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Statistic Mechanics - 2 

So good afternoon, let us continue from where we left off.  
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Before going ahead with the new topic I think we will have a quick recap of what we did in 

statistical mechanics so far. What we were talking about is essentially a certain quantity 

which we called as omega and we called omega as the number of microstates is basically a 

number. The total number of ways the system can actually arrange itself when it is at 

equilibrium.  

So if a system is, there are two systems completely isolated from the surroundings and from 

each other then they will arrange themselves at equilibrium, there will be a certain number of 

ways they will attain a microstate in such a way that there will be a certain number of ways in 

which they arrange themselves. Now, it so happens that the manner in which they arrange 

themselves the is such that the total number of ways by which they can reach their microstate 

is actually a very very large number. 

For example N1, V1, E1 may be reached in say one particular microstate, in say X ways, 

another microstate in Y ways, maybe another microstate in Z number of ways and so on until 

say a very large number of possibilities exist. But actually there will be one particular pattern 

in which it arranges itself say N for which this number, the number of ways it can actually 



take this microstate is actually extremely large, and it is so large when the total number of 

molecules is high that all these microstates are simply masked.  

So at equilibrium, it is this microstate which appears most frequently or the system spends 

maximum time in that particular microstate, so most probable microstate. So we are generally 

concerned with that omega here. So when we say omega in this particular example, when we 

were talking about this particular example, when we set omega as a function of (N,E,V) what 

we are saying is, if you substitute N,V and E in this function it is going to give us that 

particular number the maximum number of ways it is capable of arranging itself in that 

microstate.  

And this is omega 1 for this particular subsystem and there is a omega 2 for the other 

subsystem and then what we said was, we said that we you know we open this up we said that 

these two systems can actually be in thermal contact with each other and then we said if the 

final thing if the final thing has also to be in equilibrium that can only happen if this product 

omega 1, omega 2 is extremely large with respect to the variables E1, V1 and N1, E2 V2 and 

N2 and subject to several constraints. 

So there were three different constraints here, so this was the final thing that we did where we 

allowed the central portion of this particular thing to move to exchange material at the same 

time to exchange energy as well. Consequently we were able to show that once you knew 

omega, then it is possible for us to define the entropy which is actually a macroscopic 

quantity as KB log omega and once this is done, then all the other properties of the system 

such as say the temperature or the pressure or the chemical potential can actually be obtained 

from this function S. 

So our important quantity here is this omega, the total number of ways you can actually attain 

a particular microstate, and then we went until this the discussion did not involve anything 

about how we actually obtain that microstate and then we started talking about how we can 

actually find this out. So this is where you know some there were some questions and this 

parameter phi started coming in and was a little bit confusing and it is a good idea to actually 

take a look at it quickly.  
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So what we did was, we took the quantum mechanics perspective and considered one particle 

first there is actually inside a box a 3-dimensional box of length L by L by L. It has a volume 

V is equal to L cube or L is equal to V to the power 1 upon 3.  

Now when we are looking at it from quantum mechanical perspective, we had to actually 

solve the Schrodinger wave equation for this particle. Xi is basically the wave function which 

is a function of the position of that single particle and H is basically the Hamiltonian which 

happens to be minus h square by 8 pi square m or something like that times dou square by 

dou X square plus dou 

square by dou Y square 

plus dou square by dou Z 

square. 

 

 

 

Now this happened to be a eigenvalue problem and we get E as a function of nx, ny and nz 

and it turns out to be something like H square divided by 8 mL square and the corresponding 

value of Z is nothing but some constant times sin nx pi x over L.  



 

 

 

So in order to motivate and see how many different ways the energy E of the system can be 

reached. We assigned a specific energy E star to this value E here, and then said that you 

know if we were able to look at this value as the radius of a sphere square, then we can 

actually plot, we have a lot a large number of equispaced points in nx, ny and nz space and if 

we were able to draw a sphere in the first quadrant of the nx, ny, nz because nx, ny, nz  are all 

positive numbers, such that the radius happens to be equal to square root of E star 8 ml square 

by h square. Then those and if you count all the points that are actually lying exactly on the 

surface of this particular sphere of this one eigth of a sphere, you would essentially be getting 

omega. You would know how many ways this system can have the energy E star. Is that 

aspect clear? So, we then went ahead and said that particular quantity is kind of difficult to 

obtain, its kind difficult to obtain and so we took a slightly different approach. What we said 

was, let us calculate the ... first let us calculate the total number of points that is present for all 

values of energy less than E star which is nothing but which is going to come from the 

volume of this particular sphere. 

(Refer Slide Time: 09:40) 

 

And then we calculated, you know what would be the volume in a spherical shell that is 

around E star, that is what we did. So this is basically going to introduce this quantity phi 

where we call this phi less than E star to be equal to 4 by 3 pi R cube divided by volume of 



one unit in the nx, ny where n is a space which happens to be 1 by 1 by 1 because these nx, 

ny and nz values are all separated by integer numbers. So this is 1 and this turned out to be 4 

by 3 pi and R is nothing but, sorry 1 by 8 of this because it is one eighth of the thing. 

So you get here E star, so this would essentially be the total number of points which have 

energy less than E star.  

 

 

 

 

Now in order to obtain the total number of points in the small spherical shell around E star, 

what did we do? We did phi of E star plus 0.5 delta E star minus phi of E star minus 0.5 delta 

E star and that would essentially give us a total number of points that is lying in that belt delta 

E star and that turned out to be something about that. 
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So, I shared with you this document also, I hope you received it. Things are a little bit more 

elaborately explained here in case you have some doubts. It turns out 4 by 3 pi ... we kind of 

indicated two things, we showed you two graphs, one is that of phi less than E star and 

showed you the total number of points the order of magnitude of the points.  
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for typical values of E, E star, M, L and they all the total number of points that you can have 

when the energy is less than E star for various values of E star is plotted here and it is in the 

order of 10 to the power 35 or 36 extremely large, like when compared to the total number of 

stars in the universe those huge number these are really huge numbers that you get even for 

moderate values of E star. 



Then you can take a look at the quantity and this will turn out to be something like you can 

just convince yourself that this is indeed true.  

Now this is nothing but your omega with some error, this is nothing but your omega except 

that now I am going to write it as for one particle system the volume is V but the energy is E 

star with some small error 

Student: You said, no. of point at a surface of a particular E 

Professor: Yes. 

Student: This what ? (And student pointed an error in the equation...) 

Professor: 

sorry, there 

should not be 

a E here, ... 

actually it is, 

...  

 

 

 

this is nothing but your omega.  

And if you compare these two equations, you can convince yourself that mistaking the ratios 

of these two 

quantities,  

 

 

 

it is okay if you are not doing the derivation in detail here in class. You can actually this is 

just basic algebra, you can just try it out and you will get it. I just do not want to they send 

some of these expressions are little complicated it is better for me to look at it and do it.  



Now, let us try to obtain the same quantity omega, not for a single particle system, but when 

the box has many particle and these many particles are not interacting with each other, 

consequently they are referred to a ideal gas, you do exactly the same thing. 



(Refer Slide Time: 16:28) 

 

So you have a box many particles length L, length L, L and you have to solve this 

Schrodinger wave equation, but now at this point of time you are not really interested in the 

wave function what we are interested in the energies. For the single particle system it turned 

out that you have 8mV to the power 2 by 3 E divided by h square being equal to nx square 

plus ny square plus nz square. For the many particle system what happens is the following 

you 

have 

8. 

This is 

what 

you would have. 

 

 

 

Student: Last term ? 

Professor: what is it?  

Professor: Ok? Where this corresponds to particle one, this corresponds to the second 

particle, this corresponds to the third particle and so on. So this reduces to some term that 

looks like this.  



 

 

 

So you know if I say n2 it means that it is the ny of the first particle and so on. If I say it is n3 

then it is the nz of the first particle, if I say n4 then it is nx of the second particle and so on. 

You can easily see that this is in fact true. Now we use exactly the same methodology that we 

did for the single particle, you have a question?  

Student: In real system, there is going to be some interaction ? 

Professor: There is going to be some interaction, right now there is no interaction, it is just an 

ideal gas.  

So now,  

Student: Why is it from 1 to 3N? 

Professor: why it is from?  

Student: Why is it from 1 to 3N? 

Professor: Yeah I am just calling this as 1, this as 2, this as 3, this is 4, this as 5, this has 6 of 

this would essentially be 3N. That is why I am calling it as 3N. So this equation is once again 

the equation of a sphere in three n-dimensional space. So if we are able to if you have a 

formula just like how we are the formula for 4 by 3 pi R cube for a sphere and three 

dimensional space. If we have a corresponding formula for 3 n dimensional space then our 

work is basically simplified to a large extent.  
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So sphere volume in 3N dimensional space, turns out that the formula is the following. That 

is the formula for a sphere in 3N dimensional space, where gamma is basically the gamma 

function, so what is gamma function? It has some interesting properties. Where you have 

gamma x into gamma of x is equal to gamma of x plus 1 and gamma of x is equal to.... sorry 

gamma of , yeah this is all the properties I think we have studied this in different places. So 

we do not want to prove all these things, but we will just accept this. 

So this happens to be the volume of the 3N dimensional sphere. So in our case for phi less 

than E star turns out to be 1 divided by 2 to the power 3N phi to the power 3N by 2 1 divided 

by this function gamma and this R to the power 3n where R was our 8m E star V to the power 

2 by 3 divided by h square the whole root, so you have here 3N divided 2. 

We had square root of R, so that is why you have this 2 in the denominator and this was taken 

to the power 3N, so we have this 3N here. So once you have phi less than E star, we can 

calculate our omega for N particle system occupying the volume V which has the energy E 

star around delta E to be equal to d phi less than E star divided by dE star times delta E star, 

just like how we did for the 1 particle system.  

This is exactly the same expression that we had for our single particle system.  

Student: N particles, ??? 

Professor: N particles, 3N degrees of freedom. So this quantity turns out to be something like 

this.  



 

 

 

So this is all delta E star, this would be the total number of complexions, total number of 

ways the system can actually arranges itself at equilibrium this ideal gas. So we obtained this 

omega for an ideal gas as a function of V, N and the energy E that you can actually have. 

But still we are left with this delta E kind of quantity and we really do not know what to do 

about it, but we can actually do something more and show that show something really 

interesting. For example, if you wanted to find out the entropy of this gas now, what would 

you do? Take KB log E.  

So this one is again before doing that this particular expression can once again be written in 

the following form. This happens to be equal to if you do a little bit of manipulation you can 

show that this is equal to 3N by 2 phi less than E star times delta E star by E star. omega, if 

you compare this expression and this expression right here, you can actually show that this 

omega is nothing but 3 n by 2 times this expression times delta a star by E star.  

If you are not convinced, you can just take the ratio and see for yourself that it will in fact be 

true. Now when you want to calculate the thermodynamic quantity entropy you would 

essentially do KB log of this quantity omega.  

So what happens when you take KB log omega on both sides you get this to be ln of this 

entire term here which is ln of 3N by 2 plus ln of phi less than E Star plus ln of delta E star by 

E star. What can you say about this expression? Which of the three terms on the right hand 

side is actually going to be important to us? 

So N, what is N in the order for an ideal gas? May be in the order of 10 to the power 23 n is 

in the order of 10 to the power of 23. So this term is going to be in the order of 23, It is going 

to be some 23 or something like that 23. This term is the ratio of energies, it is going to be a 

very small quantity it is not going to be very significant. Look at this term, this term is 

actually having power N or power 3N by 2, so this term is going to be of the order of 10 to 

the power 23. 
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The central term is going to be of the order of 3 n by 2, what this essentially means is KB log 

of omega is approximately equal to KB log of phi less than E star. Essentially what is this is 

telling us is when the number of particles is extremely large, whether you consider the total 

number of particles that is right around E star or whether you consider all the particles 

beneath it, it is not going to affect our results significantly. 

Because of the sheer number of particles that you are having and the number of ways the 

system can actually arrange itself in that particular microstate. So from now on like what is 

done in most places our omega is replaced with phi less than E star, I think this is actually a 

very interesting result I do not think we would have seen it coming. 



So omega is approximately equal to phi less than E star, therefore our entropy S is nothing 

but Kb log of phi less than E star is equal to Kb log of this quantity right here which is this is 

our entropy 

expression 

for entropy 

for an ideal 

gas in terms 

of N, V and E.  

 

 

 

Now I am going to give you an exercise.  

Can you find out what the pressure is and the temperature is? So you know that dou S by dou 

E when you keep N and V a constant, you are supposed to get supposed to be 1 by T 

according to thermodynamics. Can you tell me what that is? You are supposed to 

differentiate only with this E star or E. So you can actually club everything and get rid of 

everything and have only the term which is log E to the power 3N by 2. Perform the 

differentiation, do it.  

Find the pressure temperature, you have seen this before? Kinetic theory of gases. So did you 

all get this expression? Did you know it is not very complicated, it is just this expression for 

S looks big but you are only going to differentiate with the E star. So Club all the terms that 

does not have the E star here and just write it as plus KB log E to the power 3N by 2 and then 

take the derivative with respect to E.  

From the definition of temperature itself you know that you have to keep N and V constant, 

since N and V are going to appear on his X, they are going to be constant. So it would be 0 if 

you differentiated that anyways. So you just have to differentiate this with respect to E star 

and you get this expression 1 by T is equal to 3 by 2N KBT, sorry E star, the energy of this 

ideal this gas is 3 by 2N KBT or the temperature is nothing but 2N. 

 



 

 

Can you find out the pressure? Dou S by dou volume keeping the, energy and the number of 

species are constant, yes this? 

Student: How are you differentiating ? 

Professor: It does not, see when you are differentiating the entropy with respect to energy, 

you have to keep N and V a constant. Keeping that a constant is important, that X that I have 

written here is going to depend only on N and V. 

So I am differentiating with respect to energy so that it will not turn of. What does this turn 

out to be dou S by dou V? I do not know I am going to trust you, so tell me that what is it KB 

into, that is equal to what? That is equal to P by T. So you have P by T is equal to KB times 

N over V which 

implies PV is 

equal to Kb 

times NT. 

 

 

 

You have seen this before? The relationship between pressure and volume for an ideal gas. I 

think so far in thermodynamics this relationship was probably told you. P for ideal gas PV is 

equal to NRT or NKBT, but here from the knowledge of the number of ways you can arrange 

this system, you are able to re-derive it. So this is giving you one additional level of  depth 

into the thermodynamics of the system by which you can actually prove these relationship.  

Which is the whole purpose of this exercise was to show you that something like this is 

possible from Omega nothing more it does not matter if you are not able to actually you 

know write down these equations without seeing, but the idea was to show that this PV is 

equal to NKbT was obtained from a slightly more fundamental principle from the fact that 

this omega exists for a system at equilibrium, I think that is really amazing. 



So the whole thing is once you obtain omega, you can actually get everything from the 

system. This should be clear that once you know how to write omega for all systems suppose 

you were able to write omega for all systems then you are basically done with the whole 

problem is omega is not so easy to write down even for ideal gas it took us all these 

complicated formulas for sphere 3N dimensional space and all that. 

But there is still a small problem with this expression, because I will just illustrate that 

expression I want you to go and check whether what I am telling you is true. There is a little 

bit of algebra here, so I cannot it is too much for me to do it do it here. 
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So if you take the entropy expression you have some big expressions here and you consider 

gases in two chambers. This one is N1, V1, E1 and N2, V2 and E2. So you have some 

expression here in terms of N, V and E, this is isolated. You can get S1 for the system1 by 

substituting the value of N1, V1, E1 S2 when you substitute the value of N2, V2 and E2.  

Now, I am allowing the two gases to mix up, obviously this is actually an irreversible 

process, it is an irreversible process, consequently the entropy of the mixture can be obtained 

by substituting in this expression N as N1 plus N2, V as V1 plus V2, E as E1 plus E2 or the 

total energy of the system and he would get the entropy of the entire system. 

However, the change in entropy that has taken place after this mixing process which is Sm 

minus S1 minus S2, must actually be a positive number because it is a irreversible process. Is 

that right? This term provided the particles are of the same mass, turns out to look something 

like this. Please try it out, there is little bit algebra that is all, it turns out to be like this,  

 

 

 



which is positive quantity, which is fine telling us that the change in entropy during 

irreversible process of two gases mixing is supposed to be irreversible process.  

But now what happens V1 is equal to V2, N1 is equal to N2 what happens? This turns out to 

be what? 2N kb ln 2,  when I say N1 equal to N2, V1 equal to V2 and I say that they are 

mixing they are basically it is a irreversible is a reversible process, they are this you are just 

inserting this thing back in again here, consisting of the same gas do you see that. I am saying 

N1 equal to N2, V1 equal to V2 everything is equal. 

When I am simply allowing the two gases to mix they are, of course there I want them to be 

in thermal equilibrium with each other, they are in thermal equilibrium with each other… 

Student: E also? 

Professor: Yes, E is also equal. So then if you do this process what happens is,  you are 

essentially saying that there are you are just inserting a partition between already mixed 

gases, it is not already in equilibrium, but our expression for the change in entropy is turning 

out to be positive, but it should be 0.  

So we have actually committed some sort of an error in calculating our omega it turns out 

that this omega is supposed to be divided by this term part N factorial because simply 

because of the fact that we have considered each of these particles to be distinguishable that 

means, you are able to catch one atom and say this is atom A and this is atom B and this is 

atom C. But in reality there is no difference, you cannot make out the difference. 

The particles are actually indistinguishable when you account for this indistinguishability of 

the atoms then, it so happens that the total number of complexions have to be divided by N 

factorial and when you divide omega or equivalently less phi than E star also the N factorial 

calculate the entropy and calculate this number it turns out to be 0. So the, ... so every time 

you will see this n factorial appearing in the denominator. 

So I just the reason why I am introducing this is to point out the fact you will always see this 

n factorial appearing in the denominator of many statistical mechanical expressions, and this 

is essentially because you want to account for the fact that the particles are actually 

indistinguishable. It is a correction factor again I have there is more detail as to how exactly it 

turns out in this notes that I have shared with you, just take a look at it and if you have any 

questions or corrections to it you please let me know. 



But I think I have made some effort in explaining all these intricacies there. So this entire 

thing is called as a Gibb’s paradox. Basically, if you mix the two gases then you get a 

positive entropy even though the gases then are the density of the gases on either sides of the 

compartment are essentially the same, we just wrong. 

So, division by N factorial is important, are there any questions? So the whole idea of this 

very brief introduction to statistical mechanics was, to quantum statistical mechanics was to 

show that once you know omega, you kind of know a lot of you kind of know almost 

everything about the system, if you are able to write down omega properly.  


