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Alright good morning, let us get started. So, today’s lecture, we are going to look at 

evaluation of Truncation Error for Unsteady Diffusion ok. 

(Refer Slide Time: 00:25) 

 

So, this is unsteady diffusion evaluation of truncation error. So, what are the assumptions 

we have made in the unsteady diffusion equation? 

Student: (Refer Time: 00:45).  

Well so, there is no convection term that is why we got the unsteady diffusion equation. 

In terms of how did we approximate some of the things for example, in the steady diffusion 

equation, we had the source term was evaluated as the cell centroid value right. Likewise, 

we have made several assumptions in the unsteady diffusion equation what are those?  

So, if you look at the unsteady term, we had this (ρϕ𝑃)1 right and (ρϕ𝑃)0 right these 

corresponds to the 𝑡 + Δ𝑡 and t values right. These values what did we say? We said that 

these are representative of the. 



Student: Cell. 

Cell centroid values right ϕ𝑃 is what we have used right. So, these are again represented 

by the cell centroid values and then, if you move on to the other terms, we had the same 

spatial approximations right. For example, the source term that we will have we will again 

say that this would be represented by the again the cell centroid value and the face fluxes 

that is Γ∇ϕ on the faces are represented using the face centroid values right and what else? 

What are the assumptions we have made? 

Student: Linear profile assumption. 

Linear profile assumption for the diffusion fluxes as well as the source terms between 𝑡0 

or t and 𝑡 + Δ𝑡 right that is what we have made. That means, and we said depending on the 

type of the scheme, either 𝑡0 values prevail over the entire delta t or 𝑡 + Δ𝑡 values prevail 

over the entire time step, that is what we said. 

(Refer Slide Time: 02:54) 

 

So, that means, the source terms 𝑆̅ and (Γ∇ϕ)𝑓 let us say if we are talking about an implicit 

scheme, this is a fully implicit scheme, then the values at 𝑡 + Δ𝑡 prevail over the entire time 

step right, that is what we have said right. Anything else? We have any other 

approximations we have made in discretizing the equation? That is alright we had an 

unsteady term and the diffusion and the source terms right. So, both of them we said either 



it will prevail or t values or the 𝑡 + Δ𝑡 values prevail over the entire time step and if you 

consider an implicit scheme, it is the 𝑡1 values right ok 

So, then let us evaluate each of these approximations. So, what is the first approximation? 

(ρϕ𝑃)1 and (ρϕ𝑃)0 these are represented between cell centroid value. So, what will be the 

order of accuracy for these terms? This is basically a mean value approximation right. So, 

we have already seen that this would lead to. 

Student: A mean value. 

A mean value approximation lead to what? 

Student: Second order. 

Second order in space or time? 

Student: Time. 

Student: Space. 

Space right this will lead to second order in space because ϕ𝑃 is what we are looking at 

right. So, this is order Δ𝑥2 in space. What about the second assumption 𝑆̅ and Γ∇ϕ? This 

is also mean value approximation right. We are calculating the integral S dv with 𝑆̅ times 

Δ𝑉 right. So, this is basically integral S dV is represented as 𝑆̅ times Δ𝑉 saying that this is 

the centroid value. This is also both these assumptions lead to a spatial order of accuracy 

of what? Which order? Second order. 

What is the third one? Third one is about time right. So, this is basically talks about if we 

have a source term or if we have the diffusion fluxes, these are will kind of incur some 

temporal order of accuracy, there will be some temporal error that is what we have t 

evaluate ok. So, that is what we are going to see next. 
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That means, let us say if we consider a source term that is S dV dt ok. So, this is already 

let us say some 𝑆̅ that is on the volume 𝑆̅ dt integral from t to 𝑡 + Δ𝑡 right this is what we 

have to evaluate upon Δ𝑡 would give us some kind of an average value right for the 𝑆̅ or 

the entire time step ok. 

So, let me consider first a source term that is S which is expanded about S at 𝑡 + Δ𝑡 ok. So, 

we have now 𝑆0 and 𝑆1 which represent t and 𝑡 + Δ𝑡 values. We are interested to calculate 

what is integral S dt over the range of Δ𝑡 right. So, then, let me because I am considering 

an implicit scheme, let me expand S about 𝑆1 ok. So, that is we are expanding S that is at 

any time instant t about 𝑆1 that is at 𝑡 + Δ𝑡 or basically we have 𝑆0 and 𝑆1 fine. 

Then, if I use Taylor series expansion, what would be S? S would be if I were to expand 

about 𝑆1 let me call it as this is basically 𝑆1 plus 
∂S

∂t
|
1
 right times t minus 𝑡1. Is that correct? 

Just like what we have done for the spatial expansion, I am expanding about 𝑆1 in time 

right. Yes question. 

Student: Sir are we approximated for 𝑆0 in terms of 𝑆1? 

Not 𝑆0, I have S at any time level t ok. So, I have here basically 𝑡0 and 𝑡1 and t that is 

intermitted between these two ok. So, 𝑆0 corresponds to 𝑡0, 𝑆1 corresponds to 𝑡1 and S 

corresponds to any time t ok. Now, we are interested in calculating what is the integral of 



S dt or the range t to 𝑡 + Δ𝑡 or I can write this as 𝑡0 to 𝑡1 that is what we are interested in. 

𝑡1 minus 𝑡0 would be our Δ𝑡 right.  

Student: So, the t values are? 

 t values are at any time; at any time. 

Student: So 𝑡1 is the final value after. 

𝑡1 is the final value after the delta t, 𝑡0 is the previous value between the time steps. 

Student: So, in the second term should it be 𝑡1. 

This one? You mean you mean this guy? 

Student: Yeah. 
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So, essentially you have let us say if you go back to the spatial expansion, we had some x 

right and then, we had expanded about 𝑥𝑃 right similarly, I have some time t which I am 

expanding about 𝑡1 right or t sub 1 right basically that corresponds to be next time step 𝑡 +

Δ𝑡 right next time yes. 

Student:  Sir it is  
∂S1

∂𝑡
. 

                                                                                              



Essentially it is 
∂S

∂t
|
1
 evaluate at 1 right that is not 

∂S1

∂𝑡
. It is essentially everything is evaluate 

at time level 1. So, that carries a time step of that of 1. Other questions? Should this be 

minus or plus? 

Student: Plus plus. 

Plus right fine. Any other questions? No then shall we complete this. So, what will be the 

next term? 
∂2S

∂t2|
1
 evaluated 1, times 

(𝑡−𝑡1)2

2!
 and so on right will have the third order terms 

and so on ok. 

Now, of course, what we are interested in is basically integration of S over the time step 

that is going from 𝑡0 to 𝑡1 is what we are interested in. So, let us calculate this. So, basically 

integrate on both sides of this equation over the time step 𝑡0 to 𝑡1 ok. So, this will be 

integral 𝑡0 to 𝑡1, 𝑆1𝑑𝑡 plus integral 𝑡0 to 𝑡1, 
∂S

∂t
|
1
 times t minus 𝑡1 plus integral 𝑡0 to 𝑡1 I 

would write it down here plus integral 𝑡0 to 𝑡1, 
∂2S

∂t2 |
1
 evaluate 1, 

(𝑡−𝑡1)2

2!
𝑑𝑡 and there will be 

a dt here and so on fine. 

So, whatever the Taylor series expansion we have here ok, we have integrated over the 

time step right. This is essentially what we have in the unsteady diffusion equation right. 

We have approximated this using 𝑆1 right 𝑆1 times Δ𝑡 that is what we have approximated 

or 𝑆0 times Δ𝑡 if it were an explicit scheme. Questions yes? 

Student: First term (Refer Time: 10:59) minus t. 

First term which one, which first term you mean you mean this equation this equation? 

Student: The one above. 

The one above here? 

Student: 𝑡1 minus t. 

This should be 𝑡1 minus t. Why it should be 𝑡1 minus t? 

Student: (Refer Time: 11:19). 



So, we have time step t that is between 𝑡0 and 𝑡1 and we are expanding about 𝑡1 right. So, 

this is basically t minus 𝑡1 right. So, 𝑡1 is the value set 1 are known or we are actually 

expanding about the next time level values ok. So, this is kind of a forward values we are 

using fine. Other questions? No, this is good. 

Then, what will be; what will be the values of 𝑆1 and 
∂S

∂t
|
1
? What about these values? 

Student: Constant. 

(Refer Slide Time: 12:07) 

 

These are all constants right. So, can we integrate this equation on the right-hand side and 

tell me what would be the right-hand side. So, this would be 𝑆1 times integral dt would be 

how much? t, 𝑡1 minus 𝑡0 would be Δ𝑡 and then plus 
∂S

∂t
|
1
 times what would be t minus 𝑡1 

dt? Again, we have to use some other variable some p or something right and change 

of variables right. So, if I use a change of variables, what will be the limits? 

Student: −Δ𝑡 to. 

Minus Δ𝑡 to.  

Studnt: 0. 

−Δ𝑡 to 0 and this would be some p dp right if I use some other variable this would be plus 

and so on. We will have some more terms here. 



Now, what will be the integration here? So, this will be 𝑆1 times Δ𝑡 plus 
∂S

∂t
|
1
 times what 

would be this value? Integral p dp would be 
𝑝2

2
 right that would be? 

Student: Delta. 

Δ𝑡2

2
 with a plus or minus? 

Student: Minus. 

Minus. So, this will be a −
Δ𝑡2

2
 plus something fine. 

So, essentially if you go back, what we are interested in actually is there an average value 

right that is nothing but, integral 𝑡0 to 𝑡1 Sdt upon Δ𝑡 right that would be the average value 

that is what we are interested in the in the equation that we have already derived. So, what 

would this lead to? Essentially, we are dividing the entire equation with delta t right, this 

would leave us with 𝑆1 minus Δ𝑡/2 times 
∂S

∂t
|
1
 plus and so on. Is it correct? Yes. 

Student: What is the minus Δ𝑡2 (Refer Time: 14:04). 

This is the lower limit so; you will get a minus. 

Student: (Refer Time: 14:07) in a. 

There is a square so, upper limit is 0 minus lower limit, lower limit has a square, this will 

lead to minus 
Δ𝑡2

2
. Is not it? Correct or no? 

Student: Correct. 

Correct essentially you get 
𝑝2

2
 going from −

Δ𝑡

2
 to 0, right. So, this will be 0 minus you will 

get minus Δ𝑡2 it will be a minus fine so, this is what we have. 

Now, what is on the left-hand side? Left-hand side is what we have used in the equation 

right. This is what we have used in the implicit scheme right, we have replaced this term 

with what? 

Student: S. 



S times S of 1 times Δ𝑡 or it would be this value would be 𝑆1 is what we have used right. 

We said the source term and the diffusion fluxes are assumed to be the 𝑡 + Δ𝑡 values over 

the entire time step that is what we have used. So, that is what we said we approximated 

integral 𝑡0 to 𝑡1, SΔ𝑡dt right this guy with 𝑆1 times Δ𝑡 that is what we have used and what 

is the error we are committing in doing so? Whatever is left over is what we are committing 

as an error right. Now, what is the order of accuracy of this error? 

Student: First order. 

First order so, this will be only order Δ𝑡 ok. So, this implicit scheme that we are working 

with is only first order in time and all other spatial assumptions are second order in space 

if we have a uniform mesh. 
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So, the implicit scheme is first order accurate in time and if you have a uniform mesh, then 

this is second order accurate in space fine. Now of course, we are not going to derive the 

order of accuracy for the other two schemes which are basically the explicit scheme and 

the Crank-Nicolson scheme which is what you will do and verify them later ok. 

So, without proof we are stating here that the explicit scheme would turn out to be also 

order Δ𝑡 and the Crank-Nicolson scheme would turn out to be what? 

Student: Δ𝑡. 



Order Δ𝑡2 ok. So, this is what I am not proving, but you have to verify these ok. Now, how 

do you go about calculating the temporal error for explicit scheme? What is that that you 

would change in the beginning? 

Student: (Refer Time: 17:06) 𝑆0. 

You will expand about? 

Student: 𝑆0. 

𝑆0 and so on ok. What about Crank-Nicolson scheme? 

Student: (Refer Time: 17:11). 

Where would you expand about? 

Student: S half (Refer Time: 17:14). 

S half ok. So, that is what you have to kind of try and see whether you are getting the Δ𝑡2 

for the Crank-Nicolson scheme or not ok. So, that is for you to verify. Questions on this 

till now? No questions clear ok. So, now, we have established the truncation errors both 

for space and time for the steady diffusion as well as for the unsteady diffusion equations 

all right. 

So, we have one more topic that is left over which is basically the stability analysis right. 

We said in looking at these temporal equations right these temporal schemes, we said the 

explicit scheme is only conditionally stable whereas, we also stated that the implicit 

scheme and the Crank-Nicholson are unconditionally stable right.  

We have said this, but we have never proved them through any analysis, but for explicit 

schemes, we have used something known as a heuristic method right where we said if the 

coefficients of ϕ𝑃
0  let us say have to be positive, then you ended up getting a condition 

right that is what we have done which is a heuristic method. 
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So, now we are going to look at a proper analysis that is known as Von Neumann stability 

analysis. So, we are looking at stability of the time stepping schemes ok. 

So, we will use one method known as the Von Neumann stability analysis. So, this is a 

classic method that can be used to check the stability of the time stepping schemes we have 

ok. So, this can be applied for if you have simple 1D problems with 0 source term and 

without any non-linear descent things like that ok. So, that is what we are going to do.  

So, essentially what this tells us through this stability analysis is if we have a time stepping 

scheme are the time steps that we are choosing going to keep the round off error stable or 

not that is what the stability analysis tells you. 



(Refer Slide Time: 20:00) 

 

So, essentially if we have a particular time stepping scheme, do the or does the time 

stepping keep the round off errors from growing from iteration to iteration or from time 

step to time step ok. 

So, here we have to kind of pay attention to this word which is basically the round-off 

errors. What are these round-off errors? Why do we get round off errors or where do we 

get them? 

Student: (Refer Time: 20:29). 

Computationally essentially numerically right. If you want to. So, truncation error is 

different from the round-off error right. Up till now, we have looked at truncation error 

which is order Δ𝑡, order Δ𝑡2, Δ𝑥2 and so on. 

What is round-off error? Round-off error is basically the inability to represent a floating-

point number exactly in a system right in a computer. So, essentially, we have round-off 

errors right, does not matter whatever is the accuracy you would use you still have round-

off errors. Now, that is what we are using to kind of base the entire analysis on ok. 

So, these round-off errors if they are bounded if they do not grow from time step to time 

step, then we end up calling the scheme as a stable scheme. If the round-off errors grow 

from time step to time step, then we call it as a unstable scheme which will eventually lead 

to the solution diverging ok. So, the entire analysis is based on existence of round-off 



errors in the computer ok. So, that is what we will do. So, the error we encounter at any 

time step is the round off error is what we would call in this stability analysis fine. 

So, again the stability analysis can be performed for each of the three schemes that we 

have looked at which is the explicit, implicit and the Crank-Nicolson ok. For the purpose 

of the demonstration, I am going to use only the explicit scheme and see if we can come 

up with a stability analysis for this particular scheme ok. If we can come up with the 

condition that we have already realized in the previous lectures ok. 

So, let us look at the explicit scheme and if you go back to your notes and see what would 

be the discretized equation for the explicit scheme for an unsteady diffusion equation. So, 

that is basically 𝑎𝑃ϕ𝑃 equals. 

Student: ∑ anb. 

∑  anbϕ𝑛𝑏
0  plus. 

Student: Plus 𝑎𝑃
0 . 

𝑎𝑃
0  minus ∑ anb times ϕ𝑃

0  plus some b right that is what we have here ϕ𝑃 without any 

superscript indicates the current time level values at time level 1 right or 𝑡 + Δ𝑡 and ϕ𝑃
0  or 

ϕ𝑛𝑏
0  they all indicate values at time level t right that is what we have. 

Now, let for the sake of simplicity, let me assume we are looking at a one-dimensional 

problem and the source term is also 0 and I will also assume that the diffusion coefficient 

gamma (Γ) is a constant. This will make our life simple in the analysis. So, I am assuming 

a 1D problem with no source term and gamma equals constant ok. So, 1D problem 

meaning the area is also 1 right. So, essentially the unit area vectors for the cells. So, you 

do not get the Δ𝑦 or a for east and west they are all 1’s ok. 

So, if the source term is 0, which terms in this equation go to 0? b is completely composed 

of 𝑆𝐶  and 𝑆𝑃. So, this would be 0 this term would not be there and what would be the 

neighbors if you are looking at a 1D problem what are the neighbors? Only east and west 

nothing else fine. 
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So, let me write down the corresponding equation kind of a simplified equation that would 

be 𝑎𝑃ΦP equals aEΦE
0 plus aWΦW

0  minus sorry plus (aP
0 − aE − aW) times ΦP

0 right that is 

all we get for a 1D no source constant gamma. 

Now, what is aE? What will be the expression for aE? 
ΓΔ𝑦

δ𝑥𝑒
. So, because it is uniform, I 

would represent it with using 
Γ

Δ𝑥
 we are using a uniform mesh as well. So, that is another 

assumption we are looking at a uniform mesh fine. Then, what will be the value of a west? 

Student: Same. 

Same as this right because it is uniform and it also this will also equal to a west. What will 

be the value of aP
0? 

Student: ρΔ𝑉. 

ρΔ𝑉 by. 

Student: Δ𝑡. 

Δ𝑡. So, for the context of 1D, what will this p? 

Student: ρΔ𝑥. 

ρΔ𝑥 upon. 



Student: Δ𝑡. 

Δ𝑡 and what will be the value of 𝑎𝑝 for an explicit scheme? 

Student: (Refer Time: 25:28) Δ𝑡 minus (Refer Time: 25:30). 

What will be value of 𝑎𝑝? Can you go back and see? 𝑎𝑝 would be equal to 𝑎𝑃
0  for explicit 

scheme isn’t it right for explicit it is the same for implicit you will have extra terms. So, 

this will be same as  

Student: 𝑎𝑝. 

𝑎𝑝, 𝑎𝑝 equals 𝑎𝑃
0  for an explicit scheme right we have derived this before ok. So, far so 

good. So, we have now made several assumptions and got these equations. 

Now, what I would say is that let us say we have an access to a an infinite precision 

computer ok. So, we have a some computer which has infinite precision right so; that 

means, the solution you would get out of that computer would have 0 round-off errors 

right. So, we have an access to infinite precision computer ok; that means, it would give 

you 0 round-off error. 

As a result, the solution you would get from this infinite precision computer we would like 

to denote it using some capital phi (Φ) whereas what we would get from this above 

equation we would call it as let us say 1 that is basically solution coming out of a finite 

precision computer like what we have with us right. And the second one which we are 

talking about is an infinite precision computer whose solution will be Φ, but what equation 

do we solve on this computer? Same discretized equation right only thing is that the 

solution a little phi p(ϕ𝑃) and the capital phi p (ΦP)  would differ by what? 

Student: (Refer Time: 27:16). 

By the round off error at that cell centroid right that is the only difference ok.That means 

are the accumulated round off errors at that cell centroid ok; that means, the solution ΦP 

on a infinite precision computer would come out of solving this equation  

𝑎𝑃ΦP = aEΦE
0 + aWΦW

0 + (aP
0 − aE − aW)ΦP

0 

 fine. So, this is basically a solution that is coming out of 0 round off error calculation ok 
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And now, we would like to call the difference in solution between ϕ and this Φ as the 

what? 

Student: Round off. 

As the round off error that is basically the all the accumulated round-off errors coming 

into play. That means I can calculate what is my ϕ from here as epsilon (ϵ) plus Φ right. 

The solution I have is basically add the round-off error to the exact solution and that is 

what my actual solution that I got ok. 

Now, can I substitute this ϕ back into equation 1 right essentially take this guy and 

substitute into equation 1 can I do that right essentially we have now ϕ which is the actual 

solution so, we will plug it in here. So, what will that be? That will be,  

𝑎𝑃(ϵ𝑃 + ΦP) = aE(ϵE
0 + ΦE

0) + aW(ϵW
0 ΦW

0 ) + (aP
0 − aE − aW)(ϵP

0ΦP
0) right we got another 

equation which is in terms of ϵ and Φ the round-off error and the exact solution. Let us call 

this as equation number 3 fine. 

Then, let me do a some algebra here. Let me subtract equation 2 from equation 3 so that 

means, 3 minus 2 what would this give rise to? By the way are these equations linear? 

They are all linear right because we have its basically a linear algebraic equation for one 

cell is what we are looking at. 



So, can we subtract 3 minus 2 right if we do 3 minus 2 what would you get? You would 

get an equation in terms of ϵ that will be what 𝑎𝑃ϵ𝑃 equals what will be on the right hand 

side? aEϵE
0  right and ΦE

0 term goes away plus aWϵW
0  plus (aP

0 − aE − aW) times ϵP
0  is that 

correct? For every term, there are two terms in the corresponding term in the other 

equation. So, essentially the Φ terms all go away and then only the ϵ terms remain. 

So, what have we got? We got an equation that governs the round-off error and the round-

off error apparently satisfies the same discrete equation as the original equation that we 

have ok. 
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So, that is what we got; that means, the round off error satisfies the original equation as 

the solution right as the dependent variable, the round off error also satisfies the same 

equation ok. So, far so good. 

Now, of course, we talked about this round off error ϵ ok. Now, we need to introduce a 

model for this round-off error right. So, we got some round-off error which is basically a 

function of what both space as well as time right. It is basically a function of both space 

and time. Space we are for the moment considering it as only x direction otherwise it will 

be x, y, z as well if we have a 3D system. Now, what is that we are actually looking for in 

terms of stability? We said a scheme would be stable if the round-off errors. 

Student: Decrease. 



Decrease or do not decrease? 

Student: Decrease. 

They should not increase right that is only condition; that means, the round-off error should 

not grow from time step to time step right. So, if we consider a particular x and between 

two time steps that is t and 𝑡 + Δ𝑡, what will be this ratio between the round-off errors for 

these two time steps? 

(Refer Slide Time: 32:52) 

 

So, we are looking at the ratio of round-off error between in a time step alright. So, that 

will be ϵ(x, t + Δt)would be the round-off error at time 𝑡1 right divided by ϵ(x, t) would be 

round-off error at time level 𝑡0 right. Now, what do we want this term to be? 

Student: Less than or equal to. 

Less than or equal to? 

Student: 1. 

1 so, let us call this as amplification factor which is basically less than or equal to 1 such 

that the round-off errors do not grow from time step to time step ok. So, that is what we 

are saying fine. 



But as of now, we do not know any form for this round-off error ok. So, we can assume 

that the round-off error is composed of several modes right as in a Fourier series right so; 

that means, I am introducing a model for my ϵ(x, t) it is being composed of several waves 

that are basically as a function of space and time that will basically be and I am also 

assuming that it is in the form of a an exponential function or is made up of cosines and 

sines. So, basically is a function of your trigonometric function so that means,  

𝑒𝑖𝑘𝑚𝑥 times 𝑒λ𝑚𝑡 sigma m goes from 0 to some capital M or infinite ok. 

So, essentially I have introduced a model here for the round-off error that we get in a 

computation. Now, I assume that there is round-off error is composed of several waves in 

space and in time and there are also functions of exponentials. Now, why should this 

functions be exponentials? That is a question to you. Why cannot it be some so, polynomial 

some x square, x cube or something like that right that is a question for you to ponder and 

come back to me fine. 

And this 𝑘𝑚 is a wave number that is basically 𝑚 π/𝐿,  the length of the domain right if we 

take a length as L for the problem, this would be the number of waves that you can get 

right. So, what we are saying is that these round-off errors are composed of several waves 

right, each of these waves are defined by m right if you set m equal to 1, you get 1 round-

off error and you get another round-off error and so on. 
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That means what we are essentially trying to say is if I have a let us say this is my domain 

L right. If I have some epsilon this is a round-error, I would say my round-off error is 

something like this in the computer I am using or what we are saying is we are modeling 

this round-off error using a set of cosines and sines right essentially using a Fourier 

expansion is that correct right. 

We have several waves and then, we are modeling as a linear combination of all these 

several waves and then, we say we can somehow represent this using a linear combination 

of all of these things right and the round-off errors also may grow in time or may decay in 

time we do not know. For that matter, we have introduced this thing called 𝑒λ𝑚𝑡 whereλ𝑚 

can again be either a real or a an imaginary constant fine. Questions is it ok, everybody 

with this? 

We have some random distribution of the round-off error in a computer or the entire 

domain and that distribution is what we are trying to approximate using several waves 

right, with several modes right, several frequencies that we have using the wave number 

𝑘𝑚 fine everybody with that. 

Of course, the question remains is why it should be exponential that is one thing which 

you have to kind of look at and come back ok. So far so good; that means, if I would 

substitute this model for the round-off error, I can go back and look at what would be my 

values for this amplification factor right. Essentially, I want to see the amplification factor 

for what? For this particular scheme right. We have considered an explicit scheme for this 

scheme, what will be the amplification factor is what we want to look at. In order to do 

that, because we want to solve for this, we have introduced a model for the round-off error 

that is all we have done. 

Now, what about the linearity of this equation. Is this equation linear or non-linear, the 

original equation this one, discretized equation? This is a? 

Student: Linear equation. 

Linear equation and even if you have source terms what would this equation be? 

Student: Linear (Refer Time: 37:58). 



This will always be linear right because you would somehow circumvent this so, non-

linearity of the source terms or diffusion by introducing additional iterations, but the 

resulting [vocalized-noise] equation we would solve would always be linear. So, this is 

linear. Now, what is the solution variable here, what are we solving for? 

Student: Epsilon. 

Epsilon we are solving for epsilon. 
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Now, we said epsilon is composed of several modes’ sigma m equals 0 to capital M. Now 

because this equation is linear, we can use theory of linear superposition right because the 

solution is linear, it will be summation of all these solutions right.  

I can use linear superposition theory because the equation is linear so, the simplification 

we are trying to get out of this is basically we do not have to look for each and every term 

of this; of this error right we do not have to look for each and every little m rather we can 

just look for one particular m right and if that is unstable, it will make the entire system 

unstable right. As a result, I do not have to look for each and every wave here rather I 

would look for just one component of the solution and that component happens to be just 

some arbitrary value ok. 

So, we are looking at some let us say some epsilon m of x comma t this would be one 

particular mode. This is basically 𝑒𝑖𝑘𝑥 𝑒λ𝑡. So, we say if this mode is unstable if this 



particular solution is unstable, then the original equation be unstable because it is all linear, 

there is no non-linearity. If you have non-linearity, then things could probably get damped 

and there will be some interaction right.  

As a result, because of the linearity of the original equation, we can look at the behavior 

of a single term in the expansion only one term is what we can look at fine good. Then, 

what will be  

(Refer Slide Time: 40:35) 

 

Now, what are the grid points we have? We have east, west and P right. Let us say P is 

characterized by (x, t). What would be the east cell will be? 

Student: (Refer Time: 40:40). 

𝑥 + Δ𝑥  comma.  

Student: t. 

t and west would be? 

Student: x minus. 

x minus sorry it is be minus Δ𝑥 comma t and if it were at time level 1, you would also get 

in addition 𝑡 + Δ𝑡 right. These are all at values 0 if it were at 1, you would get it 



corresponding 𝑡 + Δ𝑡 right all these things. Correct? That is all we have, we have looked 

at the solution. 

Then, if I go back and use the same equation, basically this equation right and substitute 

for the error in terms of the single mode that we have right. So, what are the terms we have 

to now calculate? ϵ𝑃, ϵ𝐸 , ϵ𝑊and ϵ𝑃 all at 0 right all these epsilon 0. 

So, what will be ϵ𝑃 at time level 1 what will this be? 𝑒𝑖𝑘𝑥 what will be the x value? x what 

will be e to the power lambda 𝑡 + Δ𝑡 right. We are plugging in what is the p values for 

epsilon p. What will be ϵW
0  or ϵE

0? What will this be? 𝑒𝑖. 

Student: k 

k. 

Student: Δ𝑥. 

𝑥 − Δ𝑥 times 𝑒λ𝑡? 

Student: (Refer Time: 42:06) 𝑥 + Δ𝑥. 

Sorry this is x plus. 

Student: (Refer Time: 42:10). 

And then, what about λ𝑡 or t minus Δ𝑡 or? 

Student: t. 

t ok; t;  ok. What about ϵW
0 ? 𝑒𝑖𝑘(𝑥−Δ𝑥) 𝑒λ𝑡 right. So, essentially what we are doing is we 

have this particular mode, we are just plugging in what is this for each of the p, east, west 

and at time level 0 and 1 right that is what we are doing.  

Student: Sir. 

Yeah. 

Student: So all these modes should satisfy the equation. 



All of these modes will satisfy. So, essentially your equation would become a equation in 

terms of a sigma right. 

Student: Cannot you directly calculate x (Refer Time: 42:53) Δ𝑡 from this (Refer Time: 

42:55). 

Cannot you directly calculate what? 

Student: (Refer Time: 43:00) x at the epilson t plus delta x comma t as delta from the 

equation. 

No, but x is what varies over 0 to L I think I did not get your question. So, we have a model 

for the error, in terms of some exponential functions and we are considering one particular 

mode of that right and with a hope, we want to substitute this model that we have 

introduced into the original equation right and see if that error grows from time step to 

time step that is what we are trying to do. 

Student: By [vocalized-noise] substituting we will get the value at the next time step. 

We will get a value of at the next time step yes. 

Student: We can get directly from the (Refer Time: 43:42). 

Sure, essentially that is nothing, but you will get again in terms of 𝑒λΔt right. So, we do 

not know what is that λ Δ𝑡. Now, that λ is what we are interested in right. So, we do not 

know lambda, now is there a λ that will make it grow from time step to time step that is 

where we have to bring in the governing equation ok. 

So, essentially the question is we said we have a we said we have modeled the error using 

something right. I said I gave you a problem or you give me a problem and then, we said 

the error is basically some 𝑠𝑖𝑛(2𝑥) is what we said. Now, 𝑠𝑖𝑛(2𝑥) times 𝑒𝑡 I said. Of course, 

this will grow because you have 𝑒𝑡. If it were 𝑒−𝑡, it would actually reduce. 

Now, the idea is cannot we just substitute this back or cannot we just calculate what is e at 

Δ𝑡 divided by e at t? We cannot because that is where this constantly 𝑒λ𝑡 still remains right.  

For that, we have to put back this model that we have introduced for the solution back into 

the discrete equation for error right that is where the equation comes into play otherwise 



your equation is disconnected from the model we have introduced ok. But we have to make 

sure that this model we have introduced would not over ride all the things that we have in 

the equation right fine. Is that clear? Ok fine. We will come back to actually we will use 

what you have suggested, it will it will come as a part of it ok. 

Now, so, these are other values. Do we need to calculate anything else? Do we need 

anything else in the equation? ϵ𝑃is done, ϵE
0  is done, ϵW

0  is done, what else? ϵP
0  needs to be 

calculated. What is ϵP
0? 𝑒𝑖𝑘𝑥 times 𝑒λ𝑡 ok. 

Now, can we substitute all of these back into in equation what equation number was that  

Student: 4. 

Let us call it 4 this is 4. So, substitute into equation 4 so, we have 𝑎𝑃ϵ𝑃 equals aEϵE
0  plus 

aWϵW
0  plus this coefficient times ϵP

0  ok. So, substitute into equation 4 what will be what is 

that we get? 𝑎𝑃ϵ𝑃 is 𝑎𝑃𝑒𝑖𝑘𝑥𝑒λ(𝑡+Δ𝑡) equals on the right-hand side what do we have? aEϵE
0  

so, this is 𝑎𝐸𝑒𝑖𝑘(𝑥+Δ𝑥)𝑒λ𝑡 plus 𝑎𝑊𝑒𝑖𝑘(𝑥−Δ𝑥)𝑒λ𝑡 plus what else? (𝑎𝑃
0 − 𝑎𝐸 − 𝑎𝑊) times 𝑒𝑖𝑘𝑥e 

to the power. 

Student: λt. 

λt ok. Now, what do we see? We see that 𝑒𝑖𝑘𝑥 𝑒λ𝑡 is common. 

Student: Cancel. 

In all the terms so, we can cancel it and also divide everything with 𝑎𝑃 on both sides ok. 
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So, essentially divide using 𝑒𝑖𝑘𝑥𝑒λt𝑎𝑃 on both sides ok. So, if I do this what will remain on 

the left-hand side? 

Student: (Refer Time: 47:37). 

e to the power.  

Student: λ. 

λ Δ𝑡 equals on the right-hand side? 𝑎𝐸 upon 𝑎𝑃 times 𝑒𝑖𝑘Δ𝑥 

Student: Δ𝑥. 

Δ𝑥 the next term would be 𝑎𝐸 upon 𝑎𝑃 times. 

Student: e to the power. 

𝑒−𝑖𝑘Δ𝑥 plus plus (𝑎𝑃
0 − 𝑎𝐸 − 𝑎𝑊) times 

Student: Upon 𝑎𝑃. 

Upon 𝑎𝑃 times. 

Student: 1. 



1 that is all right. So, that is the equation we get alright. So, if we go back to our definition 

of what is the amplification factor ϵ(x, t + Δt) by ϵ(x, t) right this is for a particular mode 

let us say sub m. 

So, if you substitute back into this equation, 𝑒𝑖𝑘𝑥𝑒λt what will this be? This will 𝑒𝑖𝑘𝑥𝑒λ(𝑡+Δ𝑡) 

upon 𝑒𝑖𝑘𝑥𝑒λt. 
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So, how much is this value? 

Student: (Refer Time: 49:17). 

e to the power. 

Student: Lambda. 

Lambda Δ𝑡.  

Now, what do we want? We want this guy to be.  

Student: (Refer Time: 49:24).  

In a magnitude sense, we want this guy to be less than or equal to.  

Student: 1. 



1 right. Now, what have we obtained for this from the scheme? From the scheme, this 

value is nothing but everything on the right-hand side right. So that means, everything on 

the right-hand side here, we want it to be less than or equal to 1 if we do not want our 

errors to grow from time step to time step right. So essentially, we want this condition for 

what? Stability ok. 

So, the derivation is not finished yet. We will introduce the coefficients which is 
Γ

Δ𝑥
 for a 

east, a west and so on. We will plug this back into the 𝑒λ𝑡 expression and then simplify 

and see if we get a condition for the explicit scheme ok. 

So, we will do that in the next class and you would verify the same thing for implicit and 

Crank-Nicholson schemes and you would see that you will not have any condition on the 

stability that is what you would do later on fine. So, we will pick it up in the next class and 

thereafter we will move on to diffusion on unstructured meshes and so on fine. Ok I am 

going to stop here  

Thank you. See you in the next class. 


