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Okay so good morning the whole of you  yeah so in the last  class we were looking at  the

derivation of continuity   and the momentum equations and we  started off with the derivation of

the   energy  equation  in  a  Cartesian  coordinate  framework  and  today  we  will   contiμe  and

complete this derivation so as we had seen we have taken a cubic or  a you know a Cartesian

coordinate  control volume and the contributions to  energy if you look at so you have  primarily

the efflux of internal  energy as well as the kinetic energy.

(Refer Slide Time: 00:51)   

Which  is  crossing  the  control  volume  boundaries  in  all  the  three  directions?  I   am  just

representing here on only two  directions you can also extrapolate that  to the third direction

apart from that you have the reflex of heat by  conduction okay so that is this Q double    ″ so



you have heat conduction which  is essentially transferring the heat by  diffusion process and you

have energy  transfer by means of reflects of the  internal and the kinetic energies and  also you

have work transfer so all the three are simultaneously these are these  are reflexes or effluxes of

contributions   of internal  kinetic  energies the work  and the heat  which is  all  acting on the

control volume boundaries.

(Refer Slide Time: 01:37)   

You and as far as the change within the  control volume is concerned so we know  that we can

express the change rate of  change of energy in the control volume  to the native efflux of energy

across the control volume boundaries okay and now  we are also looking at when we are  looking

at the work we include the body  force terms which are acting on the entire volume into the work

terms okay  so they are the potential energy terms  which we are adding as work so if you  look

at the rate of change of energy  essentially so this is the energy per  unit mass okay internal

energy per unit  mass is this u capital u or small U  which you want to use. 

If I use small u  that conflicts with my velocity  therefore I am using capital u and this  is your

kinetic energy per unit mass so  multiplied by the mass which is your  density times the volume

so this gives  me the energy of the system and  therefore the rate of change of energy  will be d of

this divided by DT okay, so  therefore if you look at on the right  hand side which is the net

efflux of  energy we have to balance the energy  which is coming in from the left  boundary - the



one which is leaving and  similarly in the Y direction and the Z  directions and if you can do that

and  expand by Taylor series. 

If you calculate  the energy rate of change of rate of  energy in - rate of energy out so  you end up

with these three terms which  we have written down last time so  similarly we can also express

the  efflux   of  heat  as  well  as  the  work  you  know  the   Flex  of  work  is  a  little  bit  more

complicated which will lead to  additional terms which are coming in but  we can also try to

expand and see how  those terms look so let us write down  the net efflux of heat.

(Refer Slide Time: 03:38)   

Okay so do you think that this is  correct reflects of kinetic and  something is missing here sign -

there  should be a - here right so that is  there are efflux of kinetic and potential  energies coming

in - the one that is  leaving so there should be a - sign  here right and when we write the net

efflux of heat okay so let us write it  down can you say probably how it should  look  - of DQ X

DX + V Q double  dy  + V Q Z   ″ by DZ so this  are your effluxes into the volume finally  so

anyway you have for each of these  derivatives you have δX and  multiplied by the area so

everything  comes out as a volume you have δ X δ Yδ Z okay.

So we can now introduce the Fourier law  of heat conduction okay so you know that  your Q

vector is equal to – K δ T right so that can be introduced and  when you say how this can be

written so  we can the - - sign can be cancelled  off you can write this as d by DX  strictly

speaking  the  thermal  conductivity  could  be  anisotropic  that   means  you  can  have  different



thermal conductivities in the different  direction so you can keep it within the  partial derivative

if you assume that is  isotropic and constant property. 

So this can be taken outside the partial  derivative okay so I am assuming here  the thermal

conductivity is isotropic  but could be a function of position okay  because of its dependence on

temperature  so I can express this  okay so much so for the energy efflux  of heat so it is looking

very  straightforward now let us move on to  the net efflux of work now this is a  very lengthy

expression because you have  to consider all the terms which  contribute to work okay, so if you

do the  same analogy and apply that to work so  how does the work terms appear can you  think

about so you are writing the net  efflux of internal and kinetic energy is  heat and in analog. 

This way so what are all the terms which contribute to work  the forces okay all the forces the

surface forces the volumetric forces  they are all included under the work  term okay so if you go

back and revisit  your momentum equation so you look at  what are all the surface forces and

body  forces acting and then you multiply them  with the respective velocities okay so  that will

give you the amount of work  okay so that is basically the rate of  work right the force into

displacement  divided by time so that is the rate of  work so all these are in rate terms  alright so

if you do that so the net  reflects of work in all the three  directions.
 
So I am just going to write  down and you just please verify if they  are correct and also the sign

convention  is that so I am assuming the forces  which are all acting the net forces  acting in the

positive direction or all  positive work okay they contribute to  the positive along a positive x

direction  so this should be looking like this D by  DX from the X momentum equation you have

D Σ X X X by DX so I am just  multiplying by the corresponding  velocities in that particular

direction  so you Σ xx right you can verify  that from your momentum equation  expression okay

u τ YX so these are  the stresses the normal stresses normal  viscous stress stresses. 

In  the  tangential  stresses  which  are  acting   along  the  X  Direction  multiplied  by  the

corresponding  velocity  in  the  direction   alright  so  this  is  the  contribution  this   is  the  net

contribution to the in efflux of  work so we have W into τ Z X okay so  this is in the X direction

okay so this  should be you here right so you have to  sum them in all the directions okay so  you

can say + you can just write that  in the Y direction as well you have V  and you tell me what this

term should be  Σ YY + D by DX into V into τ is  it YX X Y okay so you look at this  the last

subscript here denotes to  the direction. 



That we are talking about in which you are calculating the work or momentum okay + your D by

DZ of V x τ Z Z Y okay so this is a good exercise for you + you have D by DZ.

(Refer Slide Time: 09:53)  

Of W into Σ Z  Z + D by DX of W into Σ what  should what should be this term τ XZ  + D by dy

of W τ why is it okay so  these are the contributions to the  surface forces so what should  be

added to this what are the other  contributions toward body forces okay so  that also we can yeah

so that is coming  under the body forces okay so that is  the potential energy contribution that  is

added under the work so this will be  Ρ U so I am taking Ρ common because  Ρ is common in all

the three  directions you have u GX b g y + w v g z  okay now this entire expression right  here. 

I have to multiply by the volume  and same with respect to this  because this is a volumetric first

you  can see directly this is multiplied by  the volume the other ones you know from  the Taylor

series expansion we have this δ X δ Y so any questions on this , I hope you have identified the

different  contributions to the efflux terms as  well as you know rate of change of  energy within

the control volume is  straightforward so now we will just  balance that using the principle of

conservation of energy and we will write  down so this will lead to a big  expression here which

can be written as  d by dt okay. 

Let me number this let me  call this is number one here okay  so from one so I am going to

substitute  for all these terms into one so this is  d by DT of Ρ U + the  kinetic energy so this is

the rate of  change of energy within the control  volume + you have the terms which are  so



actually strictly speaking what we could have done we can combine the rate  of change of energy

and the efflux terms  together into a total derivative so I am  just going to first write it down and

then combine the convective terms and  the rate of change terms into one single  total derivative

for a compact notation. 

So right now I will just write it in the  full form so this is D by DX Ρ you  probably have missed

the row here okay  so this should be a row here right  because this is the efflux okay so that

should be mass efflux multiplied by the  area which will give you the flow rate  of this particular

quantity alright so  you can you can write this in terms of  Ρ u so u + u 2 is v 2  + W 2/ 2 okay +

you have d  by dy Ρ V  so I have taken all the efflux of  kinetic and internal energies towards  the

left hand side and combine that with  the rate of change of energy. 

So this is  my left hand side terms now this should  be equal to I am not going to write down  it is

taking too much of space here I  will just mention this is equal to  native efflux of heat right so

you can  just write those terms here native  flexor feet + what net the efflux of  what okay  so

now on the left hand side term I can  I can just say from the LHS.

(Refer Slide Time: 14:55) 
 

So the term  right here the time derivative and the  spatial derivatives can be combined into  one

total derivative if you also observe  we can also simplify this a little bit we can say take U + u 2

+ v  2+ W 2 /2  common so this  will be D by DT of Ρ + D by DX of  Ρ u + this + this so what is

that that is a continuity  equation okay.  



Which will be automatically satisfied so  that will go to zero and therefore you  can say that you

can take Ρ out and we  can write this is d by D by DT of this  + D by DX of U into this + D by dy

fu into this okay so that can be written  as Ρ into the total derivative of D by  DT with respect to

U + right because  the continuity is satisfied so I can  take the Ρ out okay so I am not making

any assumption here. I am not making any  incompressible assumption but you can  see that if

you expand this the  compressible form of continuity  itself is  satisfied so I can write this as Ρ

into the total derivative of the  internal and kinetic energies so the  LHS is simplified. 

So now I can  equate that to the other terms okay so  that will be equal to my d by DX of K DT

by DX + D by dy  + I have the work terms  so what I am going to do here I am just  clubbing

these terms D by DX terms here  in the from the X momentum the Y  momentum and the Z

momentum together  okay so I am taking D by DX common and  writing all the terms inside that

so  that should give me u Σ xx + V  τ XY + W τ XZ please check these  terms are right + D by dy

of u τ YX  + V Σ YY y z ZX + V τ that Y  DZ + I have the body force term Ρ  xu GX + v gy okay

so this is my  complicated form of the energy equation  now what I am more interested finally is

the I should write down. 

An equation for  the change in internal energy of the  system more than the total energy which

includes internal energy + the  kinetic energy so I want to somehow  eliminate the kinetic energy

part and  write down an equation governing only the internal energy which is the direct  indicator

of the temperature change of  temperature of that particular system so  how can I do that how can

I eliminate  the mechanical energy component from  this can we use the momentum equation

somehow  and  we  can  construct  an  equation  for  mechanical  energy  from  the  momentum

equation.

You know the momentum equation  is written for U V and W ok we can  multiply those with UV

and W in each  of these directions we can sum them  up together and you will get this  particular

form on  the  left  hand  side   that  can  be  subtracted  from here  and  this  component  can  be

eliminated  straighter right so if you go back and  see how your momentum equations are  written

okay now this is the let me call  this as equation number one I already  have one so I will call this

is number  two so how are we going to do it if you  look at the momentum equations on the  left

hand side term how do we have the  total derivative can you go back and  check.



(Refer Slide Time: 19:46) 

d by dt or d u by DT for example  in the X momentum right ok so this is  the left hand side term

correct so if  you multiply this by you okay so this  will be UD u by DT which can be written  as

D u square by 2 correct this is  nothing but UD u by DT so the same thing  we are going to do in

all the three  directions multiplied by the respective  velocities and sum them up so what you

will get + v 2 + W 2 /  2 so now you see the left hand side term  of the energy equation so this and

this  are common right so if you subtract this  directly you will eliminate kinetic energy so we

will retain only the internal energy component. 

So now we also  have something on the right hand side of  course when we subtract we have to

subtract both sides on the right hand  side terms what you will get can you and  you just go back

to the momentum  equation and multiply and tell me so you  have u into D Σ xx by DX + D τ

YX by dy + d τ ZX by D Z so this is  the X momentum which are multiplying by  u + what the Y

momentum V into D τ  XY by DX + D Σ YY  so what should be this term third term D  τ in

which direction it is y direction  and the derivative Z + you have D τ  X Z + D τ Y Z + D Σ Z Z

by  DZ okay + if you multiply your body  force terms also you have Ρ x u GX  v gy + okay. 

So this equation is  called the mechanical energy equation  okay so this is nothing but something

like conservation of mechanical energy  from the momentum equation okay so if  you express

write your momentum equation  automatically that satisfies this okay but you are explicitly now

writing  another equation for conservation of  mechanical energy so let us call this as  number



three so now if you subtract  three from two that means you are trying  to eliminate the kinetic

energy term and  only retaining the internal energy so  that is going to get us where we want to

go in terms of calculating the  temperature of a system. 

So far  although you are more familiar with an  energy equation involving the  temperature we

have not introduced  strictly speaking an equation for  temperature although that appears on the

right hand side term here on the left  hand side term still you do not have  something for the

temperature. So we are slowly going there okay.

(Refer Slide Time: 23:34)   

So subtracting  three from two on the left hand side  term you have row the you by BT okay ,so

this is your change of internal rate of  change of your internal energy of the  system on the right

hand side terms you  retain your reflux of conduction reflux  of heat by conduction so this term

comes  as it is d by DX and now coming to the  other terms if you look at typically  this term

here and there so you can  eliminate so you can expand this has  your D by DX Σ xx D u by DX

+ u  into D Σ xx by DX so that cancels so  what should what should be the remaining  terms after

you cancel off you have  Σ xx D u by DX right + τ YX  into D u by dy okay.

So what I am going to do I am going to  combine the like terms together so I am  going to

combine the normal stress terms  together first so you will be getting DV  by dy okay so I am

looking at this  particular term here and writing  them together + I have Σ ZZ DW by  DZ  now

the other tangential stresses .I am  combining them I am also using the fact  that τ YX = τ XY



okay and  τ Y Z = τ z zy and τ XZ  = τ ZX so if I use that I  can combine τ YX and τ XY terms

together and that will be DV by DX  + D u by dy because if you if you  look at τ XY here so this

will be DV  by DX okay and this will be D u by dy. 

Okay so these two term can be combined  together and τ XY is equal to τ YX  similarly the τ Y Z

DW by dy + DV  by DZ + τ XZ what should be the  derivative inside D u by DZ + DW by  DX

okay so therefore you have another nice equation which is still not simplified  completely but

this is an equation for  the conservation of the internal energy  of that system alright so now what

we  are going to do so how do we simplify  this further  however written okay so this is coming

from the momentum equations have you  know the XYZ momentum equations right. 

So multiplying each of those momentum equations by the respective velocities  and summing

them together okay so for  example on the X momentum you have UD u  by DT so I can write

that as D D / DT  of U 2 / 2 correct and similarly  in the other direction I sum them and  also the

right hand side I am doing that  summation so this is, s okay so now  how do we further go ahead

and let me  write this as equation number 4 still you have some unknowns on the  right-hand side

right you have terms  related to your stresses which have to  be closed now how do we close

those  terms Stokes hypothesis. 

Yes so we have to  first derive a we have to use some  relationship between the stress and the

strain rate so Newton's Newtonian fluid  approximation first and of course Stokes  hypothesis

now also we I am if you do  that you will derive that for a  compressible fluid but we are more

interested  in  incompressible  fluids  in   this  course  so  I  am directly  going  to   substitute  the

Newtonian fluid  approximation for incompressible fluid  now directly okay because otherwise

we  will accurate more and more terms.

(Refer Slide Time: 28:47) 
  



So for incompressible fluid or for  incompressible flows so incompressible  flows so what I am

going to do is can  you tell me for example Σ xx should  become - P this is a pressure force  +

okay after the Stokes approximation  so - 2 by 3 μ into divergence of U  now for incompressible

flows that is  going to be 0 right so that term can be  neglected so what is the other term +  2 μ bu

DX right so that is why I am  going to bring in that approximation  that that divergence of views

can be  eliminated straightaway so one term this  actually simplified so I can write this  in the

other direction.  

So now my XY and τ YX is going to be  the same for compressible or  incompressible fluid okay

so that is μ  into DV by DX + bu by D Y so and also  you can do that for τ Y Z is equal to  τ zy

please you can fill in okay now  you can substitute this into for and we  can write down in terms

of velocities  okay  so what I am going to do just only this  term right here which I can probably

highlight so this highlighted term alone  I am just going to express in terms of  velocities. 

(Refer Slide Time: 30:59) 



So my σ XX d you by DX + σ YY DV by dy + σ z z DW / DZ so if I substitute this so I am

going to you can see directly. I can take  P common d u by DX + DV / dy + DW  / DZ so

satisfies incompressible  continuity okay so if I substitute for  this okay so that time I am going

to  eliminate and you will have 2 μ x D  u / DX x D u by DX + 2 μ into  the same thing so finally

you will have  2 μ D u by DX 2 DV by  okay so the incompressible approximation  is going to

simplify this particular the  normal stress work okay so to a great  manner so therefore if you

look at this  terms here τ XY you can see that is  already new DV by DX + d u by dy so  this and

this  multiplies  and  this  will  be  again  whole  square  okay  so  this  these  are  relatively

straightforward terms. 

So  if I combine that I can once again  express equation four as Ρ D u by DT  should be  + 2μ and

I have this term right here  D u / DX the whole square okay + I  can take two new common for

these terms  also I can take one by 1/2 factor out so  that this is two and two cancels and it  is

new and what should be the other  terms if we substitute for τ XY into  whole square of each of

these right so  DV by DX + D u by dy 2  + half of my DW by dy + DV by DZ  2 + half of BU by

DZ  + DW DX 2 okay so this is  my equation number five and now it looks more familiar to you I

am going to group  this set of terms contributed due.

To the  work has one single term which is  denoted by the symbol right here and  this is called as

the viscous  dissipation see all the surface forces  you can see the body force terms get  cancelled

off finally the body force  terms do not affect the energy in any  way all right so only the viscous



forces  are playing the role the surface forces  and they are all grouped together as  what is called

as a viscous dissipation contribution to the energy internal energy of this system okay now some

people make an approximation that under certain criteria  and conditions this is  going to be

negligible and therefore you  can see  the familiar form of the energy equation.  

Okay so we will make a few approximations now and simplify this equation for a couple of

conditions so the first thing if you introduce the fact. 

(Refer Slide Time: 35:29) 

For that your d u that is your  change of internal energies related to  your temperature okay  so if

you say that it is CV DT and for  an incompressible fluid it does not  matter which specifically to

use whether  it is specific heat capacity at constant  pressure or constant volume they are the

same okay so for incompressible fluid  okay so your D U is the same as the  change in enthalpy

therefore your CV is  equal to approximately CP okay so this  is just one constant specific heat I

can  use for incompressible fluids and  therefore I can express that in terms of  temperature so I

can write this as Ρ C  DT by which is equal to C okay so on the  right hand side.

I have this term  conduction terms  + I have the viscous dissipation term  so this is the familiar

form of energy  equation for incompressible  flows okay now we can also make some more

further  approximations to this okay so because  this two one two should cancel up the  term is

actually new into this movie was  common to all of these in fact I should  put another big bracket

here and yeah  you are right yeah so two new is common to all these huh no I am calling this



entire thing as five okay this is a  single term which is the viscous  dissipation term all right  so

for steady flows first approximation.  

I  am going to  reduce  this  incompressible   energy equation  for  steady flow under   constant

property assumption that  my  thermal  conductivity  is invariant  of  position with constant or

uniform  property everywhere so this is going to  be through the time derivative is going  to

disappear you can write this as u DT  by DX + V DT by dy + W DT by DZ  that is equal to K by

Ρ CP which is  nothing but the thermal diffusivity  okay α so I can write my K by Ρ C  Ρ C as α

D t by DX 2  + B 2t by dy 2 d 2  t  by DZ 2 + P by Ρ C  okay so for two-dimensional flows I can

make further approximation that the  third dimension is not important  + three by Ρ C where V

becomes even  more simplified okay for 2d flows. 

(Refer Slide Time: 39:15) 

I can  expand my so that will be only two new  into D u / D X 2 DV /  dy + ½ of DV / DX + D u /

dy  2 alright  so finally when we are working with the  energy equation in this course for doing

the nautical solutions we will be  looking at these approximations okay,  incompressible flow and

mostly in  two-dimensional we are concerned only with 2d flows for analytical solution so  this

is  the  form that  we  are  going  to  work  and  you  can  see  the  viscous   dissipation  also  gets

substantially  simplified okay in a coordinate free  representation you can also do this and  you

cannot suppose you neglect your  viscous dissipation terms. 



In a  coordinate free  representation neglecting fee how can  you write this okay so suppose you

don't  make a steady-state approximation but  still it is an unsteady you can write  this as DT by

DT + ∇ dot u vector  times the temperature which is equal to  α ∇ square t so this is my  equation

for temperature right so this  is your advection term this is your  diffusion term right here so they

are  represented in terms of your divergence  and the laplacian which you can  substitute for the

corresponding  coordinate system okay so this is a common representation you can if you  want

to write this in cylindrical or  spherical you please substitute. 

In that  particular coordinate system the  corresponding divergence operator and  the laplacian

operator we will we'll  come back to that okay so right now I am  just concerned only with the

derivation  we will non dimensionalize this  equations then we can then only we can  find the

criteria where we can neglect  those terms otherwise when everything is  dimensional we cannot

find  out  exactly  you  know  when  this  is  important  and  when   this  is  not  when  you  non

dimensionalize you find in terms of non dimensional  numbers okay there is a particular  number

associated with that is called the ax-cut number the ratio of Eckert number. 

To  the  Reynolds  number  is  very   high  that  terms  become  important  viscous   dissipation

otherwise you can neglect  okay  so usually for given in the  incompressible flows if the flow

velocity is high or if you are going to  the other limit where you are you are  looking at extremely

slow flows that is  creeping flows under that is called  Stokes approximation so under these two

categories  that  term  becomes  very   important  for  most  of  the  intermediate   velocities  and

intermediate Reynolds  numbers so that term can be safely  neglected okay so very quickly in the

remaining time. 

I am going to introduce  to an alternate way of  deriving these equations so far what  we have

done is taken a control volume  which is probably in a particular align  to a particular coordinate

system and we  have derived it nicely so what if you  want to apply this to an arbitrary  control

volume of any shape and if you  want to reach to this particular form  this is a coordinate free

representation  okay so the way to do that is by what is  called the Reynolds transport theorem so

I will give you some brief introduction  into the Reynolds transport theorem. 
Now  and probably in the next class we can  quickly do only the energy equation  derivation

from their  nostrils  with  a   momentum equation  I  think you can  try  it   out  yourself  so any

questions so far on  this okay I think some of this is  already familiar to you okay.
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So this is  through noise transport  how many of you are familiar with the  Reynolds transport

theorem one only one I think whoever has taken the  incompressible flows probably this was

introduced to you right okay so I mean  if you look at the undergraduate level  usually we do the

derivation in the  Cartesian coordinate system that is the  easier one to visualize whereas most of

the graduate fluid mechanics the  governing equations are directly started  on a coordinate free

control volume so  let us take some kind of an arbitrary  shape control volume so let us say the

volume of these total volume of this at a particular instant of time with V okay.  

And let  us say there is a differential   volume δ V okay there is a surface  normal which is

pointing outward and  there is a velocity which is also  oriented in some particular direction

okay so this control volume is actually  moving okay and if you take a  differential amount of

volume you draw  the surface normal and you see the  velocity is pointing in some direction

okay now the surface of this is S  given some value S at this time T now  after some time you

will find that this  volume is changing after a period of  time. 

So if you go from T to T +δ T this volume deforms into some shape  like this okay so not only

the shape but  also the volume is different so I am  going to write this as t +δ t  the corresponding

volume and also your  corresponding differential volume also  changes right so if you overlap

these  two volumes so this is the volume at t  +δ T and this is your previous  volume say so this

differential volume  right here has changed from T to T + δ T and if I look at only this  particular



differential  volume  and I  draw the  full  view representation   of  that  so  it  is  going to  look

something  like this okay so this is my  differential surfaces all right  corresponding. 

To this volume so I am  just drawing a 3d representation of this  particular segment alone okay

now you know that this has a velocity  vector like this and this has a normal  like this okay so if

you align the  velocity vector in the direction of the  normal so this distance between these  two

volumes that is the displacement  from this position to this position how  can you calculate that

gives you the  amount that it has actually displaced  from this time to T +δ T  velocity into time

so my velocity in the  direction of normal will be u dot n into δ T okay so my total deformation

of  this δ V is actually going to be u  . n dt x d s okay this is going to  be the total deformation of

this  differential volume correct okay. 

So this  is the basics of this so from here maybe  I will take a couple of minutes two or  three

minutes and then go few more steps  so I can say if I want to define any  property α okay.

(Refer Slide Time: 47:34)  

So this is the  property per unit volume and now the  volume is changing but this is a control

mass so that means the mass is constant but the volume is deforming so therefore I have to define

a property per unit  volume so that this α is going to be  the same here or here okay it is per unit

volume property and if I want to see how this property is evolving over time okay  so I can write

that I can calculate the  change of  this particular property over the entire  volume I can multiply

this by the volume  so that is α x DV and integrate  this over the entire volume okay so this  is

property per unit volume. 



So for a  differential volume I multiply by that I  integrate it over the entire volume this  will give

me the property for that  particular control volume okay so I want  to see how this property is

changing  with respect to time so I take a total  derivative of this okay so this is the  rate of

change of property over this  control volume V alright so this I can  express as limit my δ T

going to 0 I  can write this as 1 over δ Tx  the property at time T +δ T - so  this is at volume T +δ

t -  the integral of this specific property  at T right so this is a corresponding to  volume T. 

So if I take this difference  from the property at T +δ T for  this volume - the property at T for

this volume so this difference divided  by δ T is going to give me what is  the change of this

property  ok due to the change in the volume and  over time okay  so this property therefore is

only a  function of time ok this is not a  function of the volume. 

Because it is  already property per unit volume so it  is only a function of the time so this  is the

starting point for the Reynolds  transport theorem so we will stop here  and we will let us call this

as equation  number 1 so this is basically to express  the change in the property with respect  to

time in terms of the final and the  initial States okay we will start from  here and derive the

transport theorem  tomorrow. 

Energy Equation
End of Lecture 5

Next: Reynolds Transport Theorem
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