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Or see if we can invoke some equality and drop parallelism between our microscopic way of

approaching things  and our macroscopic knowledge of classical  thermodynamics.  So,  the

number of complexions. So, at any instant of time during the process of, so once I remove

this or make the central display it as, you know as something that will allow the exchange of

energy E1 is gradually going to change and E2 is also gradually going to change, they are

going to exchange energies E1 and E2 are gradually. 



However, at any instant of time E1 plus E2 is going to be equal to E naught simply because

of the fact that this entire thing is an isolated system? So, it is possible for us to write E

naught minus E 1 as well. Now, the composite system A1 plus A2 which I will call us A

naught, can have can be now, how many different ways can at any instant of time you can

achieve it in E1 times E2 different ways. 

The composite system such that A1 is in energy E1 and A2 is in energy E2 is nothing can be

in omega 1, E1 times omega 2 E2 different ways at any instant of time so many different

possibilities are existing for them to actually have this energy E1 have this energy E2, the

composite system both of them together.

The obviously this omega naught is a function of say E1. So, the question that we asked now

is when will this energy transfer stop? Or what will be the value of E1 at which no more or

E1 or E2 at which no more energy exchange between the two is going to take place? So, we

make one assertion. This is probably the only assertion that we will make without explicitly

proving. 

We say that, once equilibrium is reached, the value of omega naught is the maximum. Once

equilibrium is reached, the number of ways in which the system can actually arrange itself is

is the one which has the maximum value and therefore, the probability that you will see it in

that system is the highest. 

Consequently,  our  problem reduces  to  that  of  a  maximization  of  maximization  problem,

where we have to maximize omega naught with respect to the variables E1 and E2 subject to

the constraint that E naught is equal to E1 plus E2. So, how will you achieve my functions

which have constraints, you have you heard of Lagrange multiplier method. So, we will use

exactly the same thing. 

So, we will form a composite function omega naught bar which is nothing but omega 1, E1

times omega 2 E2 plus lambda times E naught minus E1 minus E2, we need to extremize



this. So, extremizing this with respect to the variables E1 and E2. So what happens when we

so when we want extremize, we have to differentiate this entire function with respect to E1

equal to zero and then with respect to E2 and then equal to 0, what do we get? 

We get dou omega naught bar with respect to E1 and that would mean dou omega 1 by dou

E1 times omega 2 minus lambda equal to zero and dou omega bar naught with respect to E2

will be dou omega 2 by dou E2 times omega 1 minus lambda equal to 0. Now, these two

equations are telling you that dou omega 1 by dou E1, omega 2 is actually equal dou omega 2

by dou E1 times omega 1. 

So, if you do a little bit of algebra, this turns out to be dou log n omega 1 by dou E1 is equal

to dou log n omega 2 by dou E2 and during this process remember, we have kept the number

of species and the volume in each thing constant. So, we made an assertion without proof, we

said  that  the  energy  exchange  between  the  two  systems  will  take  place  until  this  is  a

maximum value. 

So, once this has reached the maximum value, there will be a E1 bar and the corresponding

E2 bar which is equal to E naught minus E1 bar that each of the subsystems will have and



once that E1 bar and E2 bar have reached then no more energy transfer will take place, but

the condition for you to find that E1 bar and E2 bar is this. 

So we call this beta 1 and this is beta 2 we just calling it by different names beta 1 and beta 2

Is this okay until now until so far? Now, in order to basically understand what this is, we need

actually  thermodynamics  to  draw  the  parallelism  between  statistically  we  are  we  are

obviously trying to obtain expressions for classical thermodynamic quantities from statistical

mechanics. 

So, we cannot do away with thermodynamics, we have to use result of thermodynamics to

draw the parallelism. So, when you write the first law we just wrote this the beginning of the

class. So, we said that du is equal to Tds because I am going to keep my volume constant. So,

dou S by dou u at constant and N,V turns out to be 1 by T at equilibrium I will have 1 by T1

equal to 1 by T2 or T1 equal to T2 correct yes or no? at equilibrium, Yes. 

Now, look at look at this expression here and look at this expression here. This is dou log n

omega 1 by dou E1, this is dou S by dou u and in this case u is nothing but E, that is the

internal energy of the system. So, dou S 1 by dou E1 N1 comma V1 will be equal to 1 by T1

and dou S2 by dou u2 by equal to one over T2 from thermodynamics. 

Therefore,  from this  expression and this  expression we are kind  of  tempted  to  write  the

following dou S by dou log n omega is equal to 1 divided by beta T by looking at  this

expression right here, which is equal to beta 1 or beta dou omega by dou E is basically beta.



So, it belongs to one system one than it is beta 1 if it belongs to system two then it is beta,

beta 2.

And similarly, dou S1 by dou E1 is 1 by T1. So, I am just removing the suffixes 1 here.

Because it can be any arbitrary system as long as N and V are constant. So, dou S by dou log

n omega is 1 by beta T and this has to be what a constant. Now, what Boltzmann did was this

is where Boltzmann left it, this was written down by Boltzmann, and basically he thought that

since this approach is kind of correcting something at classical thermodynamics level and the

microscopic nature of the system, this has to be some sort of a universal constant.

Later on planck came and said, S is equal to k log n omega and then if you did this, dou S by

dou log n omega, you would get the Boltzmann constant K. So, this 1 by beta T happens to be

a universal constant, we call it the Boltzmann's constant. So, right now, if you see we have an

expression  for  the  macroscopic  thermodynamic  quantity  in  terms  of  this  number  of

complexions omega, which has got nothing to do with thermodynamics.

It has total number of ways you can arrange something. So, S is equal to K log n omega is

one such statistical mechanical expression, which connects the microscopic quantity to the



macroscopic thermodynamic property of the system. We can now do this for different cases,

which I will do in the next class. 

So, this in this case we did not so, this kind of shows you what beta and temperature seems

seem to have a similar meaning or similar effect. So, beta might be true when you are talking

about the thermodynamics of the system using the microstate approach whereas temperature

has a meaning of equality when you are taking the classical thermodynamic approach. 

So, beta and T are related through just one constant which is the Boltzmann's constant. Now,

the next job is to see what will happen if you actually allow this central system or whatever

this thing that is allowing the exchange of energy to not only exchange energy but in addition

to that also move. 

So, if you allow it to move, then what should be the conditions for equilibrium P1 should be

equal to P2. In addition to that, if you are also following the condition for them to exchange

the particle numbers, then what should be the condition the chemical potentials and the both

ends the exchange of species will happen until mu 1 is equal to mu 2. 

So, we will see how these quantities also are coming from just this omega or the microscopic

or a term that is related more to the microscopic nature basically the number of complexions

that you can have. Once we do that, we will go on to discuss how this omega comes about

and what is it, how big how large it is, and things like that now, how we can compute it for

some simple systems. 

So, the basic spirit is this, once you know this omega, then you can also find things like

Gibbs free energy, Helmholtz free energy and all these energies and all your properties of the

system are in some way only derivatives of these quantities. 
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So, if you are able to represent, say strain, in terms of microscopic quantities and you are able

to represent the Gibbs free energy in terms of these microscopic quantities or the number of

complexions, then dou G by dou E strain, this is ij strain will give you some stress. So, we

will  see  later  that  all  these  things  that  come  here  how  strain  or  Gibbs  free  energy  is

represented in terms of the microscopic quantities will be in terms of the positions and the

velocities of all the atoms that the system is comprised of all. 

Helmholtz free energy etcetera everything will be related only to those things. So, we are not

yet discussed how omega is obtained, but we will do that and show you that omega depends

on these microscopic  quantities,  which is  basically  the position and a  moment  of  all  the

atoms. 


