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Good morning all of you and welcome to the last lecture of this  course most of you must have
been quite happy and relieved also you know you  have to go through a lot of assignments I
know and also computer assignments as  well  as detailed derivations probably putting lot of
effort compared to the  other three credit course but this is course where you learn / applying you
know so I mean the classroom lectures are just kind of helping you to  understand in a broader
sense but as long as you solve a particular problem.

Yourself we will not be understanding because we have so many different types  of problems in
convective heat transfer it is not a one particular type of  solution and then you just change the
boundary conditions and then you find  you know a different equation solutions and so on so we
have external flows  where we have a particular type of solution and then internal flows all
together again different regimes you see how the ends up from starting from a  simple no integral
equation all the way to solving a PD anything we can do  within the internal flows okay.

And  again  when  we  are  talking  about  natural   convection  again  the  solution  methodology
changes because you have  coupling of heat and mass transfer right so then we say method the
approximate   solution  are  for  example  the  similarity  solution  when  we  applied  to  natural
convection has to be slightly modified the kind of unknowns that we are dealing  again when you
talk about turbulence it is altogether different it looks--wait  different from the kind of analysis
we have applied to the laminar boundary layer equations we have not looked at  any similarity
solutions in turbulent flows.

So whatever was possible in terms of simple analogies you know we have  been trying to derive
so you know in that sense this course convective heat  transfer has lot of things to be covered you
know so it is quite a bit of challenge for me also and to make justice to this course still in  spite
of that we have not covered topics like you know porous media convection in  porous media and



we have phase change condensation and boiling so these are  also parts of you know really
speaking convective heat transfer.

But I would suggest that you know VA since in our department we are also offering specific
courses related to those topics no such as boiling and condensation porous media  so anybody
who has taken this course now should be able to easily you know get on  with get along with
those courses as well the foundation has been a  very well established so the rigor will be more
or less similar it is only you are exchanging the approach a little bit  when you do it for porous
media for example.

If you have additional  resistances which have to be countered for boiling and condensation is
also highly empirical subject so the  kind of analytical solutions are very limited to extremely
simple  cases   especially  in  condensation  in  case  of  boiling  you  cannot  find  any  analytical
solution more  or less everything has  to be empirically  you know it  is  not  even a   rigorous
derivation but the thing is the physics of boiling is very complex so  there is a combined heat and
mass transfer so far we have not looked at  mass transfer in this course again when we say
convective heat it is also  convective heat and mass transfer there is a there are cases.

Where you know mass  transfer is an analogy to heat transfer just like we are doing an analogy
between heat and momentum through Reynolds granted all these analogies so  we are solving the
flow field and finding the heat trans solution same way  we can also find an analogy between
heat  transfer and mass transfer so we introduce another non-dimensional  number  called the
Schmidt number.

Which is the ratio of momentum to mass diffusivity  and once we know this then once you know
momentum  futility you can extract the mass diffusivity and a similar kind of  analysis instead of
Nusselt number we define a Sherwood number things like the  mass transfer coefficient instead
of heat transfer coefficient so it becomes very similar  instead of Prandtl number you have a
Schmidt number which becomes the  governing parameter there but there are cases where the
heat and mass transfer  gets coupled that is a good example is the phase change evaporation for
example.

So in evaporation you also remove  certain amount of mass from one phase and you know add it
to the other phase  so that becomes more complex now when you couple heat and mass transfer
you cannot  find  analytical   solutions  okay so that  requires  a  very  rigorous  treatment  even
numerical solutions are kind of you know hand-waving approaches  you know whatever we have
you know in a commercial computational fluid dynamics  packages and so on they are not very
rigorously established models and we are  still Lu illusive okay.

So I mean so boiling and condensation in that sense  it is a highly empirical subject you have to
deal with lot of correlations and  experiments which have been conducted and the understandings
of that okay so  yeah overall this is a very vast course you know so I think it is really  hard to



cover all these topics in one semester if at all can be done but it can be done but you will not be
able to  appreciate the depth of this subject .

No so which I mean I think already most of  you are aware of the breadth of this course so when
you take a heat transfer  course I am sure you are exposed to the breadth of heat transfer but
unless you  probe deep into a particular topic we will not be able to appreciate the fine  aspects of
finding rigorous solutions especially analytical solutions okay so  when it comes to turbulence
again people have different approaches to it   my personal approaches also I do not look for
analytical solutions everywhere but you should understand that for certain  problems there are
analytical solutions available.

Which you should not overlook  okay for example I have seen cases where people solve the flat
plate boundary layer numerically and they do not know  where to look for the Blasius solution to
validate okay so you should know now  / now for which cases you can actually compare with
exact solutions even when  you talk about turbulent flow flat plate boundary layer so we have
correlations derived from approximate methods okay.

In the last class I was talking about the use of analogy the Reynolds analogy so  in that case we
have established an empirical relation for the skin friction  coefficient right so if you remember
what was the relation for CF.

(Refer Slide Time: 08:07)

So this is  B this is an empirical one okay this we cannot rigorously derive this okay this  is
coming from set of experiments okay for the hydrodynamics part  do you remember what this
correlation is  0.046 into now when we define re now rather  than defining it as RE because RE
you might actually misinterpret the link  scale used so here it is whatever U MR U  ∞ depending



on whether this is  an external or internal flow if you are dealing with external flow you have u
∞ and then the length scale is now the boundary layer thickness divided  / what is the – 0.2.

So this is a kind of most commonly used  relationship for internal flows it becomes easier you
replace your Ð  with D right and then the next step is suppose you take the case of internal  flows
the simplest analogy that we have derived so far is there a nice analogy  right which considers
the entire boundary layer to be purely turbulent ok  so for this case there also analogy what does
it say your standard number is  = CF / 2 for this.

In  this  case  you are  actually  neglecting  the  role  of  molecular  diffusivities  compared  to  the
turbulent diffusivity which you know that for that is an influence of  molecular prandtl number
even in the turbulent Nusselt number case because this is a w phenomena and near the  w the
molecular diffusivity s cannot be neglected right so therefore Colburn extended this Reynolds
analogy to also  cases where he considers the effect of molecular prandtl number okay .

Then it becomes the Reynolds  Colburn analogy and what does it say your standard number X
PR power 2 / 3  is = CF / 2 now when we substitute the expression for CF into this therefore we
find we can derive an  expression for the Nusselt number they remember what it is 0.023 times
RE Lee  powers 0.8 PR power 0.3 okay so this is called the Dittus Bolter  okay so Dittus Bolter
correlation many people think it is a completely you know  based on empirical formulation it is
semi empirical.

You can say that this  skin friction coefficient is empirical but after that we use the Reynolds
analogy to get this and again in the textbooks there is a variation of  exponent of prandtl number
for  heating  we use value  cooling  we use point  force   so but  it  does  not  matter  overall  the
structure of this comes from  the Reynolds analogy okay so then it has been slightly modified
depending on the heating or cooling case because the  prandtl number dependence is not a very
exact dependence that is been introduced  later on / cold 1.

But it depends whether you have a heating or cooling that is been shown to be a slight  difference
but not too much okay some people use an average value of 0.33 and  they are still okay with
that  right  so now for  the external  flows however  you  have in terms of  the  boundary layer
thickness Ð right which has to be first determined because we know that in  the external flows
boundary layer as Ð itself is a function of  Reynolds number so therefore we cannot simply
define Reynolds number based on  Ð and stop here.

So we have to therefore how do we do this we have to  use the approximate methods okay so the
only way to find Ð as a  function of  the local  Reynolds number is  to use the approximate
methods and then substitute  this for the w shear stress and then we will have an expression for Ð
and  then we apply the Reynolds analogy then we find the Nusselt number correlation  so there
also you will have something similar except that this constant gets  slightly modified and the



Reynolds number dependence still remains the same only this becomes a local Reynolds  number
okay.

And the Nusselt number also becomes a local Nusselt number may be  causing the external flows
your boundary layer thickness keeps varying so  therefore the Nusselt number and Reynolds
number have to be defined based  on the local coordinate okay so from this you can understand
even for   internal  flows in  the  laminar  case  your  Nusselt  number was constant  in  the  fully
developed region but what this says is that even if it is fully developed in  the turbulent flow this
is still a function of Reynolds number and prandtl  number correct.

Because what is fully developed it is only the turbulent  boundary layer when you say these two
boundary layers these are the turbulent  boundary layers so only these are purging but the viscous
sub layer will  not merge this is very close to the w it will it will not much okay so  therefore
there is an influence of Reynolds number now because Reynolds  number controls the amount of
this viscous sub layer thickness okay which  in turn affects your Nusselt number so although you
are turbulent boundary  layers are fully merged your viscous sub layer is still remaining which is
now  governed / the value of Reynolds number and therefore that comes into the expression.

And so is the case now since  this is a heat transfer case Prandtl number will also be important
okay so  please remember that in the turbulent fully developed flow you do not have a  constant
value of Nusselt number like in the laminar case laminar case does not  depend on Reynolds and
Prandtl number because you have only laminar boundary  layer once it is merged there is no
effect of what you are putting up stream  whatever announced number may be once the two
boundary layers are merged you  will have the same profiles and only thing that will decide the
Nusselt  number will be boundary conditions.

Whether it is a constant w temperature  or constant heat flux only that alters the nature of the
temperature profile  whereas in the turbulent case still this is dictated / the Reynolds and parental
numbers  okay so  this  is  a  very  popular  correlation  you know so  you find  in  most   of  the
engineering applications people use the data spotter correlation without  having to worry what is
the accuracy of this how it has been derived and still   it  gives a reasonably good prediction
within something like + and + or  - 15 to 20 percent of the experimental data right.

So within our  simple flows like pipe flows you know flat plate boundary layers these people
have been successfully using this right for more complex flows they have to look  at numerical
solutions there is also we should however you know we should look  at modification to the basic
analogy okay we know that although this is a very  useful analogy widely used but nevertheless
since  this  considers  the   entire  boundary  layer  is  turbulent  it  is  not  the  most  accurate
representation of the turbulent boundary layer profile so  we have seen that.
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That the entire turbulent boundary layer profile can be  divided into three regions so if you plot u
+ and y + y + on a log scale for  example right so for example if you are talking about so you
have 5 here you  have something like 50 let us say you have 100 but I say this is like  500 and so
on so based on this we have identified a profile in the  viscous sub layer which is linear plotted
on a logarithmic x-axis becomes a curve like this okay.

So and then we  have another expression for the log layer which is extending above y + of 30  so
that  can  actually  if  you  extend  it  goes  something  like  this  okay  and  here  it  is  given  as  a
logarithmic profile you  remember how the profile looks + a constant and this is your foreign
carbon  constant which is 0.41 and this is 5.5 okay this two we have  derived from the basics
okay now also there is a patching layer which  has to be connected between the linear and the
logarithmic variation another  logarithmic profile so this is called the buffer layer okay.

So also represented with a logarithmic variation you  remember what the profile is 5 Y +, - 3.05
so this is  your buffer Layer so this is valid for Y + <  5  > 30  right this is valid for Y + > 5  and
this is valid for Y + < 30  these are all kind  of you can really measure to discuss a player and the
log layer very clearly  okay when you when you have a very fine probe which can resolve the
viscous  sub layer you can actually measure and show that the data also Falls with these  so this
has been generally well accepted.

Again  variations  will  happen  when you   have  pressure  gradients  that  when  you have  flow
separation okay then when the  boundary layer itself is detached so then the this kind of profiles
will  not  be there so according to the Reynolds analogy we altogether  neglect  this  and only
consider the entire turbulent  log low profile okay and then we make use of the calculations of no
turbulent w shear stress and also the heat flux everything to be having only  one component
which is nothing but the turbulent diffusivities.



We integrate  it   all  the way from the w to the edge of  the boundary layer  okay we ignore
completely the molecular diffusion and then we derive there now Sinology so  naturally then
extension to this is called Randall  Taylor so I am not really sure about who really did it but looks
like it has been  also named after GI Taylor so it should have been I think maybe a joint kind of
intuitive discovery of both prandtl and Taylor so it has been credited to both  of them so in this
case the point is that we assume a two layer models.

Where  the inner layer which is the viscous sub layer is also considered which is the  important
thing you know the molecular diffusion has to be dominant near the  w it cannot be node so
therefore so we  consider the viscous sub layer and we consider the rest of the boundary layer  to
be  turbulent  so  when  we  draw  the  velocity  for  example  as  a  function  of  Y  and  also  the
temperature so we will have a variation like this for example so  till a certain location so let me
let me give it a much so till a certain  location this will be dominated / viscous effects from the w
and from  this point let us call this UL.

Where it transitions from a laminar sub layer to  a fully turbulent layer okay the corresponding
thickness of the viscous  sub layer let us call this as Ð okay so above this the profile becomes
governed / fully turbulent diffusivity right and finally at the edge of the  turbulent boundary layer
okay so you reach  the velocity which is either the mean velocity inside the duct or it is a free
stream velocity in the external flows okay so this is at Ð right.

So therefore now you have two regions one  is your viscous sub layer and the other is your
turbulent boundary layer  similarly if you draw the temperature profile something like this so
your  temperature profile is governed / again let us say till up to the laminar sub layer you have a
value which we will call  TL okay and from that it becomes fully turbulent  and then outside it
reaches the value TM so this is your temperature variation  with Y and this is your velocity
variation with work.

So this is the  picture of a two layer model which was which was used / Prandtl to derive the two
layer analogy so naturally the  Assumption here is that  so we are picturing the entire within the
turbulent boundary layer is divided  into two layers okay one is the viscous sub layer near to the
w and we have  the turbulent boundary layer outside okay and again when we derive it we also
use condition that turbulent Prandtl number is = 1 so when we say  turbulent Prandtl number is =
one we say that your ð is = ð  T okay.

Because even though if you assume turbulent Prandtl number is = one  all the processes at the w
are governed / the molecular diffusion okay  so therefore the assumption of ð T is = Ð outside
will not  affect what is happening near the w okay so the same thing was is also used in the
Reynolds  analogy right  so in  the  Reynolds   colburn analogy also we use turbulent  prandtl
number = 1 and  then only we derive the analogy okay.



So the assumption is  that  inherently  this  is  not bad and especially  when we are doing even
turbulence modeling most of the time we assume this turbulent prandtl number to  be close to 1
okay so the starting point of this is.
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Now we have the shear stress which has now both  the molecular and the turbulent diffusivities
so we can write this as μ  + μ T into D U / DY and similarly the heat flux also consists of - K  +
AT DT / D Y okay so if  you are looking at  Renault  analogy  it  assumes fully  turbulent  so
therefore  we neglected  μ  compared  to  Μ T K  compared  to  K T and  then  we divided  we
integrated from the w to the boundary  layer and then divided one over the other and then we
ended up with this .

So  now we have divided this into two regions so we will first apply this for region 1 which is the
laminar  viscous  sub  layer  ok  so within  the  laminar  sub layer  can  you integrate  let  us  say
equations 1 & 2 within the laminar sub layer where we can neglect the turbulent  diffusivities
integrate your velocity and temperature profiles from your w  till the edge of the laminar sub
layer Ð  and then take the ratio of 2 / 1though that is the heat flux divided by shear stress first
integrate it and then you divide it.

So what do you get if you do that what will happen to Tao so at w it becomes Tao all right and
this is a mutates neglected you have μ and then the U  gets integrated from zero all the way to
UL okay and why all the way from zero to  Ð the same way here also you have Q w and this gets
integrated from T w to  TL and then this is also zero to Ð L and then we divide 2 / 1 so Ð L  gets
cancelled so essentially we will have therefore Q w divided / Tao w  is = - K / μ into TL - T w /
UL  okay.



So therefore we can write this in terms of molecular cantle number  multiplied and divided / CP
from you CP / K so we can therefore write this as  CP divided / lanthanum okay so let me call
this as equation number three so  now next we will apply equations one and two in the turbulent
boundary layer okay.

(Refer Slide Time: 30:49)

So for turbulent  boundary layer we can of course do the other approximation where the turbulent
diffusivities are much larger than the molecular diffusivities okay and  therefore we can integrate
from Ð L all the way till Ð right so you do  the integration of this profiles from Ð L all the way
till Ð and then  divide again 2 / 1 okay let us see what is the expression that you get so let us say
again you have Q double prime / Tao will be = - CP into TM -  TL divided / prandtl number into
UM so where do you have prandtl number here  because this is turbulent so this is yeah PRT is =
1.

So  therefore  we   can  so  therefore  now we  have  this  is  your  equation  number  four  so  for
continuity the same w shear stress or w heat flux has to be taken all the  way from the w to the
edge of the turbulent boundary layer correct so we  are right now assuming a one-dimensional
transport of heat so whatever you apply  at the w has to be transported all the way till the edge of
the boundary  layer so therefore this has to be the same as  the w quantities yeah correct there is
no discontinuity in the heat flux or  shear stress will also be felt by the turbulent boundary layer
same with the  w shear stress okay.

So therefore we can just replace Q and tau with Q w  and now the unknown quantity in this we
know for example for a given isothermal condition we know what is the w temperature T w okay
but what we  do not know here is TL the temperature at the edge of the laminar sub layer okay
now UL is also obtained from measurements okay we will see how do we  get it but then we are
solving the heat transfer problem TL is difficult to  obtain so therefore we will eliminate TL by
using these two equations so  therefore eliminating TL between 3 & 4 so how do we do that we
just add 3 +  4 so if you add 3 + 4 you have - CP you have + CP TL there you have  - the PTL so
the TL gets eliminated right away okay.

So therefore you please  do 3 + 4 if you do that so you will be ending up with the following
expression which is Q w double prime by okay so I just take this to the left hand  side okay and
then this also to the left hand side and then I add three and four  so on the right hand side I have
CP into T w - T N okay so this is let us say  equation number five in this case there are TL is
eliminated so what I ask you to do now that we have something like Q w / Tao w okay you can
take this Tao w to the right hand side and write this in terms of Stanton number  okay

So if you write this in terms that means Q all / T w - TM there is  nothing but H , H / Ro CP into
UN is your Stanton number so write this in  terms of Stanton number on the left hand side take



the other extra terms to the  right hand side and see what kind of expression you get okay so you
should be able to get an expression for stanton  number is = function of the other terms including
prandtl number.
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So now this entire term here is standard number the Q w / T w - TM is H  divided / Ro CP UF
okay so your standard number therefore is =  now what I am going to do is multiply and divide /
UN okay so therefore I  will have towel / Ro UM2 is nothing but  your C F / 2 okay so this  is
your C F / 2 and when you take UM  common so you have prandtl number into  UL / UM correct
+ I have I will just rewrite it  1 + UL  my um into prandtl number – 1.

So finally I end up with a  relation between standard number and CF and you see in this case
naturally the  Prandtl number is coming so I am not forcing prandtl number to come in like  the
case of Reynolds Colburn analogy since we have not neglected the viscous  sub layer we have
also considered that so naturally the Prandtl number is built  in inside this analogy right so now
the only thing that needs to be close to so  UL / UM so UL / UM actually is measured for
turbulent flows turbulent  boundary layers and we have some correlations for that.

Now let us see for  the case of a circular duct for example  so the UL / UM is expressed as a
function of the CF written as 5 into  √ of 1 / 2 CF so this is the kind of correlation let us call this
as  equation number 6 and this is number 7 so if you plug in equation 7 into 6.
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 so  you get the expression for a circular duct you get the analogies CF / 2  divided / 1 + 5 times
CF again into frontal number - 1 for example so this is the analogy for this our product similarly
if you are  talking about maybe a rectangular duct you will have a different relation  between
UL / UM and CF which you will substitute and get the final analogy  okay. 

So therefore once you know the CF we can use the previous CF that we have  written down okay
for the Reynolds analogy that can be used substituted here and we can find an expression for
Nusselt number right so this is how the Prandtl Taylor analogy is developed so  for the case
limiting case where prandtl number = 1 where we have a  fluid which is having a prandtl number
exactly = one the molecular and a  molecular laminar and the thermal diffusivity is are identical
so what  happens to this reduces to the Reynolds analogy.

So in this case this gives you  that Stanton number is = so you see that Reynolds analogy is not
bad  after all especially when your Prandtl number is = 1 that is your  molecular Prandtl number
= 1 then also analogy is  the correct  analogy  because all  the complex analogies  are  finally
collapsing to that okay it only  makes a difference where you are molecular prandtl number is
either law  very large or very small that is when you start deviating from the accurate results.

So most of the gases you do not  have to worry so you can actually therefore most of the gases
you'll find  in all Sinology it is reasonably accurate whereas if you apply it to very large  parental
numbers or very small cantilever liquid metals and so on very  small parental numbers so then
you will find that Reynolds analogy is more  accurate than Reynolds analogy is that clear so this
is  more complex  expression naturally  so the final  case  will  be  to  consider  all  three  layers
including the buffer layer right.

So if you also consider the buffer layer then  you are tracking the transition more accurately so I
will not derive that but  I will only give you the final analogy so this three layer analogy is called



the von Karman analogy so finally the most complex analogy that you can derive  so this is
based on the three layer model which includes the laminar the  fully turbulent and the buffer
layer and this case the expression for the final  expression for standard number for the case of
circular duct okay  so you have the same term till now till now this is the same as the frontal
layer analogy okay now the additional term comes because of the buffer layer.

So this additional term is coming in due to the buffer layer okay so this is the difference between
the two analogies and  again for the limiting case of prandtl number = 1 what happens same this
becomes 6x6 frontal of 1 0 this again becomes 0 so you have CF / 2 so finally  it collapses to the
Reynolds analogy again right  so for more complex cases where none of these analogies will
work okay so we  cannot find a simple analytical solution again then we have to use numerical
solutions for heat transfer okay.

So  we will kind of stop here because all the turbulent heat transfer involves lot of  modeling I do
not want to talk about in detail because these are covered in  other courses related to turbulence
modeling and so on but you can learn how  to use different models for different problems and
they are also available in  many of the numerical solvers okay so we can you can also go through
those  documentation try to understand which kind of turbulence model work for  different kinds
of problems now practically.

When you are working with turbulence you will not be using too many too much of analogies the
most of  the complex engineering problems cannot be solved with analogies so there you  have to
find numerical solution so you will be using some kind of turbulence  model right okay so we
will  I hope that you know I could cover it  with the  limited number of hours at  least  some
overview of about turbulent heat  transfer okay thank you so much.  
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