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Good morning. Let us get started. So, we are looking at the Thomas algorithm. or also 

known as the Tridiagonal Matrix Algorithm ok. Yesterday we have discussed how kind 

of this works, as a kind of special case of or a modification of the Gauss Seidel gaussian 

elimination process right. So, let us; let me kind of write the complete algorithm today. 

So, the first step is to calculate the coefficients Pi and Qi right. So, the first one is P 1, 

what was P1? 

Student: (Refer Time: 00:56). 

P1 𝑃1 =
𝑏𝑖

𝑎1
   and Q1 is; 𝑄1 =

𝑑𝑖

𝑎1
  how much was Q1? d1 upon a1 is it? Can you help me 

write this? Was it d1 upon a1? Correct, ok. So, this is P1 and Q1. 



Then what do you do? Then you use the Recurrence relations and, calculate P i as which 

is given by; how much was P i?   𝑃𝑖 =
𝑏𝑖

𝑎𝑖−𝑐𝑖𝑃𝑖−1
  is that correct? Ok? And then we 

have   𝑄𝑖 =
𝑑𝑖+𝑐1𝑄𝑖−1

𝑎𝑖−𝑐𝑖𝑃𝑖−1
   . Is that correct? So, that is what we have. 

So, essentially for i equals 2,3 all the way to N minus 1 to N. We are going to kind of use 

these recurrence relations and calculate what is Pi and Q i, right. Ok? Alright. So, then I 

want to have P i and Q i what do we do? Back substitution. P i and Q i is known. Set 

what is TN right. You start off what is TN equals QN right. And what do we do next? 

Student: (Refer Time: 02:26). 

Use the T i relations and calculate using back substitution, what is what is TN minus 1, 

TN minus 2 and so on to T1 right. So, essentially use then the relation  𝑇𝑖 = 𝑃𝑖𝑇𝑖+1 + 𝑄𝑖   

is it? Was it Qi? Right. Use this relation, and calculate for i equals N minus 1, N minus 2 

and so on, all the way to 1 right or 2 whatever ok. 

(Refer Slide Time: 02:54). 

So, essentially you calculate all the temperatures. That is alright. You have obtained all 

the temperatures in the back substitution process ok. So, this is the algorithm for TDMA, 

right? Which you can kind of code and it will give you solution much faster compared to 

the gauss seidel right. Questions on this? Ok. So, would you be able to code this part? 

The algorithm is already there. You essentially need arrays for your a b c d which you 

already have from the discretization and then you need arrays for P and Q right you 

would need arrays for P and Q and of course, temperature also would be there right. 

So, if we have to write you have to write a kind of a function that takes in these 

arguments and calculates what is the temperature? ok. So, you need a small subroutine or 

a function that you would write, which will calculate this and then give you back the 

field temperature array, ok. That is what you would do. Fine. 

Any questions? No? Alright then let us move on. So, we will look at; continue look at the 

solution of linear algebraic equations for the 2 dimensional and 3 dimensional situations 

ok. So, that is. So, this is again solution, a kind of linear algebraic equations in 

essentially 2D, of course, you can also extend this to; you can easily extend to 3D as 

well, ok. The same concept you can extended. 



Now, as far as the solution of linear algebra equations in 1D is concerned, We have now 

learnt two methods; right. The first one was; what was the first method? Gauss Seidel 

right? This was, that was Gauss Seidel which we call it as a point by point method. Ok. 

That is, because you kind of go from one piece l to the next one and keep iterating. The 

other one we saw was the tridiagonal matrix algorithm ok. We looked at Tridiagonal 

matrix algorithm or the Thomas algorithm right? Which kind of gives you solution in 

like one shot essentially, ok. By solving this the algorithm that we just saw. Fine. 
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Now, if I kind of want to repeat a few things here. So, that we can use some terminology. 

So, in case of Gauss Seidel, let us say if you have 𝑎𝑝𝜙𝑝 = Σ𝑎𝑛𝑏𝜙𝑛𝑏 + 𝑏  , if this is our 

discretized linear equation that we have. Then in Gauss Seidel, what we did was, we kind 

of rearrange this equation for every cell and we wrote this as phi p which is the unknown 

at any cell ok. So, which is the unknown at any cell we calculated by writing it as a and b 

phi and b star plus b upon ap right. 

Where I have now included a star, a superscript star, which denotes the latest available 

value ok; that means, if we are looking at a p cell, the west cell value would be the one 

that is just iterated, just updated and the e cell value would be the one from the previous 

iteration right? So, that is what we mean. And similarly, if you are let us say going from 

left to right and bottom to top, the south value would be the one which is just updated 

and the north value would be the one which would be updated ok. So, that is what we 



mean by the star. The star is the latest value of phi n b that is available in that cell, ok. 

Excuse me. Alright. 

(Refer Slide Time: 07:10) 

 

So, then this is the concept. Now, let us say how do I now extend it to two dimensions? 

Of course, in both 2D and 3D, you can have Gauss Seidel, as a piece, ok. You can still 

apply Gauss Seidel only thing is that, it will be kind of slow, because the information 

only propagates by one cell per iteration in Gauss Seidel. Right. 

Because, you have one Sweep in which the information goes from one p cell to the e cell 

after the end of the iteration, ok. So, because information only propagates, ok., this 

information we mean that the boundary condition information. Right. Because we have 

specified some information. So, the boundary condition information that we have only 

propagates by one cell per iteration. As a result, Gauss Seidel could be slow to converge 

for 2D and 3D problems, ok. 

 So, what; So, what we kind of resort to is a is a method which is a combination of a 

direct method and this iterative method, that is the Gauss Seidel, ok. Now, of course, you 

are also welcome to develop a direct method for 2D and 3D problems. Only thing is that 

whatever the Thomas algorithm we have developed, that has to be kind of extended to a 

Penta diagonal matrix. Right. Instead of, let us say if you are looking at a 2D problem 

then, how does your discretization look like? Your discretization will give you a matrix 

that has five nonzero diagonals. Right. Nonzero coefficients on the five diagonals is what 



would be there. So, one way is to of course, develop a solution algorithm that is similar 

to the Thomas algorithm, but for a Penta diagonal matrix, but that would require a lot 

more effort. So, as a result we will not go into that direction, rather we would kind of use 

a combination of combination of the TDMA and Gauss Seidel, ok. 

(Refer Slide Time: 09:21) 

 

So, we will use a combination of these two, to solve for 2D and 3D problems or higher 

dimension problems ok. 

 Fine. So, what we do is, we call this as; we give it a name, we call it as a line by line 

method ok? What we mean by line by line is basically, we choose one particular line and 

then solve TDMA along that line, thinking that that is a 1D problem ok? But with the 

coefficients taken from the 2D discretization, ok? And then we move on to the next line 

and so on, until we finish all the lines in the particular 2D domain ok? 

So, now if I were to draw. So, I am drawing a, I am drawing lines that connect the p cells 

or e cells and west cells, all of them. And I am using different colours for different lines 

ok. So, essentially, we have; let me use one x ok. So, essentially ok. So, this is my x axis 

and this is my y axis. And then, we have some gridlines here ok. And then we have some 

gridlines in the vertical direction as well ok. So, we have some mesh here. 

Now, these cell centroids that we have here, these are all the cell centroids, ok. This is 

we are looking at the cell centroids is, where these junctions are. Fine, ok; That means, 



my actual cells are for example, if you are talking about a p cell, the p cell is somewhere 

here right and the e cell is somewhere here, this is the west cell. So, we have kind of 

connected all of these using these lines as the lines that connect the cell centroids. Fine. 

Now, we have two sets of lines; one is the black, black lines which are horizontal and the 

set of lines is vertical, which are the red lines. 

Now, what we, what we do is we select; we kind of solve the TDMA along the red lines 

ok. So, essentially solve TDMA along y direction, ok; along the red lines and use Gauss 

Seidel along the x direction, fine. So, that is what we mean by a line by line method. We 

go from one line to another line. 
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And then I would use another kind of terminology here, which is, I use two terms; one is 

called Traverse direction, and the other one is called Sweep direction ok. 

Now, what we mean by Traverse is, the direction in which the TDMA is applied ok. So, 

this is the TDMA direction. In this particular case, the y direction happens to be the 

Traverse direction and the Sweep direction is its, the direction which these lines are 

progressed, ok. Let us say, in this particular case we, we move from x min to x max, we 

go from 0 to x max. So, we are going sweeping in the positive x direction ok. So, that is 

essentially the direction in which your Gauss Seidel are the lines are visited ok. So, this 

is the direction which lines are visited, ok. This happens to be the x direction. 



Now, the question is, then how do I solve TDMA along these lines? That is very simple, 

if we look at the discretized equation, what would a discretized equation look here in 

terms of ij, if we indicate i and j as the p cell? So, what I have is, I have a ij, phi ij would 

be my unknown for the p cell. Right. This is like a phi p phi equals sigma n b phi and b 

plus b. Now, on the right hand side, what do we have in terms of i and j indices, that 

would be some a ij plus 1 phi ij plus 1 plus some b ij minus 1 phi ij minus 1 plus what 

else do we have? plus some Ci plus 1j phi i plus 1j plus di plus 1j phi i plus 1j, I am 

sorry, should be minus 1. 

 So, this is i minus 1 j and this is i minus 1 j plus we have some what else some constant 

let us call it constant is e ij ok; that is our d, our earlier d. So, we have essentially links to 

East, west, north, south and the and the source term right. So, we have all these things. 

Now, we want to apply a TDMA along the y direction, right? So, if you want to apply 

TDMA along the y direction, like along this direction; that means, our the coefficients 

abcd or our what would be unknowns? If I want to apply along the TDMA along the y 

direction, what will be my unknowns? ij, would this be an unknown? Yes, this is an 

unknown ok? So, this is an unknown, what else would be an unknown? ij plus 1 right? 

So, this would be an unknown and what about i j minus 1? Is an unknown as well. 

So, essentially along the y direction, I have all the unknowns aligned. Now, I kind of 

pretend that all the values on the left hand side and the right hand side are known to me, 

ok. Those are the latest values, are the guest values, they are known to me ok; that 

means, I am not solving for them along this line. Along this line, when I am solving for 

TDMA everything else is known to me, right. Other than what is aligned along that line; 

that means, I can write phi i plus 1j with a star, ok. The star means that it is the latest 

value that we know and phi i minus 1j is also with a star. 

Ok; that means, if I look at here; So, you are this is your phi ij right. So, essentially, these 

black lines, these black dots are where the unknowns are aligned and the crosses, are 

where the values are assumed to be known right? So, these are assumed to be known, for 

the purpose of this iteration and these are the values which are unknowns. Right. So, 

essentially now we kind of came back to a 1D situation from a 2D situation. Now, can 

you extend the same concept to 3D? right.? So, we have one line and then you have four 

neighbours, right. 



So, you have two more terms; which are on the top and bottom. They will also be treated 

as knowns, right. They will also be treated as known values. Fine. 
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Then, I can rewrite this equation as 𝑎𝑖𝑗𝜙𝑖𝑗 = 𝑎𝑖𝑗+1𝜙𝑖𝑗+1 + 𝑏𝑖𝑗−1𝜙𝑖𝑗−1 + {𝐶𝑖+1𝑗
𝜙𝑖+1

∗ 𝑗 +

𝑑𝑖−1𝑗  𝜙𝑖−1𝑗
∗ + 𝑒𝑖𝑗}              1 plus some g ij, wher g ij consists of what?. So, g ij is a 

known value, right. 

Now, can we apply TDMA for this line? Right? I can apply TDMA along this line. And 

then solve for all the phi values in one shot, right, ok. And then I move on to the next 

line. So, essentially, we solve it for; we solve it for; let us say this is the first unknown. 

So, we solved TDMA along this line with guessed values and then we move on to the 

next line. 

So, when we move on to the next line, what do we do? We update the phi values that we 

have just found for these points, right? We update them and then we move on here. Then, 

we calculate these values and then, we move on to this particular line, and so on. So, our 

Traverse direction is in the y direction and the Sweep direction is in the x direction. The 

direction which the lines are visited ok? 

Now, you may have a question, like why should it be y direction? why should it not; why 

cannot have x and y interchanged? You can certainly do that. You can interchange x and 

y directions, this Sweep and they Traverse directions. That is completely possible. In 



fact, we will also see a kind of intelligent way of doing these things, such that we kind of 

get convergence faster, ok. That is also possible. Now. ok. 

So, that is, that is line by line TDMA. Now questions on this part; that means, once you 

have a if you have a TDMA solver, you can easily now extend it to solve 2D and 3D and, 

and this will be much faster ok. Will we, will see in a little while why it is faster than 

Gauss Seidel? 

Student: (Refer Time: 18:45). 

Yes right. Why do we say; So, the Gauss Seidel; the question is TDMA is quite visible, 

because along a y line, but; however, where is the Gauss Seidel coming into play here? 

So, the Gauss Seidel is coming into play, in terms of convergence. So, essentially, you 

Sweep along one y direction, right? And then, that is not the correct; that is not the final 

answer, right? Because we have started off with guess values on both sides. So, we are 

updating those line values and then we are moving onto the next line, right. 

So, essentially imagine if the y direction was not there. If this was a; if this was just a 1D 

with only x directions, then you are sweeping in the x direction. Do you call that a Gauss 

Seidel? You are moving from point to point. Here only thing that you have collapsed the 

y line using a direct solver, right. So, all these values you got for all the cells in the y 

direction, we are just updating them and then moving on to the next set of lines, ok; and 

then you have to keep doing this process until you converge to phi values for the entire 

cells, all the range of cells, right? 

Do you agree? If this was a direct solver in 2D you do not have to; you just calculate 

everything in one go. Right. Here, we have kind of a Gauss Seidel Sweep in the x 

direction and the TDMA is in the; along the y direction. Does it make it clear? 
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So, essentially, let us say, what do I do? Let us say if I, if I write a kind of pseudocode 

for Gauss Seidel; how do you write a pseudocode? Essentially, you loop for, some for i 

equals 1 to i equals N, right? You kind of go through each of these things and you update 

what is phi i, from these values and then you would check for convergence right? that is 

what you would do. Right? This is what you do in a Gauss Seidel. 

Now, in this also in 2D you are doing the same thing, but instead of calculating phi i 

directly from some expression you would call; what? You would make a call to TDMA 

function, which will give you, instead of phi i it will give you phi i for the entire range of 

n cells, right. It will give you for all the cells in one go. And then you would move onto 

the next line and so on; and then you would still check for convergence ok; So, that is 

kind of a line by line TDMA, you kind of check for convergence as well. 

So, using the guess values, while calculating the TDMA, is where we call it as a Gauss 

Seidel, ok.; its kind of implicit in there, but not exactly, like Gauss Seidel ok. ok; So, 

yeah. So, the question is, if I have any iterative method, I would call it as a it is valid for 

anything right essentially the convergence checking and the iterations and why is it 

called Gauss Seidel? The question goes back to the difference between Jacobi and Gauss 

Seidel. Right. Essentially, we have if you are updating after you calculate you call it as 

Gauss Seidel or if you are not updating you want to keep those previous values then you 



call it as a Jacobi method ok. I mean of course, you are welcome to name it anything, but 

its that is how its not how it is ok. 

Other questions? You will be able to write this? Like essentially what I wanted to do is 

maybe in the next assignment, you would first develop a TDMA solver for 1D situation 

now that has to be generic enough such that .  So, you have to write some kind of a 

function or a subroutine for solving TDMA ok. So, do not write it in the main program 

itself. So, you write a separate function, because you would be calling it many times and 

you would be using this one d thing in 2D and 3D situations later on ok. 

So, TDMA, what all you want to pass it to? So, now, the TDMA should be generic 

enough such that you can either run it along y direction or along x direction. So, first 

thing you want to know is how many cells I want to kind of use right; and then you have 

to pass the coefficients that is a N, b N, c N right; and d N. 

So, you have to kind of somehow pass all of these arguments. What else? Do you have to 

pass P i and Q i? No, you can calculate them inside from a b c d. What else? You want to 

also send what is the unknowns right, t N that is all. 
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So, essentially this function takes in all these arguments and then it will kind of calculate 

what is p of N and q of N can be calculated and finally, obtain values for t N using 

TDMA, right. 



Now, if you have to write a two dimensional situation depending on the number of cells 

you have in x and y you would send those particular a b c d, right; your d would either 

depend on d would be either, it would be either these three together or it would be these 

two; was this one together depending on the direction right. If you are sweeping along 

traversing along the y direction then, these two would be there otherwise it will be the 

other ones right? 

So, accordingly you would pass to the subroutine all these values and then you will be 

able to Traverse and Sweep in any directions that you wish; that you choose right. Now, 

this TDMA function that you would write would become part of a bigger function that 

would be kind of a, what kind of a Gauss Seidel? right. So, essentially this guy would be 

called here right; within your Gauss Seidel. Fine. 

Is the Traverse and Sweep make sense? Ok. Those are; So, the i minus values are known 

when we are iterating, yes. So, either they happen to the boundary values or they happen 

to be the near boundary or whatever, right. Well, yeah I mean; so, yeah I think the 

question is again, why is it Gauss Seidel? I think you are not happy with the word Gauss 

Seidel. So, the thing is we just have values. You think of a 1D situation; you have some 

cells and you calculate the value at p cell and you move onto the next cell, right. That is 

what you do in a Gauss Seidel. 

The same thing is what we are doing in the line by line TDMA, except that instead of 

calculating one value you are getting values for a row right, but the entire y values and 

this is what we are getting in one shot to TDMA, ok. That is why I call it as Gauss 

Seidel, but we can just say line by line TDMA ok? If you are not happy ok. Other 

questions? No? You will be able to; yeah. 

Student: Solve one example. 

Solve one example for TDMA, ok. That is a tall order, I cannot solve it in the class. So, 

that will be your homework, ok. If you have questions, I will explain with that right. So, 

maybe we will spend two three weeks solving TDMA in the class. 

Student: (Refer Time: 25:23). 

 Sorry. 



Student: (Refer Time: 25:26). 

Just one iteration? TDMA, coming yes. So, he says essentially just make the matrix and 

then substitute. I do not think we have to do it essentially you have. So,  I have the; 

essentially, it is this one right. Calculate b1 d1 if you want I can set up a problem and 

solve it maybe sometime next week or so, ok. But at probably not required, you know. 

Because I want you to do the rest of the things from here, ok., fine. Would you be able to 

do? Decode these things? Right. So, we can do one example, but I think that is your 

learning process, ok. 

Other questions? It’s very straight forward right? Just calculate pq and the algorithm is 

solid. So, you just have to go through all these steps. Yes. how phi i plus 1 j is an 

updated value? No, phi i plus 1 j is not an updated value. So, this is i plus 1j. Here the 

question is, how is this an updated value? Right. this is not an updated value, this is a 

value from the previous iteration. That is all. 

So, we are pretending that that is known from the latest value, because we are solving 

along the line right yeah. So, that so, the question is, how slowed Gauss Seidel would be 

compare to TDMA? That depends on the problems, of the size of the problem, as such 

who will come to that in terms of; I do not have numbers as such, but it will be much 

slower no? Ok. 

So, let us kind of have a discussion or comments. So, essentially your TDMA or we will 

say the line by line method, ok is much faster than Gauss Seidel in; that is a Gauss Seidel 

in 2D problems or whatever. Because the boundary condition information propagates in 

one go right. Or at once to the interior cells yes. 

Student: (Refer Time: 28:03). 

 aj phi ij yeah. Coefficient of phi ij this one. 

Student: (Refer Time: 28:07). 

I am sorry, I should have written b yeah you are right. So, let me just change it to; So, the 

question is the coefficient should be different yeah, this is it should not be this should be 

something else. Let me call it as, central this is maybe let us call it as a p ij or something 

ok. This is certainly not the same something else ok, but that does not make a difference 



anyway the coefficient power ij and ij plus 1 right i have this subscript anywhere there 

ok. So, the I should have started b c d instead of a b c ok. That is fine. Yeah of course, it 

is different. Its fine. 

Other questions? No? ok. So, what I just wrote here is; I say, the line by line method is 

much faster compared to Gauss Seidel if you go for let us say 2D or 3D problems that is, 

because in the line by line method you actually using TDMA, which transmits the 

information of the boundaries into the all the interior cells in one go right. In at once you 

do not have iterations right? Whereas, in Gauss Seidel, the boundary condition 

information is updated to the cells by one cell per Sweep right? Because if you have 

done one sweep, then the information would have moved by oneself right from left cell 

to right cell and so on. 

 So, that is why the line by line method would converge faster than a pure Gauss Seidel 

ok? 
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So, LBL, which is the line by line method converges faster than Gauss Seidel, because of 

the information being sent across the boundary condition information being sent across 

in at once, ok. Now of course, the. The, The Traverse and Sweep directions can be 

interchanged, ok. For example, for, let us say for one iteration you could use a Traverse 

in the y direction and the next iteration you could use a Traverse in the x direction, ok. 



You could kind of interchange the Sweep and Traverse directions to increase 

convergence. 

Essentially, because the TDMA sends information of the boundaries very quickly to the 

interior, if you exchange the direction, then the information of the left and the right 

boundaries also would come into the interior much more quickly ok. So, as a result 

instead of just sweeping in the y direction let us say for 100 iterations; you could actually 

what you can do is you can just exchange the order of the Sweep and Traverse. 
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That means initially you can go with this is the Traverse and this is the Sweep. And the 

next iteration you could actually do this is the Sweep and your Traverse could be along x 

axis. 

You could do this. So, essentially your Sweep is in this, your Sweep is along this 

direction here and your Sweep is along this direction here, ok. Along x and along y you 

could even alternate this, because the TDMA will bring in the boundary condition 

information to the interior cells in one go, ok. As a result, you would get convergence is 

much faster ok. I will try to; I think your next assignment would kind of involve these 

things, ok. 

So, your TDMA function has to be generic enough, such that you can do all these 

patterns, ok. You could do, left to right and then top to bottom or you could do just a top 



to bottom something like that, ok. or bottom to top all these things. Fine. So, that kind of 

patterns can be used to increase convergence, ok. 

Now, sometimes the geometry and the properties, would kind of dictate the direction of 

sweep, direction of Traverse or Sweep, ok. So, what do we mean by geometry and the 

properties? Ok. Essentially, what we mean by this, is for example, let us consider you 

have gamma east, gamma west, and you have gamma north and gamma south, ok. 

So, the diffusion coefficients; let us say the East and West diffusion coefficients are 

much larger than the North and South ok; that means, these are much larger than this; 

what would; and if we have a kind of a uniform mesh, ok. Or uniform cells. then what 

would be the coefficients a East and a West in comparison to a north and a south would 

be? These would be larger, right? These would be larger as a result, you would like to 

choose the Traverse in which direction? in the east west direction right? That is clear. 

You want to choose Traverse in East West, why is it? So, because the coefficients are 

larger, because the boundary condition information will come in quickly and what else? 

Because a north and a south are so small, the errors that you introduce by guessing the 

values would be insignificant compared to what you would have from a East and a West 

right. So, as a result you would kind of go along Traverse along the x direction right. 

Because the guess values you would use in the north and south directions. 
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So, the phi along phi star along, n and s would have insignificant effect on ap or on phi p. 

Right. So, as a result Traverse should be along x direction. 

So, or in general Traverse should be along the direction which you have larger 

coefficients ok. So, it should be along the direction of larger coefficients ok; because the 

small coefficients would not change it much in terms of the solution convergence. Yes, 

ok; the question is, is it rule for fast convergence? Or does it make the matrix better 

right? This is essentially only for faster convergence because as you can see the a p. Of 

course, it would also depend on the a north and a south coefficients, but I do not think 

the diagonal dominance would increase, because you have chosen it this way right. 

Because you would have a source term essentially it is far faster convergence. Fine. 

Other questions? No? Ok. Let us then; what about the property? So, properties is done 

what about the geometry? We said two comments right. One is geometry, other one is 

properties. These would kind of, indicate that we should choose that the Traverse in a 

particular direction. Coming to the geometry, Let us say we have a mesh that is very, 

with a large aspect ratio ok. So, essentially I have very thin cells, which is which is quite 

possible, in several applications ok. So, we have a mesh that is like this, which is really 

thin, ok. 

It I just made it non uniform because I could not draw them much better. So, this is what 

we have; and the cells are like this ok. So, these are the cells ok. So, this is my P cell this 

is east this is north this is west and this is south ok. So, we have delta x which is much 

larger than the delta y and we also have the del x e and del x w and we also have the del 

y north and del y south ok. 

So, you can see the delta x is greater than delta y somewhat greater three four times and 

delta xe delta x w also three four times greater than delta y north and delta y south ok. 
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So, then how do the coefficients look like? If I look at a east and a north, ok. One for 

each direction, a east would be what gamma east. Let us say the gamma is the same; is 

the same everywhere. Then what would be a east coefficient? 𝑎𝑒 =
Γ𝑒∆𝑦

𝛿𝑥𝑒
     and what 

would be a north?   𝑎𝑛 =
Γ𝑛∆𝑥

𝛿𝑦𝑛
   

So, which is now greater? So, which is now greater and in what direction would he 

choose the traverse? ae is it greater. 

Student: (Refer Time: 37:35). 

E smaller east west is smaller, because delta y is small. This is, this is small and this is 

delta xe is large, in comparison to here, which is larger and this is smaller right. As a 

result, the north coefficients would come out to be larger than the east and west right? 

So, in which direction would you choose the Traverse? In the y direction? Right? 

Essentially that is going to; So, your Traverse would be in along this direction, this is 

your Traverse direction and you would Sweep would be in the in the x direction, ok. 

Fine. 

So, essentially you choose it along the larger coefficients. Now, these are all only kind of 

tricks for little bit faster convergence, that is all. Now, these would help especially, if we 

have a big 3 dimensional problem or a big 2 dimensional problem, right. And if we have 

unsteady as well, then you have to kind of solve all this for every time step, ok. In that 



situations, cumulatively you will have a much quicker solution obtained, if you make use 

of these tricks rather than blindly just running it with a the Gauss Seidel you know, 

something like that ok. 

Student: (Refer Time: 38:41). 

So, the question is, if you use TDMA along the more number of cells, which is the y 

direction you may run out of RAM, but yeah I mean if you have some technical 

problems then you have to accordingly change it. Fine. Here we are assume that we have 

enough RAM to run. 

Other questions? Ok alright then, we looked at the comments, then let us make a 

statement about few more things, essentially we looked the geometry and the properties, 

ok. Both of them. We talked about the Traverse direction based on the coefficients. 
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Now, similarly we can also have dependency on the Sweep direction, ok? The Sweep 

direction also could be dictated by the geometry that we have. 

Now, how do we say this? For example, let us say I have coming to the boundary 

conditions; let us say we have a domain, like this rectangular domain on which we have 

some isothermal boundary conditions on the three faces and then on one of the faces on 

this side we have an adiabatic boundary condition, ok. This is these are the boundary 

conditions that we have. In this, in this scenario how do we choose the Sweep direction? 



Usually, you start off Sweep from the direction where you have a known boundary 

condition, like a Dirichlet boundary condition ok. So, the Sweep direction should be 

from left to right. Let us say, if I am using my Traverse is this direction this is my 

Traverse, then my Sweep could be from left to right. Because as I am sweeping I am 

starting off with a known temperature and that would be brought in inside ok, but if I 

start from right to left then, because it is adiabatic I do not have a temperature right. 

So, the information of the isothermal boundary condition or something like would not be 

brought in very quickly right. Because this itself is not a fixed value ok, as a result this if 

I Sweep in the other direction from right to left would be kind of slower than a Sweep in 

the from left to right ok. 

So, now, these are all kind of observational things. So, if you write a code which you 

would in the assignment and then you can kind of play with them and then add it up with 

this insight that we are getting here. 

So essentially, you should always start the Sweep kind of should, should bring known 

values ok. So, essentially that is in the direction of the known values ok. That is what we 

would do. Now, for example, let us say if you have convection. Let us say there is a flow 

that is going in this particular direction. Let us say there is a flow, then how would you 

sweep? Would you Sweep in the direction of the flow? Or would you Sweep against the 

direction of the flow? 

Let us say flow is happening from left to right. What would be your Sweep direction? 

Left to right. You should go with the flow direction, because then you have information 

coming from the flow right? So, you should always go in the direction of convection for 

your sweeps rather than against ok? If you go against, will the problem converge? It will 

still converge. You may be doing some more iterations. That is all, ok. 

So, convection then, then Sweep in the same direction ok. as convection fine. So, these 

are essentially some tricks by which you can choose the direction of the Sweep and the 

Traverse, fine? which will kind of help you get a faster convergence, then if you are 

chosen it without these things, ok. Questions? 

No questions? Ok. Yeah number of cells yes. Do the number of cells effect the direction 

of sweep, Is it? So, a question is ok. If you have more number of cells, should I choose it 



that way? That is possible, but usually you would not have; I mean depends on the 

problem you are solving ok? Ideally, because this TDMA is only a 1D problem. So, it 

would not make a lot of difference if you have hundred cells or let us say five hundred 

cells or so. It would still come out very quickly right? So, there are lot of things which 

we can affect here, but these are some broad ones ok. Suddenly number of cells and the 

aspect ratio all these things will definitely affect how fast it can kind of converge ok. 

Other questions? So, the takeaway you have to write your subroutine such that it is 

generic enough and you can play with it ok. Sweep and Traverse you can kind of 

alternate or you can kind of call it in x direction, as well as y direction and things like 

that. Fine? No other questions? ok. 
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Then, let us move on to one more thing. That is basically Source term linearization ok. 

Fine. So, we have always said, if there is a source term S of, let us say Temperature or 

something, S of T, which is a non-linear function of temperature ok.𝑆(𝑇) =

𝑓(𝑇, 𝑇2, 𝑇3, . . ) S of T is a non-linear function. So, it depend on some constants etcetera. 

So, we have a non-linear source term. Right. Then we always said we have to kind of 

linearize it, and we said S of T would be linearized as some constant S c plus S p times T 

p right. 

 So, essentially we have a linear model, for this non-linear source term right. So, we have 

a linear model. 



Then the question is, why do we have to linearize? And if we have to linearize, is there a 

good way of linearizing the source term? Right? Or can I linearize it in infinitely many 

ways? The thing is we have to linearize, because the ultimate system we would get is a 

linear system right. The entire framework is essentially, you would get ax equal to b 

right? So, you cannot have a non-linear thing with in there right. 

Your x is always linear. So, essentially, the nominally linear framework only allows for 

linear models to be there, ok? That is why we kind of; That is why we must linearize the 

source terms right? And the second thing is, linearizing it is better than just having a 

constant in there, right. You could also say, I would use a constant for the source term, 

but linearizing is a better model compared to just having a constant source term ok. So, 

linearization is better than just a constant, ok? So, these are the two main motivations to 

linearize the source term and use it in the fashion that we have discussed. Ok. 
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Now, so, the general one of the a general way to linearize any source term is to use 

Taylor series expansion. Now, of course, the Linear model that we get should be a you 

know, 𝑆(𝑇) ≈ (𝑆𝑐 + 𝑆𝑝𝑇𝑝)  This should be a good representation of the original non-

linear function right it should be somewhat a good representation of the original non-

linear function and it should also satisfy the  𝑆𝑝 ≤ 0  condition right. This we have kind 

of stated. So, if these two are there, then the linearization model we would use would be 

kind of a good model ok. 



So, a general way to you do is using Taylor series expansion for the source term; that 

means, if I have some   𝑆(𝑇) = 𝑆∗ + (
𝜕𝑆

𝜕𝑇
)

∗
(𝑇 − 𝑇)∗  . So, these star all evaluated. So, 

essentially, I have some S star, I am expanding about S star, expanding about star values, 

ok. What are star values? Known values, ok. We are expanding about the known values 

and then obtaining a model for our non-linear source term, ok. 


