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Very good morning to all of you so the last four classes we will be looking at a new topic a very
important  topic  for  practical  engineering  applications  which is  the  turbulent  convective  heat
transfer okay so although we do not have too much of time since we were covering other topics
most of this semester so we will spend at least four lecture hours to emphasize the nature of
turbulent convective heat transfer.
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Because most of the practical  applications that you are all dealing with I am sure are turbulent in
nature and I am also sure that many of you are  already taking a course on you know some
introduction to turbulence or turbulence  modeling or part of this is already being covered in a
fluid mechanics course okay but the approach in heat transfer is very similar except that for
simple applications simple arguments we will use certain analogies and one  analogy’s which we
have already shown for the laminar external forced convection  is there in all Sinology. 

So we saw that since the structure of the momentum and energy equations are very similar so
once you get the expression for skin friction coefficient we can directly derive the expression for
nusselt number  using the Reynolds analogy so to start with the simplistic kind of arguments in
heat transfer turbulent heat transfer state that we can actually use certain analogies like these like
the Reynolds  analogy we can extend these analogies to turbulent flows.

Also okay under reasonable accuracy they you know in a very less time you can get a good
prediction of the local Nr and things like that without having to solve them rigorously using
computational  methods  okay  so  let  us  quickly  look  at  the  corresponding  range  of  the  flow
parameters which will classify the flows as either laminar or turbulent and as you all know in the
force convection case this is the Re so if you look at external flows.
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Okay so we use the definition of Re say let us say local Re and generally if this local Re is > 5
x10 power 5 this is for the flat plate so the flow tends to change from the regular streamline
laminar pattern to a more chaotic turbulent pattern okay so similarly if you go to internal flows
so let us say flow through a duct so we use the Re based on the diameter of the duct and typically
if this is > say 2300 so the flow is said to be turbulent.
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And what about the natural  convection so natural convection how do we classify what would be
the parameter huh we can  either use Gr or Rr okay so generally people use  Rr which is the
product of Gr on Pr and if you  take the case of a flat plate or a cavity an enclosure so typical
values of  Rr > 10 power 7 these are classified so this could be a vertical plate or enclosure cavity
this  is no natural convection in a cavity so that is why in the project I asked you  to work out
rally numbers  < 10 power 7 okay up to 10 power 6 it is  still laminar.
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Now what happens if you cross these thresholds either Reynolds  number or rally number so
when you put a probe okay so typically it could be a  hot wire probe which is used to measure
the local velocity instantaneous  velocity at a particular point suppose you have the flat plate
okay so let us  say that till certain position where your Re is  < 10  power 5 so this is where our
Blazes solution and everything is applied okay  so now after 5 x10 power 5 you have a small
transition zone in which  instabilities will start will change the pattern of flow okay so once these
instabilities start you will find that now the turbulent region.

Where Rr is > 5 x 10 power 5 you will see motions which are definitely not streamline  and not
only that you will see several structures several large Eddie's it is  of all length and time scales.
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Okay so large it is typically and of a definite structure these are called coherent structures okay
now  you  can  have  linked  scales  which  are  quite  disparate  right  from  you  know  order  of
magnitude to 5 or 6 orders of magnitude difference in the length  scales depending on the Re
okay so the smallest Eddy will be naturally lying closer to the wall okay  so as you go from the
turbulent boundary layer edge towards the wall the size of  the eddy’s will naturally become
smaller  and  smaller  and  finally  close  to  the   wall  the  flow  will  be  only  laminar  okay  so
essentially near the wall you have the effect of viscosity which is  molecular viscosity which is
predominant as compared to the turbulent motion and therefore this will be referred to as  the
viscous sub layer or laminar sub layer.

Okay so now the action of the wall  therefore is to damp the effect of turbulence okay so without
the  confinement without the wall you do not have a laminar sub layer therefore and you only
have a range of scales in turbulent flow so in the case of a typical boundary layer profile the
effect of wall is to damp the large scales and finally the large scales  cascade to smaller and
smaller Eddie's and finally it becomes laminar flows to the wall okay now only in this laminar
region you have  the significant effect of molecular viscosity. 

So outside this it  is all   turbulent  and the turbulent motion will  dictate   the velocity  profile
temperature profile and the characteristics of flow field  and temperature field okay so the effect
of molecular viscosity and thermal  conductivity will not be significant outside the viscous sub
layer okay so  this is a very interesting you know physical phenomena mainly because it is  very
challenging to observe so many length scales and also F we have therefore different regimes



different regions where the effect of the molecular   viscosity can be significant and in other
places where it is insignificant  okay so now if you therefore look at these structures so what do
we how do we  capture these different length scales so if you put a probe for example let us  say
a hot wire probe and try to measure the velocity at a point here so how do  you see the variation
with respect to time okay so let us plot velocity versus time so you might start with some value
at time T = 0 and then you might see some fluctuations.
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Will be  anything but you will definitely see lot of fluctuations like this it could be  periodic need
not be periodic okay now this measurement is called the  instantaneous velocity  that means this
is at a particular point and over a time instant that you keep  monitoring continuously.
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Okay and you do not apply any filter to this so whatever comes out to the probe and if the probe
is quite sensitive you have to be important that pay attention that the probe is sensitive to all the
timescales of turbulence and therefore it should be able to resolve these fluctuations okay now
these fluctuations represent that there is inherent turbulence in the flow field okay in a laminar
case you wouldn't see these fluctuations it will be a constant value.

At that  point in time okay so initially  there could be some  unsteadiness but finally  once it
reaches a steady state condition it will not  change but in the turbulent case there is nothing like a
true steady state there will be always an inherent  fluctuation that you will observe and therefore
so this represents the nature  of turbulent flow regime now that you can capture this we how do
we then post  process so what we do usually is take an average of this readings okay so we can
classify this entire instantaneous data into an average and a fluctuation about  the mean okay so
that we can assume that is a fluctuation which will represent as u Prime.

It  could  be  positive  or  negative  about  the  mean  and  therefore  we  can  decompose  the
instantaneous velocity as a fluctuation which we will represent is an average which will represent
by an over bar okay this average can also be a function of time we will see that plus you have the
fluctuating components.
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So  this  is  a  simpler  way  of  basically  representing   the  instantaneous  velocity  because  the
instantaneous the last has  too much of data which we may not need okay  so in order to simplify
the on post process and also solve the equations we look at the mean velocity and a  fluctuation
about this mean and therefore we assume saying that the  instantaneous velocity is = to sum of
the mean and the fluctuation so now  this mean velocity also can be a function of time depending
on that kind  of filter that you apply.

So when we say mean velocity here how do we calculate this mean velocity this is nothing but
integral some time T to T + Δ T U of T DT 1 over Δ T okay so we can do some kind of an
averaging.
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In  this  case  I  have  done  what  is  called  as  a  time   average  okay  so  we  can  average  the
instantaneous component over a period of time with a certain filter with this  which is Δ T here
and  we  can  if  you  do  this  average  you  get  what  is  the   what  the  mean  velocity  we  have
represented here okay now if you apply  the filter carefully enough for example if you have an
instantaneous velocity  something like this so some kind of waviness which comes in time but it
is periodic and repeatable so if you apply the averaging filter carefully you should be able to
construct  a  pattern  which  is  repeating  and  periodic  understand  so  these  are  not   small
fluctuations.
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So you should distinguish the waviness which is  actually the time variation of the mean velocity
from the fluctuation which is your RMS velocity or root mean square velocity so if you plot the
instantaneous velocity here and if you carefully apply the time filter okay such  that this time
filter is smaller than the waviness okay so suppose this is  your time scale of the unsteadiness so
your Δ T should be definitely smaller than this if you apply a Δ T  larger than this time scale you
will be only getting something like this right  so it has to be smaller than the waviness time scale
but it should be  larger than the fluctuating time scale.

Okay so these are the time scales of  fluctuation which you want to smooth out so in order to
smoothen the fluctuations  you need to apply a filter which is larger than the fluctuating time
scale  but  smaller  than  the  time  scale  of  the  unsteadiness  okay  so  if  you  select  that  Δ T
appropriately then you should be able to reconstruct you mean which is  actually a function of
time so this is showing that there is a periodic unsteadiness in the flow pattern the  mean flow
itself and this is coming after you apply the appropriate  smoothing and therefore the correct
representation will be to say that an  instantaneous velocity can be decomposed into a beam
which is a function of time  okay plus the fluctuating component now there are  different ways of
doing this averaging.
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So what I have described here is time  averaging you can also do what is called as and sample
average that means you  take certain data at a certain location you take it repeat it again you
repeat  it again you repeat it again so you have several sets of data okay and then do a  statistical
averaging of all these different repetitions so that is called  as ensemble averaging okay anyway
so for the simple cases of and also considering  incompressible flow regime people say that does
not matter whether you take a  time averaging or ensemble averaging they both lead to the same
set of equations.

Okay so we do not have to worry too much about this for incompressible flows for compressible
flows we do what is called as Fabre average that means we also have to account for the variation
of density.
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Okay with time and also the fluctuation of density whereas it  incompressible flow we assume
that  density  is  constant  although  there  is  a  turbulence  the  turbulence  is  affecting   only  the
velocity and temperature is not the density the density as a property is  constant okay whereas in
a compressible flow the density also has fluctuations.  So therefore we have to average Rho U for
example in compressible flow not  just you okay so this is called Fabre averaging which will not
be worrying  about here you can also do what is called a spatial average.
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So you can use a filter which is not time but the grid size for example so this is typically done in
what is called as larger D simulations. Okay so you use a spatial filter which  is actually the grid
size which can resolve thee which can actually resolve  the smallest ad possible beyond that all
these smaller ID have to be modeled  so you apply typically in Elias the spatial filter is the grid
size Δ  okay so like this you can talk about different ways of doing this average but  nevertheless
after you average you say that the instantaneous component is  therefore a superposition of the
mean component and the fluctuating component.

So like this if you do the averaging so  how should you model or how should you capture all
these scales so as you can  see that these fluctuations are a result of the small Eddies okay so the
time  scale  of these Eddies are resulting in this fluctuation so therefore how do you  really
resolve this so for this what we do is general the most generic case we  solve the navies-stokes
equation as it is okay  and we should be able to when you solve navies-stokes as it is meaning
there is  no political solution to that you only do it numerically.

But we use a grid size  which can actually resolve all the links kills length and time skills okay so
this kind of treatment is called direct  numerical simulation  so popularly referred to as the DNS
so this is the precise most precise way  that means we just take whatever navies-stokes equation
because they are valid irrespective of whether the flow is laminar or turbulent and solve them
exactly but the only constraint is how much you can actually physically resolve  numerically you
can resolve okay so that is limited by the grid size but you  should understand that this is not very
trivial because most of the times the  ratio of the largest ad to the smallest ad can be > 10 power



3 okay so the smallest length scale is called the Kolmar grouse links the  largest length scale
could be of almost the size of for example here it could be  almost comparable to the boundary
layer thickness itself okay the smallest  length scale is the length scale before which it finally
gets dissipated into  heat okay so therefore this is called the Kolmar length scale and if you  have
if you if you plot what is called the energy spectrum so usually when you are doing a DNS the
first thing that you  are asked to show is the energy spectrum.

That means it tells you how much the  turbulent length scales turbulent energy scales have you
resolved okay with your  grid so you will be able to show here energy cascade okay so that
shows that  the energy is kinetic energy turbulent kinetic energy is transferred from the  largest
scales finally to the coal Kolmar scales okay  and finally that energy is dissipated as heat at the
wall due to the viscous dissipation finally they all the stuff turbulent momentum coming from the
larger Eddies this actually handed over to the smaller and smaller Eddies and  finally the smallest
ad will dissipate this there is nothing else to dissipate  take away this energy from the ad so but it
dissipates itself into heat due to  viscous dissipation effects.

And the wall okay  so generally when you do a DNS you plot the energy spectrum and show that
you  have resolved all the energy scales of turbulence right from the largest scale  to the smallest
scale and this length scales can be at least 10 power 3 the  ratio of the largest to the smallest links
gate so that means you should have  a grid size which is 3 orders of magnitude difference so if
you are  therefore doing a domain which is 1 meter the smallest grid size should be  of the order
of 1 millimeter okay this is an example.

 Right so that means you should have enough grids to resolve anything from 1 millimeter all the
way to 1 meter and sometimes it even falls sub millimeter scale okay 10 power 4 if it goes 10
power 5 because you are actually resolving micron scale eddies okay so this becomes a very
challenging task especially in three dimensions this I am talking about in one dimension okay if
you need resolution in turbulence is  inherently three dimensions so if  you are doing a three
dimensional simulation.

Then it will be really a humongous task you were  talking about measures of 1 billion typical ok
so to do even basic turbulent simulations so which will be very  computationally challenging
therefore the alternate option is doing some other ways like larger D simulation or the more
practical method which is called  the Reynolds average. So I think what we will do is spend the
next lectures only discussing about the practical method which is the Reynolds.



Deriving the Reynolds average  navies-stokes equation and then how do we find simple solutions
to the Reynolds  average navies-stokes equations so now I mean the Reynolds averaging assumes
first you decompose your instantaneous velocity into the mean and fluctuating  velocity so this is
called as a naught stigma position so this is the starting  point of deriving the Reynolds average
navies-stokes equation which is also  popularly referred to as the Reynolds equations now before
we do this we also  have to decompose all the flow parameters not only the velocity.

But  also what are all the other things in the navies-stokes equations pressure for example and
paddling the energy equation  we have temperature you can do the same thing for V velocity
okay we do the  Reynolds composition.
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For all the flow parameters here by constructing a filter which could be either a time wise filter
on  and  in  sample  wise  filter  and  then  we  decompose  that  into  a  mean  and  a  fluctuating
component now before we do the derivation there are certain rules that we have to list down so I
will just state what are called the rules of averaging okay so these have to be satisfied.



When we apply these averaging to the entire  navies-stokes equation the first thing is that when
you take the average of the  fluctuating component that is you would have a mean here now if
you want to find the  average of this what it will be it will be 0 okay so that that is because you
take the mean of the instantaneous that   should be the same as the mean velocity  itself   so
therefore the mean of the fluctuating component should be 0 so you have a  positive fluctuation
negative fluctuation so when you apply this over  average it over the Δ T it should cancel out so
that is the first route.

 And therefore what does it tell you now when we apply a mean to a mean when we  average the
mean component over the same Δ T it should give back the same  mean so it does not matter how
many times you average the mean component.
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It  still  get back the same mean that means you still  apply the same Δ T over  that okay so
therefore it does not make any difference to the average okay now there is a product rule which
states  that if you take the product of mean and an instantaneous quantity okay and then  you
average this component you can break this into a mean of the mean which will  be nothing but
the mean times the mean of the instantaneous what is the mean of the instantaneous is nothing
but the  mean again the mean component okay so since because the instantaneous average  is 0
so if you can substitute as you mean plus you crime okay so this will be  simply u Prime this u



bar u bar + you have u bar u  prime since u prime average is 0 that will  okay so the fourth rule is
the summation rules which says that if you have for  example two mean values you add them and
then you take a mean of that it is the  same as taking the summation of 2 means okay so that
means if you take the  sum of 2 means and again take a mean of that it will be the same as just
the  sum of the 2 means independent okay so number 5 apply for example mean to  the integral
so that means I am averaging the entire integral of an  instantaneous component so I have say
integral u DX and I want to average this  so this averaging operation of place only to this you are
not to the integral.

Okay so this can be written as therefore what so if I apply the averaging to the  instantaneous
component it returns the mean so u / DX the same thing can be  applied to the differentiation
operator holes so if I say D / DX of U and then  I apply the mean to this entire thing it will return
d /DX of U / okay  so now the other component the other rule is an important rule it says that  if I
take  for  example  a  product  of  the  mean and the  fluctuating  component  and  if  I  apply  the
averaging of this what do you think will happen 0 because this  can be split as according to the
product rule u bar into u prime bar and since u  prime bar is 0 so this should be 0.

(Refer Slide Time: 31:21)

Okay so these are the rules that you  have to keep in hand when we start deriving the Rans
equation so let us  quickly go over the derivation part so once you apply the rules it becomes



much  easier so you please write down the 2 dimensional steady state incompressible  navies
stokes  including the energy equation okay so first is the continuity all in  dimensional form then
the X momentum  so we are writing this only for forced convection write  now.
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Okay  without  the   body  force  term  but  later  on  you  can  also  derive  this  for  the  natural
convection case  right so now what we will do first is apply the NOS decomposition okay so we
can decompose all these are instantaneous quantities in turbulent  flows okay so we have to
therefore do a Reynolds decomposition of the  instantaneous quantities and then we have to
average these equations so we  have to apply the averaging operation over the entire equations so
then only we get what are called the Reynolds  average navies-stokes equation.
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Okay so can you quickly do that for the  continuity equation and tell me what you get so I have
written  down the NAS  decomposition  here so you should be able  to  so you can write  the
continuity  equation as T by DX of u /+ u prime D by d y of V /+ V Prime and  now average of
this  entire  equation  so  usually  some textbooks  follow some  conventions  for  example  time
average is given by an over bar ensemble average is  given by this kind of parenthesis okay so
you write this means it is an  ensemble average okay so if you write like this is time average so
some  textbooks follow this convention.

So now how do you write this use the rules of  averaging and tell me  so this will be so this
operator D by DX of U u bar Plus u prime bar so that will  be what D by DX of u bar so we can
of course write this as like this plus D U  prime bar by DX + PV bar by d y + D V prime bar / d y
so according to our  rule this is what this is also 0 right so therefore you have a continuity
equation for the mean flow field so there is a continuity equation which  satisfies the mean
velocities.
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And therefore there should also be a continuity equation satisfying the fluctuating component
because since you have a continuity equation for the instantaneous flow field and there is a
continuity  equation  satisfying  the  mean.  So if  you substitute  back  you can  actually  write  a
continuity equation satisfying the fluctuating component also so the velocity fluctuations u prime
v prime also should satisfy their own continuity equations.
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Now please do the same thing for the X momentum  equation do their Gnostic composition and
averaging and tell me what are all  the terms so I will parallel e do it but you also do it on your
own and then  verify  so therefore if you look at the right-hand side this is okay everybody  must
have written the step on the right-hand side this will be this is  incompressible so there is nothing
there is no averaging operator on the in  density so 1 /Rho D /DX of P /+ 3 P prime bar P prime
bar will be 0 similarly if you do the averaging  here this is u /+ u prime bar so u prime bar is also
0.

Similarly here  right so therefore on the right hand side it is straightforward what do we  have
after averaging the equation you have V P bar / DX v square u bar / DX  square + d square u bar /
d y square so the instantaneous quantities are now replaced only by the mean quantities so  let us
look at the left hand side first okay so u bar +u prime x D by DX  so how can we write this we
can split into four terms so one is U bar D /DX  of U bar averaging operator applied to that +
you have u bar D / DX of U  prime averaging operator applied to that okay please remember
how.
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I am writing it okay so it is very careful I have not  because we cannot now split the averaging
operator separately to this term and this term okay so we have to  first multiply these 2 terms and
then apply the averaging operator you  understand it okay it is not simply something like this so
you have this  term + x  multiplied by D by DX of this okay there is no rule which says  that this



can be written as the averaging operator of over this  multiplied by D by DX averaging operator
applied over this okay we have separate  rules for D by DX hand separate rule for the product not
a  combined  rule  okay  so  therefore  we  have  to  first  multiply  the  terms  and  then  apply  the
individual  averaging operator.

So now we will go back to the averaging rule which says  that we can apply the averaging
operation to these independent things  okay so now we have two more terms left one is what u
prime x B u bar / DX whole bar + we have Q prime D u prime  / DX the whole bar  okay so
therefore now we can apply the averaging rule so what it will be for  this case you bar D by DX u
bar which is fine + this will be 0 so you have  u bar D by DX of U prime bar which will be 0 so
when it comes to this now we  have the last term okay we have u prime bar multiplied by D u
prime bar / DX  but we do not have an averaging rule.

For that okay which says that this should be  0 okay in fact when you say this can be actually
returned you look at it as d  / DX we will see that u prime u Prime and then apply the average so
when you  take the product of the fluctuating component multiply it with itself with  either u
prime u prime R u prime V Prime and then take the average this is not 0 you have to be very
careful because this is the one which comes as turbulent  stresses so in this case this is non0
quantity we will just write it as u  Prime into D u prime by DX okay we can put the averaging
there but that that  does not matter so we can actually leave it as it is  okay so therefore we can
just keep the averaging operator like this.

So if you  take the second term we have V D / d y of  so what do you think will come out of this
second term on their larches so we  have V Bar d u bar by the way that is correct the mean
components will come as  they are now fluctuating component when they are multiplied with the
derivative of the mean components they will be gone and you have another  component which is
V Bar D u bar by d y and the mean of this will not  be 0 okay so therefore if you write the
combined equation.
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On the left hand side  so you have you bar D u bar / D X + V bar D u bar / D Y so this looks
similar to the instantaneous terms convective terms + additionally you  have the term which is u
bar u prime D u prime / DX averaged +V prime D u prime / D Y averaged the right hand  side
you have all the mean quantities  so now we are going to introduce the continuity equation for
the fluctuating  component which says that D u prime by DX +DV prime by d y is = to 0  so
therefore we can write this as D / DX of U prime u prime bar +D by d y  of u prime V prime bar
- what do you have d / DX.

What do you have one  case you have u prime d u prime / DX + what is the other term u prime
DV  prime / d y okay if you take u prime common then we can we have actually D u  prime by
DX + DV prime by d y which will be satisfying the continuity for  the fluctuating component so
that so this will be 0 you understand so  similarly I asked you to repeat the same thing for the V
momentum also okay so  therefore some the V momentum what do you get you have if you
repeat the same  averaging exercise you will have the mean components in the advection term
Plus you have additional terms you have u prime V prime bar + D / d y of V  prime V prime bar
the other terms will be 0  on the right hand side.

 You have V P bar / d y + x  square V by X square so all these are mean components okay so now
therefore we  will stop here so in the turbulent trans questions you have similar terms in the
advection component as the  instantaneous but they are replaced by the mean quantities apart
from that you  have two additional terms on the left hand side okay so these are the u prime  u
prime derivative and u prime v prime derivative so if you write the Y  momentum equation also



you get similar derivatives of the product of the fluctuating components so these can be  actually
taken towards the right hand side okay and they can be clubbed to the existing shear stresses the
shear stresses are nothing but tau xx tau XY  and so on apart from that you also have u prime u
prime bar u prime v prime bar  and so on so these are called as now turbulent stresses okay  so
although the nature of these stresses are originating from the advection term  okay they are
named as turbulent stresses just for the ease of grouping  these together.

So they are grouped along with the viscous stresses and then they  are called together as the total
stress so it seems that there is an additional  stress which is coming in turbulence but that is are
generating from the inertial  terms and that is why when they are taken to the other side they are
given  a   negative  sign  okay  because  they  enhance  the  momentum  so  they  are  not  in  a
conventional sense that they are not stresses.

Which impede the flow so they are the ones which are actually  promoting the exchange of
momentum and energy therefore so they have a  negative sign because they are originating from
the inertial terms so  these are called as turbulent stresses so what I suggest you to do is  do the
same thing for energy equation also and see what does he then also averaged energy equation the
tomorrow  will list down all these Reynolds energy equations together and then see how we  treat
these turbulent stresses okay thank you. 
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