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Good morning. Let us get started. So, we were discussing unsteady diffusion and we have 

also derived a general time stepping scheme right, derived a general time stepping scheme 

that is in terms of a factor called f right. Can you help me write down this general time 

stepping scheme? This was 𝑎𝑃ϕ𝑃 equals ∑anb f times ϕ𝑛𝑏 plus?  

Student: 1 minus 1 minus. 

1 minus f times.  

Student: ϕ𝑛𝑏
0 . 

ϕ𝑛𝑏 is 0 plus we have? 

Student: (Refer Time: 01:06) 𝑎𝑃
0 . 

𝑎𝑃
0  minus sigma. 



Student: 1 minus f 1 minus delta. 

 1 minus f 1 minus f times ∑anb, is it? 

Student: Yes. 

Right. 

Student: Yes sir. 

Times ϕ𝑃
0 . 

Student: (Refer Time: 01:22). 

Plus b right, that is what we have and the term b itself is f times 𝑆𝐶  plus f times 𝑆𝐶
0 plus 1 

minus f times. 

Student: (Refer Time: 01:36) 1 minus (Refer Time: 01:38). 

1 minus f times? 

Student: 𝑆𝑃
0, 𝑆𝑃

0 (Refer Time: 01:42). 

So, this was how much? f times 𝑆𝐶  plus? 

Student: 1 minus f 1 minus f. 

1 minus f times?  

Student: 𝑆𝐶
0; 𝑆𝐶

0. 

Student: Plus 𝑆𝑃
0. 

Plus 𝑆𝑃
0.  

Student: ϕ𝑃
0 . 

ϕ𝑃
0 . So, essentially 1 minus f operates on both of them right. On both of them or? 

Student: Yes sir, both of them.  

Both of them ok, times? 



Student: Delta. 

Δ𝑉 right that is what we have. Essentially, goes to the other time level that is 0 and what 

about 𝑎𝑃? 𝑎𝑃 was how much? 

Student: (Refer Time: 02:11) 𝑎𝑃
0 . 

𝑎𝑃
0 .  

Student: Minus f. 

Minus f times? 

Student: 𝑆𝑃 times Δ𝑉. 

 𝑆𝑃 times Δ𝑉 plus f times.  

Student: Summation anb. 

∑  anb right, that is what we have ok. So, we have calculated all these things and of course, 

𝑎𝑃
0  is ρΔ𝑉 upon Δ𝑡 and all our a east, a west all of them have their usual definitions that is 

Γ𝑒Δ𝑦

δ𝑥𝑒
 right and so on right.  
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So, we also said that, we looked at two different schemes by setting the value of f; one was 

an explicit scheme. Explicit Time Stepping Scheme, this we obtained by setting a value of 

f equals 0 right, where the values of ϕ at time level t prevail over the entire time step right 

that is what we said and also, other properties that we looked at were the explicit scheme 

was only order Δ𝑡 in terms of the truncation error right which we did not prove. We said 

this will be of order Δ𝑡 and is the scheme stable for any Δ𝑡 that we choose? 

Student: No, no. 

No right. We kind of derived heuristically by looking at the coefficients of ϕ𝑃
0  right, that 

if it is only kind of conditionally stable. So, if we choose a Δ𝑡 that is some factor times 

order Δx2, then only the scheme produces positive coefficients for ϕ𝑃
0  term right. As a 

result, you would not get wiggles and the solution, you would get would be would 

converge right. 

We also looked at another time stepping scheme by setting f equals 1 that was the implicit 

time stepping scheme by in which we said f equals 1 right. In this case, the values of ϕat  

𝑡 + Δ𝑡 are assumed to prevail over the entire Δ𝑡 right. Essentially, the unknown values are 

assumed to prevail and then, we also said without proof that this is also only order Δ𝑡 

accurate in terms of temporal accuracy. But what about the stability? Can we choose any 

Δ𝑡 that we wish? 

Student: Yes. 

We can actually choose any Δ𝑡 right. So, this is any Δ𝑡 can be chosen because this is 

unconditionally stable that is what we said. We did not prove it again. So, we only said 

this is unconditionally stable. From a heuristic perspective, we never got these coefficients 

which can become negative right. We do not have those coefficients ah; so, 

unconditionally stable.  

However, you cannot choose any Δ𝑡 that you wish because your accuracy may suffer right. 

Essentially, as long as we can take as large Δ𝑡 as possible provided your accuracy is 

guaranteed right; provided accuracy is guaranteed ok. 
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So, if accuracy is not there, then you would have to kind of reduce the size of Δ𝑡 right fine. 

Now, we are going to see one more scheme. So, essentially, the idea is these two time 

stepping schemes are only order Δ𝑡. So, as you refine the time step, your solution accuracy 

would only improve by one order right. It is not going to be square.  

So, as a result, these are not very promising schemes. If you want to reduce the temporal 

error, so we are going to see something known as a Crank Nicolson scheme which is kind 

of intermediate between these two ok, in which you would set f equals one half ok. f equals 

0.5 into the general time stepping scheme and that would give you the Crank Nicolson 

scheme ok. 

Now, let us kind of substitute these back into the original equation. So, into the general 

time stepping equation that is this one and then, see what would be the corresponding 

equations ok. So, maybe you can substitute and again, tell me what would these be. So, 

this would be a𝑃 ϕ𝑃 equals what would be the values on the right hand side? You would 

get a half here and a half from the first two terms right; you have f times ϕ𝑛𝑏 and 1 minus 

f, both of them will be half half right. So, that would be a? 

Student: (Refer Time: 07:09). 

Yeah. So, that is essentially 0.5 times ∑  anb times what?  

Student: ϕ𝑛𝑏 (Refer Time: 07:20). 



ϕ𝑛𝑏 plus ϕ𝑛𝑏
0  right, it is correct ok. So, that is what we have and then, plus what else we 

have? Plus what about the 𝑎𝑃
0  term? That would be 𝑎𝑃

0 . 

Student: Minus. 

Minus 0.5 times? 

Student: ∑anb. 

∑anb times ϕ𝑃
0  plus some b right. Now, this b is of course you have the source terms is 

there which is basically this term right. So, you have a 0.5 coming from 𝑆𝐶  and 𝑆𝐶
0 and 𝑆𝑃

0  

ϕ𝑃
0  would also have a one half multiplying them right. Essentially, you have one half 

multiplying this entire thing. So, this is what? This will be one half times 𝑆𝐶  plus 𝑆𝐶
0 plus 

𝑆𝑃
0 ϕ𝑃

0  times Δ𝑉. Is that correct? Yeah ok. So, that is that is the value. What about 𝑎𝑝? 𝑎𝑝 

was how will be how much now?  

Student: Same (Refer Time: 08:35). 

Same? 

Student: 𝑎𝑃
0 . 

𝑎𝑝 would be 𝑎𝑃
0 . 

Student: Point (Refer Time: 08:40). 

Minus 1 half times? 

Student: 𝑆𝑃 Δ𝑉. 

𝑆𝑃 Δ𝑉. Oh sorry, this is minus 𝑆𝑃 right. This is correct. 

Student: Minus. 

Minus 0.5 into 𝑆𝑃 Δ𝑉 and then plus 0.5 times? 

Student: ∑anb. 



∑anb right ok. Is that correct? Just plug in f equals one half into the general equation ok. 

So, this is correct. So, these are the discretized equations for Crank Nicolson scheme and 

of course, you are 𝑎𝑃
0  would remain the same, that is ρ times Δ𝑉 by Δ𝑡 ok.  

So, what we say is that this scheme uses a linear interpolation between values of ϕ at t and  

𝑡 + Δ𝑡. As a result, you would get this one half factor in there ok. And so, what about will 

if we kind of make some comments about this scheme, what do you observe here? Is the 

right hand side completely in terms of known values or is it completely in terms of 

unknowns or what is it? 

Student: (Refer Time: 09:40) both; both. 

It is both. So, do you need to solve a system of linear equations at every Δ𝑡? 

Student: Yes, yes. 

Yes, you need to. So, this is more like a implicit scheme, but then you have a half of the 

explicit component also coming into play, that would go to the b term right that is also 

there.  
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So, if we look at the comment. So, then this is; so, need to solve a system of linear algebraic 

equations at every Δ𝑡 ok. Now, what about the coefficients? Would all of them be positive 



or would some of them may become negative? So, anb’s are always positive right; anb’s 

are always positive, what about the coefficient for a ϕ𝑃
0? Can this become negative?  

Student: No. 

No, ϕ𝑃
0  can the coefficient become negative under certain conditions. It can become right 

because 𝑎𝑃
0 , if it falls below half of ∑ anb, this coefficient can become negative. This is 

similar to what, we saw in the explicit case right. So, if your 𝑎𝑃
0  falls below one half ∑anb, 

then the coefficient of ϕ𝑃
0  could become negative ok, which is not good. Because if it 

becomes negative, then you will get into this oscillatory solution, which would eventually 

lead to divergence right. 

Because ϕ𝑃
0  is the previous time level value and an increase in the previous time level 

value would actually decrease the value at the current time step for the same cell and this 

is not good. This is again from a heuristic perspective ok. Now, this is rather kind of 

conflicting right, we kind of have a value of f equal to half.  

So, we are saying we are solving a system of linear equations; but then, we have now a 

condition on the stability right. So, this is not like the implicit fully implicit scheme right. 

This is kind of a half implicit half explicit. So, this  could become negative which is not 

desirable, then you may have a question, then why do we actually solve for the scheme 

right. 

It is not offering any advantage; you still have to solve for a system of linear equations. It 

turns out without proof; again, I am saying here which we will do it later or you would do 

it later, which would be the order of accuracy for time good, for this scheme comes out to 

be order Δ𝑡2 ok.  

So, this is second order accurate in time which the previous two schemes were not ok, 

because the previous schemes are only first order accurate in time. So, second order 

accurate in time that means if we can choose the Δ𝑡 wisely, then we can make the error go 

down quickly compared to the other schemes right. 
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So, ok. So, that is the advantage here. The truncation error, you would make would be 

would go down at the rate of Δ𝑡 square. As a result, you would prefer this, as you refine 

Δ𝑡. So, that is the advantage that Crank Nicholson offers on top of the other two methods; 

the explicit and the fully implicit methods. Now, if you go back to the equation, we had 

this condition. Right now, we said there is this condition; this has to be satisfied so that the 

coefficient does not become negative. 

Now, under what circumstances can we get rid of this coefficient? Only for fully implicit, 

let us say you come up with your own scheme. You say f is why it should be 0.5, I would 

come up with my own scheme, I will say f equals 0.3 right that is of course possible; it is 

not people would not work with that as such. But in that case also would you still expect 

a coefficient here or no?  

Student: Yes. 

Yes right. Essentially, for all the values of f that is other than 1, you would have a 

conditional stability only like the explicit scheme ok. So, that is one thing to note. So, any 

f not equals 1 will have conditional stability right ok, will have only conditional stability 

that is what we look at it from here, fine. So, this makes a linear approximation between 

the two time level values. 
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So, Crank Nicolson makes linear approximation between t and s 𝑡 + Δ𝑡 ok. Questions till 

now? Now, how difficult or easy this is to code? So, if you have a fully implicit solver, is 

it very straightforward to do this thing right; it is. Is not it? Because you just have to take 

half of that amount and then, put the other half into the b terms and so on right; whereas, 

if you have an explicit thing, you cannot do it easily; you still have to solve for the linear 

system ok. 

So, in terms of the implementation Crank Nicolson would be pretty much the same as what 

we have right for the implicit scheme. So, you do not have to code something extra, once 

you have in code for implicit schemes ok. Questions? No? Clear, understood? Fine, all 

right. Then, let us move on. So, the next thing, we are going to look at is we will evaluate 

the truncation error that we have encountered in our or made in our schemes ok. So, that 

is basically the spatial and the temporal truncation error analysis. 

Because up till now, we said we have made several profile assumptions, everywhere right, 

without actually looking at what is the order of accuracy of the finite volume scheme that 

we have developed ok. So, now we kind of revisit that. So, we will look at the truncation 

error that is made. So, essentially, we made several profile assumptions. So, we will see, 

we will kind of quantify the truncation error ok.  
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For both steady diffusion equation which will give us the spatial truncation error and we 

will look at the transient or the unsteady diffusion equation, which would give us both the 

spatial and temporal truncation errors fine. So, let us look at the steady diffusion equation; 

that means, we are looking at the spatial truncation error that we have incurred while 

making certain profile assumptions in the discretization ok.  

So, if you look at the steady diffusion equation, that is ∇ ⋅ (Γ∇ϕ) + 𝑆ϕ = 0right. So, what 

are the several assumptions we have made in discretizing this equation using finite volume 

method? If you go back.  

Student: Linearization; source term linearization. 

Source term linearization ok, that is one thing; but source term linearization is something 

that we have already defined it. So, before that what was it? So, we had to linearize the 

source, but we assumed that the source term value is representative; the mean value in the 

cell is representative by the cell centroid value right. It is a representative of the mean 

value. So, that is the first approximation we have made right. Of course, we have made a 

we have linearized the term as well right; but before that we have done the representation 

by a cell centroid value right. 
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So, that is the source term that is if you have integral 𝑆ϕ𝑑𝑉, we said this is represented 

using some 𝑆ϕ
̅̅ ̅ times Δ𝑉 right. So that means the mean value of source term. Now, what is 

the mean value? An average value that is average value or the entire cell right.  

So, that is represented by the left hand side right; if I have a mean value that is represented 

by the left hand side and the right hand right hand side says that this is the average value 

is evaluated using at the cell centroid that is 𝑆ϕ
̅̅ ̅ this is at P right. If we have cell centroid 

P, this 𝑆ϕP
̅̅ ̅̅̅ right, that is we are calculating at ϕ𝑃, 𝑥𝑃̅̅ ̅ right. This is evaluated ϕ𝑃, 𝑥𝑃̅̅ ̅ right like 

similar to what we are done in the assignment. 

So, the mean value of a source term is represented using the cell centroid value right, that 

is we calculated at 𝑥𝑃 right, that is what we have done. And after this anyway, we have 

introduced a linear model right which we saw that there is no effect of it in at the time of 

convergence. Because the linear model recovers the original source term that we have right 

at the as we converge our iterations fine. What are the other assumptions, we have made 

in the same discretization? 

Student: Face centroid value. 

Face centroid value. So, we got this other term which is basically ∇ ⋅ (Γ∇ϕ), we did a Gauss 

divergence theorem and then, in the integration, we have replaced it with a summation 

saying that the value of gamma grad phi on the face could be represented using the face 



centroid value ok. So, there is an analogy between what we are saying now for the diffusion 

flux on the face and the source term that we have just said now right. There is an analogy 

because we are talking about either face centroid or cell centroid right.  

So that means, the Γ∇ϕ on the face e is taken to be the value at the face centroid right. So, 

the face centroid value, if we can calculate that remains the same on the entire face that is 

an average mean value, which we have taken an integrated converted our integral into a 

summation right.  

Because we had this integral Γ∇ϕ ⋅ dA⃗⃗⃗⃗  ⃗ that we converted into ∑(Γ∇ϕ ⋅ A⃗⃗ ) right that is what 

we have done. So, this is a face centroid value. What are the other things that we have 

done? Have you done any other assumptions; profile assumptions?  

Student: Linear profile assumption. 

Linear profile assumption 
𝑑ϕ

𝑑𝑥
. So that means, after this we have done the 

𝑑ϕ

𝑑𝑥
 and 

𝑑ϕ

𝑑𝑦
, all 

those things we said that this is evaluated using ϕ𝐸 minus ϕ𝑃 upon δ𝑥𝑒. So, this is a linear 

profile assumption. So, we assume that the ϕ varies linearly with respect to x right. So, 

these are the three profile assumptions, we have made about the variation of the dependent 

quantities right all right. Then, if you look at it, if we want to categorize these three, what 

about the first and two items that we have listed here, are they one and the same? 

It is basically saying that if you have a value on a particular face or on a particular cell that 

we are represented using the face centroid value or the cell centroid value right. That 

means, the mean value is an approximation by the cell centroid value right that is what we 

are saying. So, essentially one and two are one and the same right. They are the same and 

the third one is a profile assumption right that is about calculating the gradient of the 

dependent variable phi ok. 

So, we are first going to look at the first one that is basically this is the mean value 

approximation or average value in the cell and then, we are going to look at the second 

one, this is basically your gradient approximation and see what are the truncation errors 

that we would get from these two terms ok. In order to do the analysis, I would assume a 

1D uniform grid ok. We will talk about a non-uniform grid little later ok, I will make you 

comment on it. 
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So that means, first let us look at the mean value approximation. So, I am considering a 

one-dimensional uniform grid ok that would be that would be what? That would look like 

this ok. So, we have a P cell, east and west and we have the faces that is the little e and 

little w ok. I will also consider the dependent variable to be some function ϕ(𝑥) ok, it 

varies with x and this is the P cell is the control volume, we are looking at ok. 

Now, because this is uniform, this distance is let us call it as Δ𝑥 and the distance between 

the cell centroids also would be Δ𝑥 right. It is a uniform mesh everywhere. Now, let me 

express ϕ(𝑥) about the cell centroid value that is P about ϕ𝑃. So, I want to use a Taylor 

series and expand ϕ(𝑥) that is within the control volume or between the control volumes, 

expand ϕ(𝑥) about ϕ𝑃 right. Now, ϕ at P is a particular value right and ϕ(𝑥) is a continuous 

function right. 

Similarly, all the derivatives at the cell P would be particular values right. If you were to 

write 
∂ϕ

∂x
|
P
, this would be a particular value right ok. Now, if I were to write this, how do I 

write ϕ(𝑥)? That would be ϕ𝑃 plus at any location, let us say x that would be Δ𝑥 that would 

be x minus x𝑃 right. If it is going to the positive x side, you would have positive Δ𝑥; if it 

is going to the negative x side, you will have minus automatically taken care of ok, times 

what? 

Student: (Refer Time: 26:51). 



∂ϕ

∂𝑥
 evaluated at? 

Student: P. 

P plus x minus x𝑃 whole square by 2 factorial 
∂2ϕ

∂𝑥2  evaluated at p and so on right, that is our 

Taylor series expansion for variable ϕ(𝑥) about ϕ𝑃 about the cell centroid value all right. 

So, now, let me integrate this on the entire control volume. The idea is essentially we want 

to calculate a mean value for this ϕ(𝑥) right. Now, ϕ(𝑥) could be something like a source 

term right. It could be a source x ok. Now, what would be the integration for the entire 

cell? We are going from west face to the east face right. 
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So, integrating the above equation over a control volume that means, what would be our x 

tends? Integral 𝑥𝑤 to 𝑥𝑒, ϕ(𝑥)𝑑𝑥 right equals; on the right hand side integration would be 

𝑥𝑤 to 𝑥𝑒, ϕ𝑃𝑑𝑥 plus 𝑥𝑤 to 𝑥𝑒, (𝑥 − 𝑥𝑃)
∂ϕ

∂x
|
P
𝑑𝑥 plus what else? Integral 𝑥𝑤 to 𝑥𝑒, 

(𝑥−𝑥𝑃)2

2!
 
∂2ϕ

∂x2 |
P
dx and so on right, that is what we have right. 

We have just integrated the Taylor series about the control volume all right. So, then, let 

us leave the left hand side as it is and consider each and every term on the right hand side 

ok. So, what will be the first term on the right hand side? Integral 𝑥𝑤 to 𝑥𝑒 ϕ𝑃𝑑𝑥. What 

will this be?  



Student: (Refer Time: 29:04). 

ϕ𝑃 times?  

Student: x. 

x; x is nothing but 𝑥𝑒 minus 𝑥𝑤 that is ϕ𝑃 times?  

Student: Δ𝑥. 

Δ𝑥 right. ϕ𝑃 is constant. So, ϕ𝑃 times x is what you would get and substitute the limits that 

is 𝑥𝑒 minus 𝑥𝑤. 𝑥𝑒 minus 𝑥𝑤 is? 

Student:  2Δ𝑥;  2Δ𝑥. 

 2Δ𝑥, is it why? 

Student: (Refer Time: 29:28). 

This is 𝑥𝑒, 𝑥𝑒 is here, 𝑥𝑤 is here, is only Δ𝑥 right. It is not the capital E, its only the little e 

right. We are the control volume goes from 𝑥𝑤 to 𝑥𝑒 right, not from 𝑥𝑊 to 𝑥𝐸 right ok. So, 

this is only Δ𝑥 right; yeah ok. What about the second term?  
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Integral 𝑥𝑤 to 𝑥𝑒, (𝑥 − 𝑥𝑃)
∂ϕ

∂x
|
P
𝑑𝑥, what will be this? Can you have a change of variables 

here? We call may be some t as (𝑥 − 𝑥𝑃) ok, that is have a change of variable. Let us call 

t as (𝑥 − 𝑥𝑃) and dt would be equal to dx. What will this be then? Integral 
∂ϕ

∂x
|
P
 is anyway 

constant right, times t dt; what will be the limits? 

Student: 𝑥𝑤 − 𝑥𝑃 minus x p. 

𝑥𝑤 − 𝑥𝑃 or so essentially, if you have 𝑥𝑤, then t would be 𝑡𝑤 would be how much? 𝑥𝑤 − 𝑥𝑃 

that will be how much?  

Student: Minus delta. 

Minus Δ𝑥.  

Student: By 2. 

Divided by 2 right. 𝑥𝑤 to 𝑥𝑃 ok; similarly, 𝑥𝑒 would produce 𝑡𝑒 that will be 𝑥𝑒 − 𝑥𝑃 that 

will be?  

Student: Δ𝑥. 

Plus Δ𝑥/2 right. The changing the limits from 𝑥𝑒 to 𝑥𝑤 to about 𝑥𝑃 you would get half on 

each side,  −Δ𝑥/2 to  Δ𝑥/2 right because now here x p 0 ok. Very good. So, what is this 

value now? What will be this entire integral? 
∂ϕ

∂x
|
P

𝑡2

2
 right going from  −Δ𝑥/2 to  Δ𝑥/2. 

What will this be?  

Student: (Refer Time: 31:35). 

This will be 0. Is not it? Just have an even function going from minus you know this will 

be 0 ok, this will be 0, fine. What about the next term? That is 𝑥𝑤 to 𝑥𝑒, 
(𝑥−𝑥𝑃)2

2!
 
∂2ϕ

∂x2 |
P
dx. 

If you do the same analysis right, what will that be? That will be  −Δ𝑥/2 to  Δ𝑥/2, you will 

have  
∂2ϕ

∂x2 |
P

𝑡2

2
𝑑𝑡 right. Would it be? This one yeah, just change of variables fine ok. 
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Now, this will be how much? This will be 
∂2ϕ

∂x2 |
P
 evaluated at the cell centroid P times this 

will be 𝑡3/6. So, this will be 𝑡3/6 going from  −Δ𝑥/2 to  Δ𝑥/2. So, how much would this 

be? Sorry, this will be Δ𝑥/2 to the cube. You will get 2 cube 8, 48 right in the denominator 

and you have two 148th terms. So, that will be 1 upon 24 right. So, this will be Δ𝑥3/24 

right that is what you would get fine. 
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Now, let us go back and put it back into our equation. So, if you plug it in back, what will 

be the complete equation you have? 𝑥𝑤 to 𝑥𝑒, ϕ(𝑥)𝑑𝑥 equals what is the first term? ϕ𝑃 

times Δ𝑥 right that is the first term. What about the second term? 

Student: 0. 

0. Third term, what we just got right. This is order Δ𝑥3 term right that is what we got all 

right, that is kind of sufficient to give us an idea. Now, how do I define a mean value of 

some quantity? That is nothing but integration of the quantity or the cell divided by? 

Student: (Refer Time: 34:03). 

Volume of the cell or length of the cell or area of the cell; that means, I would divide 

everything by Δ𝑥. So, essentially divide by Δ𝑥, I would get integral 𝑥𝑤 to 𝑥𝑒 
ϕ(𝑥)𝑑𝑥

Δ𝑥
. So, this 

is what? This is the definition for mean value right. This is mean value and what did we 

say? This is equal to, this is equal to now on the right hand side is ϕ𝑃 plus order.  

Student: Δ𝑥2. 

Δ𝑥2 right ok. So, what did we say? We said ϕ𝑃 right is the value of the cell centroid right. 

So, in our analysis, what did we say? We represented the mean value using only this 

quantity right. So, what is the truncation error involved in that?  

Student: Second order. 

Second order right. Did you say the second order scheme? So, what we have is a second 

order accurate scheme ok, when you represent the mean value by either a face centroid or 

by cell centroid right. Now, would the same thing apply for the Γ∇ϕ east also? 

Student: Yes. 

Yes, because there also you have an integration on the face right and then, you have Γ∇ϕ. 

So, it will apply. So, for both items 1 and 2, we have second order accuracy all right If it 

is kind of good to write to this coefficient. So, what we have is 
∂2ϕ

∂x2 |
P
 ok. Now, let us say 

you have a source term, we are talking about represent the integration of the source term 

using a cell centroid value right, average value. 



So, this ϕ is more like a source term or it could be Γ∇ϕ something like that. Now, if you 

have a source term that is constant ok, what will be the this expression boiled down to? If 

we have a constant source term, what will happen to this term, 
∂2ϕ

∂𝑥2?  

Student: 0 (Refer Time: 36:15). 

0 right. You have a constant source and then, what will be the mean value approximation 

of ϕ𝑃? That will be exact right. So, essentially, this approximation is exact if S is a constant 

right. If S is constant, 
∂2ϕ

∂𝑥2; this will be 
∂2ϕ

∂𝑥2  that would be 0. As a result, your mean value 

for the source term would be only the value at the cell centroid that is exact. Because you 

do not have any more term surviving right, fine.  

We are talking about spatial dependency here. Do not get confused between ϕ𝑃, do not get 

confuse with the linearization ok. You are if I used ϕ, but this could be either a source term 

or it could be Γ∇ϕ, some variable right. Do you see that? Ok. 

What about if the source is S is linear function of x? If it is a linear function of x, you will 

have 
𝑑𝑆

𝑑𝑥
 would be non zero right. If it is a linear function, this would be non zero; but what 

about the higher derivatives of the source term?  

Student: 0. 

0s and but, do you have a linear term coming into play here? No. So, even if you have a 

linear variation for S in x, this approximation is exact ok; but if you start having a second 

order representation for your source terms, then this representation is not exact ok. For 

example, if you would recall I think in one of the assignments you had a source term in 

the first assignment; source term was given as some 5𝑥2; is not it?  

So, there if you had used the cell centroid value which is 5𝑥𝑃
2  square, you will be making 

this truncation error right, rather if you have done a integration just like using a analytical 

expressions. Then, you would actually probably getting an exact value ok, that would be 

the difference you would have made ok. 

But once, you convert your solution, you will not see any difference right. So, that we can 

cross check by redoing it with a different source term. Fine; everybody understand here 

ok? So, this is expression is exact for both the constant as well as a linear variation of the 



source term; but it incurs order Δ𝑥2 truncation error, if you have anything higher variation 

than that ok.  

Student: Sir, (Refer Time: 38:45) you will have first term right. 

You will have first term, but the thing is your first term is not is not surviving in the 

truncation error analysis. Because of the because of the integration here right, it only 

depends on this mean value approximation only depends on 
∂2ϕ

∂𝑥2 terms right. The 
∂ϕ

∂𝑥
 terms 

got cancelled right. 

Student: (Refer Time: 39:06) Γ∇ϕ plus x, y is equal to 0. So, that ∇ϕ is equal to S (Refer 

Time: 39:15) one more derivative means 
∂2ϕ

∂𝑥2  equal to (Refer Time: 39:17) 
𝑑𝑆

𝑑𝑥
 (Refer Time: 

39:19). 

Student: So, (Refer Time: 39:21) 
𝑑𝑆

𝑑𝑥
 is not equal to 0, then 

∂2ϕ

∂𝑥2  we have (Refer Time: 39:25). 

Yeah sure. So, see the question is if I have source term as a function of let us say is a linear 

function of x right. So, what did we say? We said that we are representing the mean value 

using only the cell centroid value right. Now, this expressions are one and the same. Either 

if you have ϕ as a constant or ϕ as a linear function of x because this expression does not 

contain any first derivatives right. If there are first order derivatives here, then this would 

be not exact even for a linear function of S right, that is what I mean to say. Other 

questions? No, clear ok. 

Now, one question to you is what will happen if you have non uniform mesh? We consider 

Δ𝑥; will this still be second order accurate, if I have a non-uniform mesh? So, for that we 

have to go back. So, even if I have a non; so, where is my term getting going out? That is 

basically the second term right. So, even if I have a non-uniform mesh, what will happen 

to my limits? Would they be equally on both sides of the centroid? 

Student: (Refer Time: 40:38). 

They will be; for the cell they will be. But cell to cell the Δ𝑥 would be different right. See 

this is this is integration of limits from 𝑥𝑤 to 𝑥𝑒. So, 𝑥𝑤 and 𝑥𝑒 would be always equidistant 

from the centroid right. But not the Δ𝑥 of P would be different from Δ𝑥 of east, east cell. 



So, in that sense, even if I have a non-uniform mesh would I still get a 0 for the second 

term.  

Student: Yes. 

Yes, I will right because if I have a non uniform mesh. 

(Refer Slide Time: 41:14) 

 

So, if we have a non uniform mesh, then how does the mesh look like? It will look like I 

have 1 cell here, another cell here and something else here ok. So, this is my P cell, this is 

my E cell that means, my Δ𝑥𝑃 would be different from Δ𝑥𝐸 , Δ𝑥𝑊 right.  

The cell widths of each of the cells are different, but the limits of integration would be 

−Δ𝑥𝑃/2 to Δ𝑥𝑃/2 that is 𝑥𝑤 to 𝑥𝑒 which will be equidistant within the cell about the 

centroid right. As a result, your mean value approximation will still have a 0 for the first 

derivative right, but this. 

So, it will be still second order accurate, even if you have a non-uniform mesh, the mean 

value approximation ok. So, the mean value approximation is second order accurate, even 

for non uniform meshes ok. Fine? Everybody agrees or questions? Ok all right. Then, let 

us look at the other term that is the gradient approximation right because this takes care of 

the source term and the Γ∇ϕ on the faces. 



We look at the gradient approximation that is 
dϕ

dx
|
e
=

ϕ𝐸−ϕ𝑃

δ𝑥𝑒
, that is the only term remaining 

right in terms of approximation, linear profile assumption that is basically the gradient 

approximation ok; wherein, we 
∂ϕ

∂x
|
e
=

ϕ𝐸−ϕ𝑃

δ𝑥𝑒
 ok. 

(Refer Slide Time: 43:36) 

 

Now, let us consider a uniform grid again ok; its basically same as what we had before, I 

am considering a uniform grid and this is P, this is capital E, this is west and our faces are 

east and west ok. Now, let me expand ϕ𝑃 and ϕ𝐸 about the face e ok. So, essentially, we 

are expanding the values expanding ϕ𝐸 and ϕ𝑃 about ϕ𝑒 ok; about the face value, I am 

expanding the cell values. I mean essentially, we are interested in what is 
𝑑ϕ

𝑑𝑥
 right at the 

face. 

So, when would I calculate 
𝑑ϕ

𝑑𝑥
 at the face, only if I expand about that term right. If I expand 

about ϕ𝑃, I will get gradients at P that is not what we want. What we want is 
𝑑ϕ

𝑑𝑥
 at face 

value e. So, we are expanding  E and P about the face that is little e. So, that we can see if 

we can get an estimate for this value right because this will show up in the Taylor series 

that is what we are doing. So, then, what would be the distances now? About ϕ𝑒, what will 

be these two distances?  

This will be Δ𝑥/2; the other one would be the distance wise Δ𝑥/2, but it will be in the 

negative x direction ok. So, this is x direction ok. Then, what would be ϕ𝐸 about ϕ𝑒? ϕ𝑒 



plus  x capital E minus x little e that would be Δ𝑥/2 right; 
∂ϕ

∂x
|
e
 at e, is that correct? Yes, 

plus a what else? (Δ𝑥/2)2 upon 2 factorial, 
∂2ϕ

∂x2 |
e
 at east and so on right. What about ϕ𝑃 

about ϕ𝑒?  

Student: Phi 

ϕ𝑒 minus Δ𝑥/2  
∂ϕ

∂x
|
e
 about east; what next? Plus Δ𝑥2 upon 8 right; 

∂2ϕ

∂x2 |
e
 about east minus 

and so on right. Correct? Ok. 

(Refer Slide Time: 46:22) 

 

Then, what do we want? We want ϕ𝐸 minus ϕ𝑃 lets subtract 1 subtract 2 from 1; so, 

essentially we are looking at 1 minus 2. So, on the left hand side, we have ϕ𝐸t minus ϕ𝑃 

equals what will be there on the right hand side? ϕ𝑒 gets cancelled; first term gets 

cancelled; second term gives rise to?  

Student: (Refer Time: 46:42). 

Two halves will be 1. So, this will be Δ𝑥
∂ϕ

∂x
|
e
. What about the third term? 

Student: 0. 

 Gets cancelled. What about the fourth term? 



Student: (Refer Time: 46:50). 

You will have some value that will be order Δ𝑥3 or 4 or? 

Student: Cube. 

3 ok, Δ𝑥3 ∂3ϕ

∂x3 |
e
 right, that is what we will have ok. Then, what is that we want? We want 

ϕ𝐸 − ϕ𝑃 by Δ𝑥 equals 
∂ϕ

∂x
|
e
 at east plus, what will be this term?  

Student: Δ𝑥. 

Order Δ𝑥2 times something right. So, when we calculate 
∂ϕ

∂𝑥
, if you only approximate it 

with 
ϕ𝐸−ϕ𝑃

Δ𝑥
, what will be the truncation error that is involved?  

Student: Order (Refer Time: 47:36). 

Order Δ𝑥2 right. So, this is also second order accurate ok. 

(Refer Slide Time: 47:47) 

 

So, essentially, the linear profile assumption for the gradients 
∂ϕ

∂x
|
e
 is second order accurate 

right. This is second order, that is order Δ𝑥2. So, with this all the terms that we have or the 

all the profile assumptions are now done right and all of them are what order of accuracy? 



Second order. As a result, the steady diffusion equation is order Δ𝑥2 ok; for I would say 

uniform meshes right now because that is what we have considered ok, for uniform meshes 

and for uniform meshes ok. We have also seen that for non-uniform meshes, the mean 

value approximation is still second order accurate ok. This is order Δ𝑥2 because every term 

has truncation error of order Δ𝑥2 in this steady diffusion equation. 

Now, what about non uniform mesh in the context of gradient approximation? So, this is 

non uniform mesh for gradient calculation. Is it still second order? Yes? Yes or no?  

Student: No. 

No; why? 

Student: Δ𝑥 will be different. 

Δ𝑥 will be different right because what will happen to this Δ𝑥/2? This will be Δ𝑥𝐸/2, what 

will happen to this guy?  

Student: Δ𝑥𝑃/2 (Refer Time: 49:39). 

Δ𝑥𝑃/2. As a result, these two as a result this would not get subtracted off right. So, sorry 

yeah, I mean this is the second term right; this term would not get subtracted off. So, it 

will this will still remain there ok. So, essentially this term would still remain there, this is 

(Δ𝑥𝐸/2)2 and this would be (Δ𝑥𝑃/2)
2 right. As a result, you would not get order Δ𝑥2 terms. 

Rather you would start getting terms which are order Δ𝑥 that means, you would still get it 

will be only order Δ𝑥. This will be only first order accurate, if you have non uniform 

meshes ok. 

As a result, the if you have non uniform meshes, the total order of accuracy will come 

down to first order because some terms are first order accurate ok. So, we have to now 

look at the unsteady diffusion equation and in the unsteady diffusion equation, we will 

look at both spatial and temporal truncation errors. But the spatial errors are pretty much 

the same as what are there in the steady diffusion equation because those are the same 

assumption we have made. 

But anyway, we will quickly look at that in the next class fine. So, I am going to stop here 

and see you guys in the next class. 



Thank you.  


