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Translational symmetry operators
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So in so far as far as 3 dimension of space lattice is concern we have only looked at the rotations

and the mirror planes. We have not looked at some translational symmetry operators which are

also present. For example, in case of 2D you did have this glide plane, you are able to reflect it

about  a  line  and  then  move  it  by  half  the  translation  vector.  That  was  the  new symmetry

operation that was possible in 2D. 

In 3D also the same thing is possible, it is called as glide plane or glide refection and in addition

to that  we have something called  as  screw rotation.  You rotate  it  by a  certain  amount.  The

amount is basically either 1 fold, 2 fold, not 1 fold, 2 fold, 3 fold, 4 and 6 fold and then you

move it by a certain amount. You move it in the same direction parallel to the rotation axis by a

certain amount. These are called as screw rotations.

Now glide reflections involves a translation by a vector g which is parallel to the plane of the

glide reflection always. And the glide reflection is called the component, the absolute value by

which you are moving it is called as the glide component and is usually one half of the lattice

vector in a direction that is parallel to the mirror. We will some examples you will understand it



better. So the most important thing is that you can have glide planes only in the regions where

you can have mirrors. 

Because you are always going to reflect the only thing that differentiates between pure glide and

a mirror is that, in mirror you just reflect it whereas in a glide you are reflecting it and moving it

either, if this is the plane of the mirror you can reflect an object like that and then move it like

that or you can move it like that. Either way is possible. 

So each of these movements have a specific name associated with them so that we are able to

identify what direction the movement has actually taken place. 
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So  a  good  example  to  take  a  look  at  would  be  this,  the  glide  planes  that  are  possible  in

orthorhombic system. So in orthorhombic system we basically have mirrors which are having

either the A axis or the B axis or the C axis as a normal. Those are the mirrors. So you obviously

have the same set of mirrors here as well and here as well. 

It is enough for us to understand the kind of glide operations that are possible on 1 face or one

kind  of  mirror  and  to  so  that  we  can  introduce  the  associated  nomenclature  with  the  glide

reflections. So the first one what happens so this is a mirror this black line that is thick line that is

there as a mirror and it has the 100 as the normal and suppose we perform a reflection about this

mirror and move it in the B direction by half the lattice vector then that is called as a b-glide, that

is called as a b-glide.



Similarly  if  you  have  the  same mirror  except  that  now the  glide  is  happening  along  the  c

direction here by half the lattice translation along the c direction. And that is called as a c-glide.

So you have c and b. Now it is also possible for us to have a glide that is along the diagonal of

this mirror so you can reflect it about, you can reflect an object about this mirror and then glide it

by b plus c by 2. That is called as an N glide and then finally you have what is referred to as a

diamond glide where instead of going b plus c by 2 you go b plus c by 4. So the same set of b, c,

n and d are also possible for these mirrors except that the glide now cannot happen in the c

direction. On this plane you can either have a a-glide or you can have a b-glide. Or you can have

a but so this will be called as this this  if only this is present it will be called the corresponding b,

if this is present it will be called sorry it will be called a and only if this is present it will be

called b and if you have a combination like this it will be b plus a by 2 and it will be called as the

N glide and so on, b plus a by 4 will be called as the corresponding d-glide.  

But remember even though b-c-n-d, b-c-n-d, b-c-n-d would essentially or something else would

essentially be the same for all the 3 orthogonal mirror planes possible. The Herman Mauguin

symbol will clearly tell us what the plane is because each of the slot will correspond to specific

planes. For example, if you had a, b and c so this one cannot have a a-glide so let us say a b-

glide, a a-glide and c-glide. So you clearly know that this b-glide corresponds to this mirror.

Because  this  slot  corresponds  to  the  mirror  which  has  the  1  0  0  as  the  normal.  This  slot

corresponds to the mirror which has 0 1 0 as the normal, and this one corresponds to 0 0 1 as the

normal. So by looking at the slot in which the glide is happening it is possible for you to say in

what direction or in what plane mirror plane this particular glide is actually taken place. As far as

orthorhombic is concern. 

So you know this may not be clear  to you right now but when we look at  the space group

symbols for those crystals which have a glide plane it will be you will understand what exactly

that means. So you will have this basically is a space group, so if I say p, b, a, c this is actually a

space group. Instead of saying p, m, m, m , I am saying p, b, a, c so instead of saying instead of

having the mirror I am actually having a glide plane in positions of the mirror. 

 This is actually a space group. Now what would be the point group of p, a, b, c? mmm because

you just have to remove all associated translational symmetry operators and you will get the

corresponding point group. The same thing applies to every other space group that you can have. 
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So let us see some examples of glide reflections just for clarity purposes. So this is a glide pane

is present at x, ys quarter or bs quarter so this line that you are seeing here is basically the mirror.

And this scalene triangle is what is being reflected and moved by half the translation vector. So

this is obviously an example of an a-glide because you are reflecting this object about this mirror

and this shaded, lightly shaded triangle is what is found after you reflect it. And then you are

going to move it by half the translation vector, half the distance between 0 and this point here,

this point here and you get the new position of this point.

So it is possible for us to find out if this is having a coordinate of x, y, z and this is actually

having a fractional coordinate of quarter because the mirror is actually present at x quarter  z. It

is actually long mirror which is coming out of the plane of the board. So what would be the

corresponding coordinate here is what we would need. Remember the Wyckoff positions, we

talked about the Wyckoff positions, the Wyckoff positions were all generated by applying the

various symmetry operators to some point. 

Like we applied for example, the 4 fold rotation to an arbitrary point x y z and we generated all

the other points within the unit cell. So even when we talk about the week off positions for a

general position for a space group which has this glide thing, then you would have to apply this

refection and also the movement and also the glide component.



So you would have to calculate what is the new position after applying this symmetry operation,

which is reflection plus a translation. So how do kind of get these coordinates? Just to give you

an example. So if we have x y z then what would be this? This component here? Quarter minus,

quarter minus y, this would also be quarter minus y,right?   correct? So the actually y coordinate

here would be into 2 plus y that will be half minus y. 

And the corresponding x coordinate here, so this has what would be the x coordinate here? This

x coordinate will be half plus x because there is just being moved half the lattice translation

vector.  The corresponding y component  would be half  minus y and the z component  would

exactly be what it is, z, so this is an example of a a-glide right here, so this sort of operations

which are actually  applied in order to generate  appropriate  week off positions  for the space

groups which have these symmetry, the glide operations. 
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Now let us look at an n-glide, so this is an n-glide. The n- glide where is the n-glide present? The

n-glide is present at x, y at z is equal to quarter so it is present somewhere. So this is a mirror

plane, this greenish thing is a mirror plane. So we are taking this triangle, the triangle that is

there in the bottom. We are reflecting it about this plane, and performing a glide which is half a

plus b, half of a plus b, and it takes this particular triangle to this particular spot. 

So again it is possible for you to generate the corresponding coordinates of these, of the triangle

after this entire symmetry operation is being applied that is going to be half plus x half plus y and

half minus z, will be the coordinates all these triangles right here. When you look at it from the

top it just appears is moving there but actually it has been reflected about that plane and then

moved. Like what you saw in the 3 dimensional image that I just showed you. Is that clear? 
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You can look at another example where you have a c-glide, so this is an example of a c-glide, so

you have a glide plane that is present at x half  z. A coordinate x, y, z is present right here, is

being reflected. But after reflection instead of moving it in the a direction I am now moving it in

the (c) in the direction perpendicular to the plane of the paper. 

And that  will  generate  these as  a  new coordinates.  Any arbitrary  points  x  y z  will  actually

become x 1 minus y and half plus z by the application of this glide. So if I am giving you a glide

I am giving you an arbitrary point I am expecting you to be able to look at it carefully and find

out the corresponding coordinates after the symmetry has been applied. The symmetry does not

involve  only  the  mirror  plane  or  the  glide,  it  involves  a  combination  of  both,  it  involves  a

combination of both. 

So this is glide. So what happens when you are talking about space groups is all  the mirror

planes you are enhancing the possibility of all the mirror planes also being glide planes, which

increases the number of possibilities of symmetry that you can actually have for various crystals.

Another thing what happens which is only unique to space lattice are the screw rotations. 
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Screw rotations, so screw rotations are actually going to involve rotation and movement in a

direction parallel to the direction of rotation. So this is the axis of rotation I am just taking an

arbitrary example. So I am going to take this atom here, I am going to rotate it by 60 degrees but

instead of keeping it there, I am going to move it up by some amount.

Now this some amount cannot be some arbitrary amount, because our symmetry operations has

got to be compatible with lattice translations. So if you imagine this entire thing that I have

drawn to be a unit cell then if there is one structure like this at the base of this unit cell you are

going to have to have another one right on top. Otherwise they do not repeat themselves in the

direction of axis of rotation. 

So there is specific rule that you have to be careful about when you are actually applying the

screw rotations and there are very simple formulas that you can actually come up with. So if you

talk about the screw rotation, so let us say you are rotating it by 360 by x would essentially

where x is basically the order of rotation basically 1, 2, 3 and 6 or 4 and 6 this would be the

corresponding degree or the angle by which you are going to rotate that particular atom.

Now if  you perform this  rotation  or  this  can also be written  as  if  360 degree is  equal  to  x

multiplied by epsilon. If you perform the 60 degree rotation 6 times you essentially get back the

same position  equal  to  1,  360 degree rotations.  Now the question is  by how much can you

actually move it after the rotation, by how much can you actually move it after the rotation? So



let s vector be the vector by which you can actually move it following the rotation x times s must

be equal to the translation vector, x times s must be equal to the translation vector. 

So we will put the absolute values here, so but you need not actually be the entire translation

vector, it so happens that it can be an integral multiple of the translation vector. We will see

some examples and this will be a little bit more clear. Consequently what happens? s vector is

equal to sigma divided by x times the lattice vector, since s is the amount by which you are

moving it, it is obviously less than tau. 

It is less than tau, so by how much can it be, how will you find out you know what are all the

various values that it can have? So sigma can have values between 0, 1, 2 to x minus 1, correct?

So it can have if this is a for example if you are performing a 2-fold rotations we will see an

example so that we will make things much clear. So I have some figure here.

Student: when you are refferring tau, this is lattice or general tau ?

Professor: This is a, the question is what is tau? Tau is basically a Lattice vector, the distance

between two Lattice points.

Student: So in that case you should not be having the sigma that side, Sigma should be this side

so that the integral multiples of the distance which we obtained from rotation should be equal to

lattice Vector. 

Professor: So yeah, so the thing is it need not be equal to one full lattice vector it can be integral

multiple of any lattice vector. You are rotating it you are moving it, you are rotating it and you

are moving it, you are rotating it and moving it. So let us take for example the 6 fold, so let us

rotate by 60 degrees and move one sixth of the unit cell let us rotate by 60 degrees which is

precisely the example that is shown right here. 
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So sixty degree is rotated I have a better picture so if you just allow me to open that, if you

perform a 2 fold rotation, this is the unit cell whatever is marked tau that entire thing is a unit.

We perform a 2 fold rotation and move it up here and move one full unit cell what does it mean?

I told you that this is a unit cell, this entire thing is a unit cell which means if there is an element

like this here there should be also be an element like this here, correct. 

Now performing a 2 fold rotation and moving it up by the entire tau made this new element,

correct? Now if this entire thing has to have translation symmetry it only means that this should

also be present. So this is nothing but 2 2, what is 2 2? Is nothing but just pure 2 fold rotation is



equal to 2, 0. This entire thing now is just 2 0 or just possessing a 2 fold symmetry, it does not

possess any screw rotation. 

But now look at what happens when you do two fold rotations and it up by half the amount, I

perform a 2 fold rotation moved it by half the unit cell, again perform a 2 fold rotation or moved

it by half the rotation. So now this can keep continuing and this pattern does have the 2-1 screw

rotation axis, so how will you identify from this work, from this you can identify two things, one

is you can identify what is the order of rotation that has been applied and you can also identify

by how much of the unit cell the this entire thing has been be moved.

All you have to this take this and divide it by this, so 1 by 2 of tau has been moved. So the s or

the vector s through which this has been moved after the performance of rotation is tau by 2 or

modulus of tau by 2, is this clear? This is for the 2 fold rotation is fairly simple, so in 2 fold

rotation the only thing that is possible is screw rotation that is possible is 2 1, because 2 2 is

nothing but the 2 fold rotation. 

So extend by which you can move it, will be what? Will be the maximum value it can have is x

minus 1 by x times the lattice translation vector. So x is 2, so 2 minus 1 by 2 times the lattice

translation vector which is 1 by 2 time the lattice translation vector, correct. Now let us see some

slightly more involved examples and of course every screw, this was the symbol for just the 2

fold rotation axis present and this one. This ellipse with this tail right here is basically the symbol

for 2 1. So if you want to know, so in our mathematical derivation of the expression for s we had

sigma which is an integer by x which is order of rotation times tau. So the screw rotation is

represented instead of in the Herman Mouguin symbol. If you want to represent the rotation axis

you just say 2 or 3 or 4 or 6. If you want to represent the screw rotation axis you represent it by x

suffix sigma, x suffix sigma.

So in this case x was 2, 2 orders of rotation and a sigma is 1. Consequently the amount which

you want to move is nothing but sigma by x, yes.

Student: Why is it not tau by 4? 

Professor: In this case you have, tau by 4? No there cannot be tau by 4, why you have tau by 4 in

this? 



Student: You will be able to move 2 or more 3 rotations in same direction.

Professor: no, this, no-no-no, if you put 4 here that means you are saying 4 fold rotation, this is

actually the order of the rotation you will see 4 fold rotation later.

Student: No sir, if you have lattice as such, like in this case, if you have 1 point 4 here and 1

point here and start rotating by 2 by 4 then shifting by 1 by 4 of the lattice vector

Professor: I have rotated it 2 by 4 and then?

Student: And then I am shifting it by 1 by 4th of the lattice vector

Professor: 1 by 4th of the lattice vector, tau by 4.

Student: So in that case after doing it 4 times the 4th time I will be reaching the same.

Professor: No, then the unit cell is actually tau, it is shrunk yeah, the unit cell shrinks, if you look

at that one particular unit cell you only have two times that is happening.

Student: Even on rotation should be 2 by tau.

Professor: Yeah, it cannot be more than that, yes.

Student: Whenever we are writing a symbol for a particular symmetry element like I said what it

essentially means is that the entire unit cell is subjected to that symmetry operations and when

that happens the unit cells coincides with itself. So do one actually means that all the atoms of

the unit cells are rotated by 180 degree and all of them are moved by translation vector and after

that the unit cell will constantly.

Professor: Absolutely, it will do that, but do not ask what happens to the free surface, if you are

rotating it and move, the crystal actually, the free surface actually moves up we are not looking

at the free surface. We are just assuming that they are just infinitely large.

So performing this operation is still able to coincide with an infinite array of atoms, that is what

it exactly means. It means that the entire thing which has a symmetry when rotated and moved

will just coincide with itself and you will not be equal to find out the difference. Now let us look

at slightly more involved examples for another 5-6 minutes. 
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So this is the example of 3 1, so when you have the 3 fold rotation what is, so s would be equal

to sigma by x times tau, so what are all the various possibilities? Sigma is nothing but an integer

x is 3, so sigma can be 0, 1 and 2. So you can either have a movement of 0 does not make just

the absolute rotation. You can have 1 over 3 and 2 over 3, so which means you can have a 3

suffix 1 screw rotation axis and 3 suffix 2 screw rotation axis as you have written here. 

It is interesting to see what happens when you perform a 3 1 and a 3 2 just to be clear on these

things. So I have marked the entire unit cell as tau. This is the base atom right here, moving it by

120 degrees and moving it by one third of the unit cell tau by 3, moving it up 1 third of the unit

cell. This is just the shaded atom which is just indicating an intermediate step there is no atom

there.

Then again I am performing a 3 fold rotation and moving it up, 3 fold rotation and moving it up.

So this entire thing is basically 1 unit cell which is commensurate with the lattice translation in

the along the axis of rotation. You can keep repeating this unit cell and it will have this feature of

3 suffix 1. Now what happens when we do 3 suffix 2, when we have 3 suffix 2, we rotate it by

120 degrees but move it by 2 thirds of the unit cell. So consequently this atom comes here first

and then it goes here. 

Next this one rotates by 120 degrees and goes to the unit cell that is present on top of it. And it

appears now if you are not paying attention you can get a little bit confused. So now you have to



carefully see that this is what you defined as your unit cell. So if there is a structure here like this,

there has got to be 1 like this. The application of 3 2 took this atom to this part. Now this one is

only 1 layer above the base of the previous unit cell, correct?

Which means there must be an atom even here, if lattice translation is to be respected in that

direction correct. Now you rotate this by 120 degree and move by 2 thirds you will end up in this

part. So now this and this in what way they are different? 

Student: Seems one is clockwise other one is anti-clockwise

Professor: Yes, one is seems to be a counter clockwise rotation and going up the other one is a

clockwise rotation and going up. So these, if you put a mirror right here right here and see how

these atoms are been reflected you will see that since this is the atom and the mirror is passing

through it, it would not get reflected at all. However this layer this atom will get reflected over

here correct, and this atom will get reflected over here which is exactly 3 2.

Can you all see that? So 3 1 and 3 2 are mirror images of each other and such pairs are called as

enantiomorphous pairs. Is that clear?


