𝐺)𝑏 if 

we have multiple boundary faces fine, is that ok. 
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Of course, I did not write what is 𝑎𝑏, 𝑎𝑏 itself is similar to the anb; a b would be Γ𝑏 by Δξb 

𝐴𝑏 dot 𝐴𝑏 by 𝐴𝑏 dot 𝑒ξ, right that is your 𝑎𝑏 fine, is that ok; everybody any questions on 

this? 

Students: Sir. 

Yeah. 



 

 

Students: Sir, in boundary calculation (𝑆𝐺)𝑏 for the we do the previous equation that we 

cause (Refer Time: 36:12) so gamma grad phi where have to calculate? 

Gamma grad phi. 

Students: For the boundary calculation. 

Essential this has to be calculated (Γ∇ϕ)𝑏 ⋅ Ab. 

Students: So that means, we use the previous attrition (Refer Time: 36:26). 

Yes, we use the previous attrition ∇ϕ would be the ∇ϕ, you would use the previous attrition 

values so ϕ and calculate the gradient right. But the assumption we are making here is that 

∇ϕb would be equal to ∇ϕ0 that is what I am making here, we will again discuss this thing 

the efficacy of this approximation right, we will we will discuss a little later; fine, is that 

clear.  

As of now, we are we somehow through some method know the value of the gradients of 

the ϕ ok, which we can use here that is the; that is the idea here. Questions, other questions? 

No, fine, clear. So, we have looked in Dirichlet boundary condition, then let us look at the 

boundedness properties ok. 

(Refer Slide Time: 37:16) 

 

The what about so in the absence of source terms S equal to 0, what will be 𝑎𝑃, relation 

between 𝑎𝑃 and a ∑anb; 𝑎𝑃 equals ∑ anb or is it greater. What are the neighbors here? 



 

 

What, what constituted as neighbors, only the interior right, not the boundary right. When 

you write the equation, you do not have the coefficient coming from the ϕ𝑏 in the matrix, 

because that guy went to the right hand side. 

So, what is 𝑎𝑃, is it equal to ∑ anb? No, it is greater than ∑anb by an amount of 𝑎𝑏. This is 

same as nothing new right, this is same as the Dirichlet boundary condition for structured 

Cartesian meshes that we have seen before, so that means, 𝑎𝑃 is greater than ∑anb; so this 

satisfies your Scarborough in. 

Students: Inequality. 

Inequality, ok. So, this satisfies Scarborough in inequality fine, very good. What about 

boundedness? So, S equal to 0, S equal to 0 is your 𝑎𝑃ϕ𝑃 = ∑  anbϕ𝑛𝑏 + 𝑏 is b 0, S is 0; so 

this guy goes to 0, is b 0 ok. We can leave this guy, but this guy is still contributes to the 

boundedness right. 

Students: (Refer Time: 38:50). 

Because a b is included in the calculation of𝑎𝑃 and also this one, so we can think of this as 

if it is bounded it can be bounded by the face value as well as by the cell neighbor values, 

but what is the other one that is preventing us from having boundedness. 

Students: Secondary gradients. 

Secondary gradients of the faces interior faces and the boundary face ok, as a result ϕ0 is 

not assured to be bounded by cell neighbor values fine, alright that means, we have done 

discretization.  

 (Refer Slide Time: 39:42) 



 

 

 

Then you can of course extend this concept to if you have unsteady diffusion right on non-

orthogonal meshes, can you extend this concept? Ultimately, the equation we are working 

with is 𝑎𝑃ϕ𝑃 = ∑  anbϕ𝑛𝑏 + 𝑏 right. Can you extend this concept to unsteady right? All the 

explicit implicit and Crank-Nicolson methods ok, it can be done. [vocalized noise] 

What about Γ𝑓 interpolation, can that be performed in this case using a harmonic mean 

right? You have to find the distances, and calculate what is Γ𝑓 interpolation ok. I am writing 

all this, because I am not doing all this right. All this would be your work for you have to 

do it ok, verify later on ok. What else, this is the most exciting part right Γ𝑓 interpolation. 

What else?  

Students: Source term. 

Source term linearization ok. So, source term linearization can also be will remain the 

same as before. What about under relaxation right? Can you perform under relaxation for 

these cases?  

Students: Yes. 

Yes. So, under relaxation can also be performed on this for non-orthogonal meshes right. 

So, you can verify that all these things can be done ok. This is for you to verify or extend 

to all these different scenarios ok. We have now left over one more thing what is that? 

Students: (Refer Time: 41:33). 



 

 

Sorry. 

Students: Stability analysis. 

Stability analysis of course you can also do. What else? 

Students: (Refer Time: 41:38). 

That is right stability analysis ok, but stability analysis would not be very different right; 

it probably would not be it probably not very easy to do because you have now 

unstructured meshes right. We just discussed that if you have a uniform 1D structured 

mesh, it can be done easily right.  

So, this is probably not very easy to do, but of course you are well come to check and see 

where you get stuck or something. What else? I have only done it for a Dirichlet boundary 

condition right. We have two other boundary conditions. What are those? 

Students: Neumann. 

Neumann boundary condition, and mixed boundary condition ok. So, you will extend the 

concept to include these two boundary conditions also for non-orthogonal unstructured 

meshes ok. Now, I would not leave you alone like that.  

So, what will happen in the context of Neumann boundary condition? Let us go back and 

see. Let us say if you have a homogeneous Neumann condition, what will be the condition 

that is specified. What will be specified if you have a Neumann homogeneous Neumann? 

Students: ∇ϕ. 

∇ϕ will be specified right. ∇ϕ will be specified in which direction? 

Students: Xi direction. 

In the xi direction. So, what will happen to the primary gradients? Primary gradients is 

what is the term that goes away right. What about the secondary gradients would that 

remain? 

Student: Still. 



 

 

That will still remain right. So, that will still remain, that is how you would implement 

right. Now, how do you do for mixed boundary conditions? 

Students: Sir. 

Yeah. 

Students: (Refer Time: 43:15), what flux will be know in primary direction (Refer Time: 

43:20). 

Why flux will be known we are assuming that that is what is given to us. Usually, if we 

have a face it would be given in the direction of the normal to the face right that is kind of 

a if you have let us say insulation or something, the flux going in that direction would be 

0 right, in the direction of a b would be 0 right that is minus k dt d xi would be equal to 0 

right.  

But it need not be known in the same direction right. If it is not known, what would you 

do? If it is given in a let say in general you would be given what would you do in that 

context?  

Students: (Refer Time: 43:54) take component. 

Take components and then work with this. What about mixed boundary conditions? That 

is a if you have convection happening on the particular phase, how would you implement 

it now? You remember the concept how we have done what did we do? You get rid of phi 

b from the equations right.  

You have to go to ϕ0 an phi stream phi infinity and then work with the equations fine ok. 

So, all of these is for you to check and verify an extent ok, alright. Questions still now?  

Students: Neumann boundary condition. 

Neumann boundary condition ok. 

Students: We know the primary gradient. 

We know the primary gradient ok. 

Students: Secondary gradient (Refer Time: 44:45). 



 

 

Right. 

Students: What about the eta direction? 

So, you have to calculate the total and then subtract of the xi direction right. So, how do I 

deal with secondary gradient? Essentially the question is if I have a Neumann boundary 

condition, how do I deal with it (𝑆𝐺)𝑏 term right? 

(Refer Slide Time: 44:55) 

 

You would calculate what is ∇ϕ0 for the cell right, and you can also calculate the primary 

gradient right that is phi xi b right. Now, that is not the same as what is given right. What 

is given to you is in the direction normal to the face right, so that you have to check and 

perform right. But (𝑆𝐺)𝑏 would still remain right, unless that boundary cell is orthogonal. 

How do you calculate secondary gradient of b? 

Students: Primary. 

Primary the total minus the primary right that will that concept be the same thing here. 

Yes. 

Students: Sir, suppose we have a domain as a plane (Refer Time: 45:43). 

Hm. 



 

 

Students: So, in that case, suppose the domain is divided into unstructured (Refer Time: 

45:50). 

Hm. 

Students: So, that plane will be having mili cells whose boundary from the plane. 

Hm. 

Students: then a cell is unstructured. So, each cell will be a different, different direction. 

Yes. 

Students: So, in that case, the fluxes that would be allows a minus n (Refer Time: 46:07). 

Hm. 

Students: But easily as difference (Refer Time: 46:07). 

True. That is true it depends on the cell. It, it varies from face to face, but your boundary 

condition is already known to you how the flux is in what direction the flux is right. You 

are applying some q⃗ , now this q⃗  is known to you right. It has a certain i, j, k components.  

From there you have to take a dot product with your particular face direction Ab
⃗⃗⃗⃗  and then 

calculate. So, it is not that your primary gradient would always be 0 right, so that is that is 

possible. So, that is where you have to look at and see how this comes up right. 

Students: (Refer Time: 46:43), but not in the direction of xi. 

May not be in the direction of xi right q⃗  is perpendicular to the is along the normal to the 

face, but it is need not be in the direction of xi because xi is defined by how your cell is 

positioned right.  

If the line connecting the cell centroid to the face centroid is along the direction of xi, along 

the direction of a b, then you do not have an issue, but otherwise you will get the secondary 

gradient and all these things right. Otherwise it will be like if you have an orthogonal cell, 

your secondary gradient will go to 0 right automatically 𝑒ξ dot d n will go to 0 and you do 

not do anything there fine. 



 

 

Other questions? Ok. So then that kind of finishes the discussion on diffusion equation per 

say on unstructured non-orthogonal meshes as well ok. We have one more concept which 

we have not covered that is calculation of the gradient right that is what we have 

introduced. So, we have this small topic on the calculation of gradients for the dependent 

variable that is how do I calculate ∇ϕ.  

There are several methods available we will look at couple of methods in this particular 

course and see how ∇ϕ can be calculated ok. So, that is gradient calculation will be our 

next topic that we discuss, then that finishes our chapter on diffusion ok. After this we will 

move on to the convection chapter fine, so alright. So, in the next lecture we will look at 

calculation of gradient for the dependent variables ok. 

Thank you. See you guys in the next lecture. 


