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Okay so good morning again yeah so I  hope you are all  getting  used to  the     number of

derivations  that  we are  doing    so far  I  think  this  entire  course we    will  be doing such

derivations and    finding similarity solutions okay so    it's not so difficult  except that you

should get used to the notations and   things like that okay so ten self   notation is one of them

which we    introduced yesterday I think if you have    time you please read up a little bit on   the

tonsorial  notation  it  is  not  that    difficult  to  understand  also  you  should  have  some  basic

knowledge of solution to    ordinary differential equations because   in all the similarity solution

problems. 

We will convert the partial differential equations into an equivalent ordinary differential equation

and find the  similarity solution so that has to be  done numerically and I expect I will be giving

some assignments where you have to solve those do is numerically by some techniques okay so

otherwise if we just stop there   and give you the solution you may not  appreciate exactly how

the solution has  come and it will all look too mathematical   okay unless you do it yourself you

will   not appreciate the solution process so  we will look into the second law of for   a closed

system so  we were  till  now deriving  the  conservation  equations    we were  looking at  two

different approaches we started from a Cartesian  coordinate control volume and derived the

other one. 

We had a coordinate free representation applied anoles transport theorem to a coast system and

converted  the closed system rate of change of    properties to rate of change with   respect to an

open system and that is another way of deriving in a coordinate free representation so after    we



have looked at the first law it is   also very important to look at the  second law because as we all

know most  of the times we stop with the first law  without too much of violation to the  second

law  but if you look at any practical heat exchanger device entropy generation very important

you know there are a lot  of irreversibility within the system. 

And we have to quantify to some extent  the extent of these irreversibilities  and we should also

identify what are the sources of the irreversibilities okay so  that is where we are going to apply

the  second law and we are going to derive a conservation of what is called as  conservation of

entropy okay just like you have conservation of mass momentum and energy so that is also a

possibility of deriving conservation of entropy and  that is what we are looking at here so  we

start with applying a Claudius inequality for a closed system.

(Refer Slide Time: 02:59)  

Okay and if you express this in the form of a  rate equation so you know that the total derivative

d d s by DT should be greater    than or equal to 1 by T into the    differential amount of heat

transferred    okay so I will just represent this as  Δ Q . okay now let us apply the  Reynolds

transport theorem to express    this total derivative for a control mass    and with respect to the

partial    derivatives in a control volume.

(Refer Slide Time: 03:29)
     



You so you can define a property called a    specific entropy okay and in the    Reynolds transport

theorem the α is a property per unit volume right so then    that that can be expressed as Ρ times

the specific entropy okay so we can  expand this using the Reynolds transport    theorem like this

now the right-hand  side applies for an open system okay so  now for an open system therefore if

you  substitute this Reynolds transport  theorem expression into one so this is    your equation

which  defines  the  conservation  of  entropy  for  a  open  system  okay  so  this  is  nothing  but

conservation of entropy.

(Refer Slide Time: 04:21)  



For open system okay or you can also if you do not want to look at this as a conservation of

entropy you can also look think this has an entropy balance okay entropy balance equation okay

so now what we are going to do all the surface integrals can be converted to volume    integrals

by Gauss divergence theorem and therefore we can further put this I can take the integral over V

out so D by DT Ρ is DV + this will be again a    divergence operation right here this will be ∇ . Ρ

s V okay and I am   going to bring this to the left-hand    side here   so this will be again _ ∇ ∇ Q

okay so this is actually a vector right  here so I am just going to give this  vector notation okay so

this is all integrated over the differential volume. 

Because I have already applied the Gauss divergence theorem so on the right-hand side that that

should be equal to the rate of generation of entropy okay so therefore I can I can also say that if I

express this in okay or maybe I can also look at this way I want to look at the entropy generation

for the entire volume so I can also bring this inside -   a s . gen okay DV =0 right so    that I can

separate out the integrand okay and write a finally a partial  differential equation okay so strictly

speaking this entropy generation is per unit volume here it of a rate of entropy  generation per

unit volume. 

So if I can multiply by Δ V okay so I can say this can be multiplied by DV okay so  then I can

put this on the left hand side group all the terms together and  that can be equal to 0 therefore the

integrand has to be 0 so then this will    give me my a star gen should be equal to    D by DT of Ρ

is DV + this which I    am going to write in terms of the total    derivative notation which is Ρ D s

by    DT okay _ ∇ . Δ Q think this    should be Δ Q by T okay I think I    omitted my T because

that  that  is  there  in  the  clashes  in  equality  okay so  this     should  be  ∇ so  this  divergence

operator is on this entire term okay so this is how I finally can calculate   the entropy rate of

entropy generation now provided I can also expand this  particular divergence operator on ∇ Q

by T so I can rewrite this a little bit.

(Refer Slide Time: 08:14)   
  



So I can express this as estrogen is equal to Ρ the s by DT + 1 by T the so I can expand this I can

split it up    into I can take 1 by T out ∇. I can   write this as ∇ Q that is 1 the other  term is 1 by T

Square  ∇ Q.  ∇ T okay right so because this is the    gradient  operator so gradient this  is a

divergence operator on a vector so this    has to be a scalar so therefore you  should make sure

that  you only get scalar  operators outer  so this  is  again a vector  .ted with the vector  u you

basically  get  a  scalar  here  okay so you make sure that  the  final  resulting  operation  also  is

consistent with the original operator is that clear the  splitting up is clear okay. 

So I am just  so if you if you have a gradient the  same way that you write you have to have  a

write the same way for a divergence  operator also only thing you should make sure the resulting

operator is also  square giving you a scalar okay so  therefore now what I can do here so now I

am going to evoke the Gibbs theorems one of the Gibbs theorems if you can    remember so for a

closed system again you know that D U = TDS _  PDV okay so I am going to write as P D  into 1

by Ρ okay so this is coming  from straight from your first law right  where you substitute TDS for

Δ Q and  you have PDV work okay so this I can  write in terms of the rate equation and  you can

tell me how they should look if  I want to write BS by DP  okay.

So if I if X + D s by DT so I  can write this as d u by DT so I can  take 1 by T on the other side -

so this should be if you can express this as D    Ρ by DT so what should be the  remaining term Ρ

Square and T right so I am taking this T dividing it all the  side so I am now going to multiply



this  by Ρ okay throughout so that this u can be written  as also this that should be a P here P    by

Ρ T right so this is a little    bit of manipulation to suit my  convenience here.

Because now I have to find some relation for Ρ D s by DT so  I am just expressing this from the

gifts equation okay I am connecting that to the change in the internal energy and the change in

density with respect to time now if you    look at incompressible flows okay for    that this has to

be zero right so there is no change in density with    respect to time therefore the change in    the

entropy has to be directly the change in the internal energy of the system that is directly linked

there so let us also express the first law now if  you write the first law so you write D  Ρ D u by

DT should be equal to _  ∇ . Q okay + u  φ okay so I am writing in the final coordinate free

representation okay.

So instead of saying . Q you can also say ∇ ∇. ∇ Q    in fact if you if you want to maybe    rewrite

to  just  avoid  some  confusion  you  can  also  write  this  in  of  yeah  okay  just  to  avoid  some

confusion you can express this as clue instead of ∇ Q here so that finally it is consistent with that

maybe you can do the small change okay so both are  consistent all right  so therefore what I am

going to do now  is to substitute for Ρ D u by DT from  this expression into this and this I am

going to substitute into this okay.

(Refer Slide Time: 13:30)  

So  the resulting expression will be S.gen n will be so this will be  basically Ρ D s by DT is

nothing but  Ρ by TD u by DT which will be _    ∇ . Q by T + µ Φ by T okay so    that is this term



+ you has these    two terms right + ∇. Q by T   _ 1 by T 2 Q . ∇ T okay so these two terms cancel

off so therefore    your final expression for s. Jen turns out to be if you can also now substitute

the four years law for Q as K δ T and express this as - okay so    this is _ of Q. which is again _ K

δ T so that will become K δ T 2 divided by T 2 okay + µ by T C okay so therefore the components

of entropy generation are two. 

So one is  coming from the entropy generation due to the conduction part okay so within    the

system the conduction of heat the other is due to the viscous dissipation  okay so this part till

here I think  straight forward only after this we  apply the Gibbs law and just manipulate  a little

bit  so that  we can eliminate   some of these total  derivative  terms okay so finally  we write

everything in  terms of the heat transfer by conduction  and the viscous dissipation so now there

were there was this person called Adrian  Bejan.

I think that is one textbook also which  you are referring convective heat  transfer okay so he

came up with a very  ingenious method that he wanted to give  a non-dimensional number which

is  actually referred to as the Bezier  number okay so this is called Bejan   number so notation is

given  as  be  h  wanted  to  look  at  the  contribution  of   the  entropy  generation  by  means  of

conduction okay as a fraction of the  total entropy which is generated okay so  that he has taken

this term on the  numerator divided by this entire thing  on the denominator  okay so this is called

as Bayesian    number in fact the idea of entropy  generation due to heat transfer versus  vs. idea

so this derivation actually is  done by him. 

And that  is  also  a  paper  in   1990s  you know with  the  student  where  he   has  derived  this

expression for heat  transfer reversibility due to heat    transfer okay and I think the Bayesian

number was credited to I mean it was    basically given due to his contribution    for this work

particularly and this    measures if your baser number is some    value say about two it tells you

that  the majority of entropy generation is    through by conduction okay and if it is  much lesser

than  two  it  tells  the  majority  of  entropy  generation  is  through  viscous  dissipation  okay  so

basically this can be plotted just like  you plot your isotherms and heat flux  lines you can plot

the entropy generation due to each of these and you  can visualize and see how it looks okay    it

is a very useful to learn I mean and  you can see where the in which location.

In a particular system your entropy  generation is by the conduction part and  where it is by

viscous dissipation and if you can probably try to reduce the viscous dissipation by some method



so that I will  also reduce the entropy  generation yeah both are dominant  kind  of both are

equally important okay so any questions. I think I wanted to just  finish the governing equations

therefore  I wanted to touch upon the second law  also apart from the first law which you are

already  familiar  okay  so  I  think  many  of  the  textbooks  do  not  talk  about  the  second  law

conservation and things  like entropy generation much okay. 

So any other questions on this any ∂ any anything that requires some clarity  or is that okay fine

so then we  will proceed to a new topic now still  we are in the introductory portion of    this

course where we are deriving the conservation equations and so on so you  have seen that the

nervier-stokes  equations are quite complicated so we  cannot solve them analytically except

when we are making some approximations    now we can also bypass this and we can    introduce

another set of equations which  can be solved in place of nervier-stokes  equations especially for

two dimensional flows and two dimensional incompressible flows okay. 

So for 2d incompressible you  know we have to solve if you solve the    nervier-stokes we need

equations for UV  and P okay so UV p and if you are solving energy again temperature okay

now we don't have a separate equation for pressure okay we have equation for u and V and

continuity equation which is  like a default  equation so therefore numerically there are some

techniques to overcome this hurdle where we construct an artificial pressure  equation and things

like that    if you want to overcome that we can  rewrite the nervier-stokes equation into  what is

called as a stream function vortices formulation okay. 

And that is very useful when you are looking at 2d  incompressible flows okay there you have

only two variables two equations you can    solve that straight away and the    equation solution

is also slightly simpler than solving the navier-stokes  okay so we will just quickly derive    those

formulation today and in fact in  the project that you are supposed to do    you will be using those

2d stream  function verticity equations with the energy you will be solving them    numerically

okay I will send you some reference papers and you will apply that  to a problem of natural

convection okay  so now as in a natural convection will  be covered you can because this is a

nice rectangular cavity so the taking  you know finite differences will be much  easier alright

okay so we will do that  now.

(Refer Slide Time: 20:28)    



So the next topic will be for 2d so this  2d is the approximation that is required  okay we cannot

write this in 3d again    okay    2d incompressible flows okay so let us    write down the navier-

stokes  equations  first  and  from  there  we  will  try  to  derive  the  stream  function  verticity

equations so from the continuity  equation so you have to tell me for 2d    incompressible flows

what is the    continuity equation let us assume  Cartesian coordinate system okay so D u    DX +

DV dy equal to 0 so now the  complicated equations slowly will get   simplified as and when we

go through the  solutions okay and the X momentum D u by DT + would be equal to _  what

about density has to be  divided right + dynamic or kinematic  Dynamite ink. 

This is a laplacian operator right so and similarly your Y momentum which will be DV so we

will also write    your energy equation after we derive the    stream function vortices formulation

we will  quickly go back to the energy equation and simplify that  ok so what is     your 2d

incompressible energy equation we can directly write for temperature okay +  = α because that is

K by Ρ CP which is nothing but the thermal diffusivity okay the thermal diffusivity    α + okay. 

So now I am going to    neglect the viscous dissipation now okay    I do not want to put too many

terms into  this so I can safely neglect the viscous  dissipation okay so this is neglecting    okay

so now this is more familiar to you    have been working with these equations    in your earlier

courses now what we have    to do we have to think a little bit see  that is a pressure term in then

as the  momentum equations and we want to  somehow eliminate it because as you know    that

we do not have a separate equation  for pressure and when we want  numerically solved that we



want to  simplify this problem so how can we    probably do that    take derivative with respect to

Y here  respect to X subtract these two right so    that will eliminate this pressure    derivative

term so exactly that is what    we are going to do okay.

(Refer Slide Time: 24:28) 
 

So  we  will  differentiate  X  momentum  with  respect  to  Y okay  and  so  I  am  going  to  say

differentiate Y momentum with respect to    X - differentiate X momentum with    respect to Y

okay so if you do that so  you can group these two terms the  temporal term you can say D by DT

of so    you can write this as DV by DX _ D u    by dy is that right okay so I am taking    D by

DT common so I am differentiating  with respect to X - differentiating this   with respect to Y all

right so the other  terms you get lot of terms here because now if I say I am going to differentiate

this with respect to Y so I have to  split it up again right. 

So this will be  - you have to tell me now so this is d / dy of u D u / DX okay so I can write    this

as u into d square u by dy DX - yeah D u D u by dy into D u by DX okay  similarly this term can

also be expanded  that will give you _ V into D square    u by dy square  right - d you by DX into

DV by dy  they should be   eyx D u by dy I am sorry let me check  all the terms again yeah okay

so the  same thing now I am going to do  differentiate the Y momentum with  respect to X okay

so this _ this  right so this terms will be positive    here so + you have D u by dy into DV    by

DX + you have u into d square V by    DX 2+ I am going to  differentiate with respect to X into



DV   / dy + V x v  2 V by DX dy okay so when I differentiate this with respect to X this and

subtract they are  going to cancel okay on the right hand  side. 

I will have nu into _ d 3 u  by dy DX 2_ d 3 u by dy 3 + so I will have these two terms  right here d

cube V by DX3   + D 3 V by DX dy 2 yes one  two three four five six    this one do u by do X yes

you are  right because we are differentiating  with respect to X so all the other terms  are correct

please  do this  and check  once so I  am now going to  group these  terms together  in  some

particular fashion and we will see that that  grouping will help in reducing we can  actually

define a new function which can  be substituted for those grouped terms. 

(Refer Slide Time: 29:15)

So I am just going to group like this so U take common and what are all the  terms common to

you so you have this  term you have this term so I can write  this D 2 V /DX2 _ d  2 u by dy DX so

this has the term  is common to you    okay so again + V now you have to    tell me which terms I

can group those  square V by do X doY - all right so we have somehow one two three four okay

so four terms we have taken care and  before that okay I am going to add that    M temporal

derivative term so that is d  / DT of DV by DX _ V u by dy +  these terms right so this term is

also  taken care now we have one two three  four terms which are still on the  left hand side that

have to be grouped  together.

So what I am going to do is I    am going to take DV by DX common okay    so if I take DV by

DX so that means this comments DU by DX + DV / dy which is nothing but two-dimensional

continuity  which  is  automatically  satisfied  okay  this  is  a  nice  trick  to  eliminate  all  the



unnecessary terms okay + next I am going to take D U so this    is actually _ D u by dy out so d u

by dy so you have d u by DX and DV by dy    so that will also be satisfying    continuity so this

goes this also goes  on the right-hand side.

I can just group  them as d 3 V by D X  3_ D    3 u by DX 2 dy okay so I am    grouping these two

terms these two terms  okay + B cube V by dy2 DX okay  _ D 3 u by dy q  all right so I am just

grouping them now what I am going to do is to introduce a  function called the vorticity which

you    are all familiar right so how do we    define what is it e many of you can  recollect from

your incompressible flows  in fact you can get a clue from the  terms that we have grouped DV

by DX -  yeah exactly okay now you can see why we have grouped  those terms because they are

going to be  directly in terms of the vorticity. 

That we have defined and now we are going to  take derivatives and check it will come   exactly

to those terms okay so for  example if you now take the derivative  of T with respect to X now

you  please tell me what the term should be  that should be exactly the first term on    the special

derivative term right so  that is ∇ 2V by ∇ X 2  _ ∇ 2 u by ∇ y ∇ ∇ X okay so d  Ω dy should be

what d2 V by DX dy _ d2 u by dy  2 okay that is this term right here okay so now if you take

second derivative d square  Ω by DX 2 can you tell me what the second  derivative will be    okay

so this is this term right here  okay so regarding this no QV by okay and    this is ∂ 3 u by ∂ y

cube okay that is this term right here okay,.

 so therefore you find that our grouping all  these terms make sense you can write  them in terms

of the vorticity and its derivatives therefore I am going to   substitute in terms of vorticity.

(Refer Slide Time: 34:40)  



So this  will be D  Ω by DT + u D  Ω by  DX + we the  Ω by D Y should be  μ into  so this is my

governing equation for vorticity okay or you can also say that this is the vorticity conservation

equation so have you derived this before  earlier incompressible flows vorticity    okay so this is

a  this  is  an important   equation and it  simplifies  because now  your pressure terms are not

appearing  anymore  okay.

Now still we are not done because  we have simplified the momentum  equations okay but the

thing is still  you have your U and V velocity is  appearing here okay and we have to    somehow

eliminate them a stream function  so how are we going to do we have to  define a function which

automatically  satisfies the continuity equation and  therefore you do not have to again solve

for continuity separately right  so therefore what is that function which  does it that is the stream

function okay so from the stream function you can  calculate your velocities for example U  is

related to your stream function as  U/ D Y and V is _ D side DX.

So naturally you can see that D U by DX + DV by dy will be zero so the stream  function is

automatically satisfying  continuity so you can plug in for U and V  in terms of the stream

function and the    other thing the stream function should    also satisfy this equation because this

is the this is how the vorticity is    defined and what is it is related to the    velocity terms the

velocity  derivatives   there  for  the  stream  function  should  make  sure  that  it  satisfies  this

particular definition of vorticity so if  you substitute for stream function into  that so what do you



get so your  Ω  will be so if I take DV by DX this is    _ d 2 y by DX 2 and d u by  dy _ so _ of

three squares I by  right. 

So you have you can now substitute this in terms of the stream function therefore you have

eliminated the velocities okay so this is your equation  number one this is the conservation of

vorticity equation number two is now since you have introduced stream function you have to

solve for stream function okay and that is done by means  of second equation which relates your

stream function - vorticity okay so this  is your second equation so now you have  two equations

two unknowns right one for  sigh and the other for  Ω so this is  much better to solve rather than

the  navier-stokes correct okay. 

So where you  have to solve for three equations and  you do not have an equation for pressure so

that  so  that  is  why  it  is  very  popular  technique  for  numerical  solution  to  two  dimensional

incompressible flows okay most of the journal papers that you take for to 2d incompressible flow

still  until recently okay  where you know do not did not have  powerful computing facility to

solve  the  full  navier-stokes  equations  they  were  employing  the  stream  function  vorticity

technique okay so and this is what you  are going to dry out also now the same  thing in energy

equation if you substitute okay. 

So apart  from the flow field you can also calculate  for  temperature so the energy equation

becomes  you can  substitute  for  u  again  in  terms  of  stream function  so  this  is  your  energy

conservation okay  so you solve for three equations for three unknowns  Ω sy and temperature

okay so these are the equations that you exactly how to solve in your particular  project and I will

be giving the papers  you have to apply the corresponding  boundary conditions to solve this

problem so for a particular problem you    have to do it and then you can you can    probably look

at steady-state solution  where you do not have to consider the  time derivative okay only the

spatial derivative and you can do this    iteratively so there are a couple of    techniques like gauss

or Gauss Jacobi iterative techniques which you can do it and you can use finite    difference

methods simple finite    differences to basically discretized.  

These derivative terms all right okay so  with that I think most of the    conservation equations

we have seen and  also different variants of the  conservation equations what I am going to do

now is to slowly get into the  theme of this course which we are going  to apply for both external

and the  internal flows okay now we have to make  some approximations to the navier-stokes



equations when we apply that to external  flows we cannot solve the navier-stokes as it is okay so

these approximations are called the boundary layer  approximations as far as the external flows

are concerned and before doing that first we will try to non-dimensionalize. 

The navier-stokes  equation we will try to define some non- dimensional numbers we will see

what non    dimensional numbers are governing the flow and heat transfer parameters and w  will

also identify the regimes based on    these non dimensional numbers and finally when we go to

boundary layers we have to use these non dimensional numbers to make certain approximations

okay so once the boundary layer equations are derived from there we will  start our process of

solving for  different configurations okay so we will  I will just introduce you little bit we    have

some more time    about seven eight minutes so I am going  to talk about the different parameters

different variables and how we are going  to non-dimensionalize them okay so I think this is

probably familiar to you  because you have done this layer in your  incompressible flows and

also advanced  written math so very quickly we will go over it and you can yourself try to    non-

dimensionalize. 

I am going to write down only the final non-dimensional equations okay so here after we will be

dealing  only  with  incompressible  flows  and  that  also  in  two  dimensions  okay  so  all  the

complicated terms will be dropped off one only we will retain terms in these two dimensions.

(Refer Slide Time: 41:53)  



So 2d incompressible in fact I should not have it is the navier-stokes so the same thing applies

here and anyway. I will just do it write it quickly again. I am going to also include the pressure

term so  here  I  am what  I  am doing this  2d   also  incompressible  and steady  so  this  is  the

approximation that I am going to  bring here because after we non  dimensionalized and apply

this to  boundary layer flows we are pretty much going to do this for steady-state  solutions okay

so we will stick on to this particular form throughout so all  you are most of your solutions will

be  for 2d incompressible and steady state    and also we are including the viscous    dissipation

here to non dimensionalize and see what kind of non dimensional  numbers come out okay.

(Refer Slide Time: 43:49)  

Suppose you take any flow say past an airfoil or past  your flat plate okay so you have your

free stream which is described by your  free stream velocity and temperature and  you can also

maintain the surface of the airfoil  okay at an isothermal condition first  that your tea wall  is

constant and let us say the characteristic dimension of this particular soil is given by the    chord

length which is L all right so  this is these are some of the variables  that you have fixed you

know you have  your u ∞ u ∞ define okay  the geometry is well-defined and also    they are

fixing the boundary temperature  to an isothermal condition so with these parameters how are we

going to non-dimensionalize. 

So the as well as far as the coordinate system is concerned okay    let us take a coordinate system

x and y    okay like this which are along the cart    length and normal to the cart so I am    going



to define a non dimensional  coordinate system capital X which is X    by L similarly Capital y

will be Y by L and as far as the velocities are  concerned I am going to introduce  U okay which

is what u by u ∞ similarly capital v =  V by  ∞ okay now coming to pressure  okay so velocities

coordinates are done.    

So I am just going to introduce the P which is equal to the small p dimensional P divided by so

how do we non dimensionalize the pressure okay so I am going to cut the half term because   it

does not make much difference Ρ ∞ u ∞ 2 okay so the   free stream density is Ρ ∞ all right and

finally coming to the temperature. I will define a non-dimensional temperature θ such  that at the

wall the value of the  non-dimensional temperature equal to one    and in the free stream away so

the value should be zero. 

So how do I  non-dimensionalize that t _ T    ∞ by T wall _ T ∞ okay  so that at the location

where at boundary T equal to T wall this becomes  1 and at the free stream somewhere that    θ

goes to 0 all right so with this I  just write the final equation you can in  fact derive this and

check  for  yourself  if  you  substitute  these  non-dimensional  variables  into  the  dimensional

navier-stokes equations so you are now  going to tell me so we will write down  only the final

version so what will  happen to the continuity.

(Refer Slide Time: 47:00)  

This is right and we are just substituting for the dimensional in terms of the non-dimensional

variables there all right they cancel out  everywhere okay as far as the momentum  equation is



concerned you be u by D X    + V D u by dy I am writing all in    non-dimensional terms is equal

to _  D P by DX + something which  you have to tell me what it is d 2  u by DX square + d square

V by dy2 okay the same thing for the this  is U dv/dx + V DV dy - so    these are all in non-

dimensional variables so you have to check and tell  me what terms should be there and similarly

finally you have D θ  DX + I am going to introduce a non-dimensional risk viscous dissipation

free star. 

So you have to fill in the  blank how what are the terms that are  going to appear here okay so

what  should be the term right here announce number so if you are an number is very large so

what happens if  this term is more important than the  convective term is that correct it  should be

1 by Reynolds number right 1  by re based on the length so where you  are re L is nothing but Ρ u

∞ L    by mu correct similarly the same thing  comes here 1 by re L now what should be    the

term here just 1/2 minute we are  done okay. 

So I am just going to give it you please  check it 1 by re frontal number okay where your number

is equal to µ CP by K which is also µ by α ok and  finally here I am just going to    introduce a

non-dimensional number which  probably you have not encountered so  this is going to be what

is called as a  curtain umber by Reynolds number here  where your record number is defined as u

∞  /CP xT /1 _ T  ∞ okay, so what I give you as a homework is to please substitute all  that

carefully and check whether we    arrive at this now non-dimensional  formulation okay. 

I think you can do that  directly you can see that that this  comes directly straight away only this

combination and this combination you have to check again all right so we will stop and we    will

meet on Tuesday we will start with  the boundary layer approximation.

Entropy Generation and Streamfunction-
Vorticity formulation

End of Lecture 7
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