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Introduction to Natural Convention Heat Transfer

So good and today we will start  a new topic this will  be on natural convective heat transfer
whatever we did so far you know the external force convection and internal force convection so
most of you already have done the hydrodynamics part of it before in fluid mechanics you start
with the Belasis boundary layer theory for the external force convection are the fully developed
internal flows for a channel and for a duct and so on but in this particular topic.

Natural  convective  heat  transfer  definitely   would  not  have  done  this  in  a  separate  fluid
mechanics  course  because  this  is   one  problem where  hydrodynamics  and heat  transfer  are
coupled together so unlike  the other external flows and internal force convection so you cannot
separate  the hydrodynamics from the heat transfer part in the case of natural convection  because
it is basically the energy equation which drives the momentum in  this case so today from today
the next the focus for the next five or six hours  will be on natural convective heat transfer  so
what is the fundamental physics behind the natural convective heat  transfer.
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Are the motion the driving force behind natural convection we will look  at the example of a
simple flat plate which is aligned vertical okay so in the  case of external forced convection it
does not matter whether you have a flat  plate placed vertically or horizontally since you push the
air by external means  you create a boundary layer and we do not take into account the effect of
gravity  in  those  cases  but  when  we study natural  convection  the  effect  of  gravity  becomes
important in fact the buoyancy is the driving force here so it matters what is  the orientation of
the particular configuration so let us look at a flat  plate which is oriented vertically.

And we have gravity acting downwards so  initially the ambient air is quite and that means there
is no forced convection  of anything so you just place the flat plate in a quiescent atmosphere and
then  you heat this plate you can either maintain a constant wall temperature or  constant heat
flux boundary condition and you can heat this vertical plate now  naturally what happens is that
the fluid layer which is in contact with this  plate will be at a higher temperature compared to the
ambient since you are  heating the plate so let us assume temperature of the ambient to be T  ∞
therefore the fluid layer will be at some temperature.

T  which  will  be   >  Infant  so  now  therefore  you  know  that  the  density  is  a  function  of
temperature especially very strongly for gases so when you look at say kwasind  atmosphere now
the heated air here will therefore have a density which is dif  from the density somewhere outside
where you have T ∞  so the density here  Ρ of T therefore will be < through what ∞  so that



means you  have a lower density air close to the hot surface now the tendency of the  lower
density air is to naturally rise up right so therefore you will have over a period of time you will
see a visually  a boundary layer which is actually forming and growing.

(Refer Slide Time: 04:33)

From the leading edge the leading edge here is actually  the bottom of the plate here all the way
up okay so we will have a coordinate  system x and y in such a way that X is in the direction of
the along the plate  and Y is perpendicular to the plate so our origin will be starting from the
bottom this is your X and the  perpendicular coordinate is your Y okay so in the case of therefore
the natural  convective boundary layer the boundary layer formation happens essentially due to a
temperature difference so this is  the starting point of the convection to happen and because of
this temperature difference this essentially maintains a density difference between the hot air
close to the plate and the ambient quiescent air outside.

So this density difference will cause the lighter air which is in contact with the plate to rise up
and  therefore a boundary layer is formed okay so now you can very clearly see  that the cause
for  the  boundary  layer  is  essentially  due  to  the  temperature  difference  so  the  temperature
difference is the driving potential in the case of  natural convection unlike the pressure gradient
in the case of internal force convection or the external flow of air or water in the  case of the
external boundary layers so in this case you have temperature  difference as the driving potential



so this is a very important aspect of  natural convection and therefore or intuitively you should
Understand  that the momentum and the energy equations have to be coupled in some way  so on
unless the energy the information from the energy equation  goes into the momentum you cannot
actually solve for the boundary layer  growth now you can also do the same way by reversing the
temperature  direction that means you can have a coal plate and you can have heated air okay
suppose you have a plate where your Tw is < T ∞  okay so  your T ∞  is somewhere here and tea
ball is < to ∞  so  what would be the direction of the boundary layer growth in this case from  top
to bottom because here this density will be a function of temperature which  will be lower so this
temperature is lower than T ∞  therefore this  density will be > Ρ at T ∞  so essentially the
heavier  fluid has a tendency to go down and therefore you have a boundary layer in  this case.

(Refer Slide Time: 07:24)

Which essentially  goes from top to bottom okay so now if  you want  to  represent  how the
velocity and the temperature profile varies at a  particular location X location for this case so
unlike the case of external  boundary layer where outside you have a bulk motion u ∞  in this
case this  is completely stationary air so when you want to draw the velocity profile at  some
location so therefore the velocity has to be 0 at the wall and also 0 at  the edge of the boundary
layer right so you have 2 points where the velocity.



Becomes 0 in this case so therefore the velocity can attain a maximum  somewhere within the
boundary layer okay so obviously this is quite different  from the external force convection so
where the velocity  Julie increases from the plate and attains a Maxima with the boundary layer
so here you have 0 velocities both at the solid wall and at the boundary layer  the boundary layer
and therefore it has to reach a maximum somewhere within the  boundary layer we do not know
which what is this location we'll find it out the new course and also we do not know what  is the
value of this maximum velocity right so let us say this is your U max  in the case of external
forced convection you know that u max is = u ∞  but in this case we do not  know that we have
to get it from the solution right and how will the  temperature profile look in this case. 

(Refer Slide Time: 09:11)

So you have the maximum temperature here  and minimum temperature so this will be similar to
your external convection  forced convection for a flat plate right so the same way if you draw the
velocity  profile for this case so it will be 0 at the 2edges and then it will peaks somewhere we do
not know where it Peaks and similarly if you draw the  temperature profile so this is your plate
so you have higher temperature  outside and then lower temperature close to the plate okay so
this is how the  velocity varies as a function of Y and temperature as a function of Y.

Correct  so  we  have  demonstrated  I  mean  the  fundamentals  of  the  motion  of   convective
boundary layer when you have buoyancy in the case where we have a  heated plate and a cold



plate  now let  us try to derive the governing equations   for this  case okay we will  keep the
boundary  layer  as  the  example  so  you   have  a  vertical  flat  plate  boundary  layer  natural
convection and let us try  to derive the governing equation so let us assume that the length of this
plate  to be capital n okay this is one of the characteristic dimensions that we will  use in non
dimensionalzing these three boundary layer equations but before we  go to the boundary layer
equation let us first write down what will be the  navies-stokes equations 2 dimensional steady
state now we have Stokes  equations for the natural convective boundary layer faster vertical flat
plate.

(Refer Slide Time: 11:15)

So how will the continuity equation look what will be the  convective continuity equation in this
case d by DX of Ρ u so unlike the external forced convection we cannot  claim that density is a
constant  this  is  an  incompressible  fluid  but  density  is   now a  function  of  temperature  and
therefore since temperature is a  function of position so density becomes a function of space
therefore  we cannot   take  Ρ  outside  the  derivative  okay  so  locally  it  will  look  like  it  is  a
compressible  fluid  because  the  density  keeps  varying  the  different  position  so   you  cannot
therefore there Li at a first cut say that this is a  incompressible approximation straightaway.
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We cannot directly pull density outside the derivative and say it is a constant right however it
was shown later by bossiness okay so bossiness has made the approximation that it  is fairly
reasonable to treat density as a  constant in the continuity equation and also for the most part of
the momentum  equation except in the body force term of the momentum equations so the body
force where this is where the driving potential the density difference emerges  as a function of
temperature difference so except for the body force term which  is the driving potential  it  is
reasonably good enough to approximate the density to be a constant.

Everywhere  else in the other equations are other parts of the equations provided the  temperature
differences are small enough if the temperature differences are very  large even the bossiness
approximation will  not be held valid so what we will do is just to start off we will make a
approximation as done by bossiness and therefore try to pull density outside as a constant from
the  continuity  equation   okay  and  also  the  convective  part  of  the  momentum  equation  so
therefore if you  write down the X momentum and Y momentum and invoking the bossiness
approximation.

(Refer Slide Time: 14:10)



So let us write down the X momentum equation how does the X momentum equation look so
you have let us keep density outside the derivative but let us not divide it by density right away
so Ρ of you D u by DX + V G u by D y this is your convective term according to the bossiness
approximation  he  says  both  in  the  continuity  equation  and  in  the  convective  part  of  the
convective acceleration part of the momentum equation you can take density to be a constant.
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So this is =what are all  the terms on the right-hand side - of DP by DX so now this is the
momentum in the direction of the plate that is in the vertical direction so you have DP by DX + μ
into d square u by DX Square t square u by D y square and then what else you have the body
force so here definitely the gravitational acceleration cannot be neglected so the body force is
nothing but the gravitational acceleration G which is acting downwards.

So therefore we put a _ G right so we have Ρ G correct  right so now once again similar to the
external force convective boundary layer  if you do a scaling analysis we can order of magnitude
analysis we can  show that the diffusion in the vertical direction and that the diffusion in the  Y
direction here the Y direction is the horizontal direction now Cartesian X Cartesian Y and is this
is much > your diffusion along the length of the plate okay so this is the same  conclusion that
we also got from external force convection.

(Refer Slide Time: 16:23)

And therefore for the sake of simplicity we will only write the diffusion perpendicular to this
place not in the direction across the boundary layer okay so this is the most dominant direction of
the viscous diffusion right so therefore we have the X momentum can you write down the Y
momentum similarly.



(Refer Slide Time: 17:02)

You  can we write down the  so what do we have for the convective terms in the Y momentum
you DV by DX  + V DV by D y but we do not have any V velocity in this case we have only u
velocity which is varying as a function of Y we do not have any V velocity that  is velocity
perpendicular to the plate length okay so therefore the adjective term the convective term of the
Y  momentum equation will be 0 on the right hand side you will have pressure  gradient term DP
by D y there is no diffusion of the V momentum also and  there is no body force in the Y
direction okay so essentially DP by D y  is =approximately 0 very smooth the others are very
small so we can approximate it to 0 so that means  P is not a function of Y that means P is a
constant along way so this is the same conclusion.

That  we also got for the external  forced convection  okay  that  means the pressure that  you
calculate outside the boundary layer the  same variation also happens inside the boundary layer
so if you draw therefore  a line here the pressure at this point outside the boundary layer will be
the same as the pressure within the boundary  layer ok so that is why you are DP by D y is
approximately 0 so this also says  that the pressure variation that you find outside the boundary
layer that is  DP by DX here will be the same as what you have is DP by DX inside the boundary
layer so therefore now since we have this continuity and the X momentum  equation we do not
have an additional equation for  pressure so how do we therefore approximate.



 DP by DX in this case so now therefore we have to calculate DP by DX by writing down the
momentum equation outside the boundary layer since we say that DP by DX can be obtained
from applying it outside the boundary layer so outside the boundary layer these become the Euler
equations  okay in this  case there is  no advection at  all  so essentially  the convective term is
completely 0 so if you write the momentum equation.

(Refer Slide Time: 20:08)

Outside the boundary layer so you end up with _ DP by DX  and then what else so you do not
have advection term you have you do not have  any diffusion term outside there is no viscosity
and you have but body force  okay but we will distinguish the density within the boundary layer
from outside so we will express the density here as  Ρ ∞  okay so outside the boundary layer we
will use Ρ ∞  here therefore we will write this as _ Ρ ∞  G is =0 so  this gives that my DP by _ DP
by DX is =Ρ ∞  times G so  therefore I can find my pressure gradient along the plate by applying
the  equation outside the boundary layer.

And I for determined that this is nothing  but the gravitational acceleration outside  yeah so in the
case that inside we don't know how the variation is otherwise we  have to solve for this and we
have to build another equation to solve for it or we have to use the equation of state  correct so in
order to therefore simplify it we take it outside the  boundary layer and we see that already from
momentum equation we get the clue  that there is no variation of pressure along Y so that for DP



by DX does not matter whether you calculate it inside or outside and outside it simply is =the
gravitational acceleration  so if you directly substitute it now you are eliminating DP by DX from
the  momentum equation therefore now if you substitute for DP by DX you have μ d square u by
D y square here so _ DP  by DX is Ρ ∞  so therefore you have Ρ ∞  _ Ρ times G so  this will be
the body force okay so the effect of Ρ ∞  G is coming from  DP by DX and the default body force
is Ρ G so this difference Ρ ∞   _ Ρ what is this force this is your buoyancy force so this is the net
buoyancy force which is now driving the momentum in the natural convection.

(Refer Slide Time: 22:49)

Right  so if the buoyancy force is 0 then you do not have any boundary layer growth okay the
boundary layer growth happens in  this case only because of this density difference and what is
causing  this   density  difference  temperature  difference  so  now  this  is  where  bossiness
approximation is used in the sense we are ignoring the variation of  density as a function of
temperature  elsewhere  except  in  the  body force  term okay  so  now to  invoke  the  bossiness
approximation  so  we  will  define  the   coefficient  of  thermal  expansion  β  okay  so  β  is  the
coefficient of  thermal expansion so this is written as _ 1 / Ρ D Ρ / T so what it  simply measures
is the variation of density of a particular fluid with  respect to temperature.

Okay so if this coefficient is high that means you have  potential that this fluid can expand or
contract very quickly very strongly as a  function of temperature okay so the higher the value of



β indicates that  the potential for this density difference can be higher okay and these  are usually
measured as a part of the thermo physical properties just like thermal conductivity specific heat
capacity and so on and they are tabulated for different gases okay and for ideal gas what will be
the value  of β how do you calculate β if you make the ideal gas equation of state if  you put in
the ideal gas equation of state into this so it will come out  simply as 1 / T  okay so why we are
putting a negative sign.

(Refer Slide Time: 25:04)

Here because usually the density  decreases as your temperature increases okay so in order to
make sure that this coefficient is positive okay  thermal expansion coefficient is positive we put a
negative  sign  here  alright  so  therefore  now  if  you  apply  the  calculate  use  a  simple  finite
difference assuming a linear variation of density with temperature okay if you  want to calculate
the variation from some reference temperature T ∞ to actual temperature T okay so how will this
look you have _ 1 /  Ρ _ Ρ ∞  ÷ /  t  _ T  ∞  okay if  you assume that  for small  changes in
temperature we can  assume a linear variation in density.

Okay and therefore we can just  approximate the derivative d  / dt as Ρ _ Ρ ∞  by t _ T  ∞  nowϱ
you can therefore substitute for  this buoyancy force Ρ ∞  _ Ρ from this particular coefficient so
therefore what do you get  _   ∞  is =_ g β into t _ T ∞  or Ρ ∞  _   is = g β t _ t ∞   so this isϱ ϱ ϱ
basically  the  relation  between  the  buoyancy  force  to  the   driving  potential  which  is  the
temperature difference so you can  therefore substitute for Ρ ∞  _ Ρ from there so I just take G



should not be here I am sorry so once you substitute into this you have G so you  have therefore
G β into T_ T  also that is the Ρ here right yeah okay Ρ β into t _ T right okay so therefore now
your buoyancy force is now  written as a function of temperature difference so this is now what
we  call  as  the  momentum  equation  in  working  the  bossiness  approximation  so   bossiness
approximation says that the density can be treated as a constant in  the advection part whereas
you invoke that as a function of temperature.

In the body force term so now if you divide it  throughout by Ρ so now this looks similar to your
external force  convection boundary layer equation except the last term which is G β  x t _ T ∞
right so this is your buoyancy term or body force term so  if you our temperature difference is 0
there is no natural convection  boundary layer and therefore the boundary layer grows because of
this  temperature difference so now you can write down the energy equation also so  how does
the energy equation look so it will be no different from your external  force convective boundary
layer equation right Q DT by DX  + me DT by D y is =α into T Square t by D y square you can
neglect  again heat diffusion in the X direction.

(Refer Slide Time: 29:16)

With respect to Y and if you also  neglect the viscous dissipation okay we are talking about small
values of  Eckert numbers so in that case this will be your same as your external laminar  forced
convection past a flat plate okay so this will not change now what is the  major differences the



inclusion of the buoyancy term into the momentum equation  so now you can see that unlike the
other case where you solve the momentum  equation first get the velocity profile so this is how
Blazes did first blush  is solve the hydrodynamic part you got the velocity profile then Paul
Hassan.

Used that then he solved the energy equation but here the velocity profile  itself is coming from
the temperature okay so you cannot therefore do it in a  serial sequential fashion so all of these
has to be simultaneously coupled  and solved now this is where the complication comes okay so
that means you cannot find a simple sequential  segregated solution unlike the case of external
force convection so you have to  couple all these equations and solve them okay now we will see
in the due  course of another 1 or 2 lectures we will see how to solve these equations  one after
the other for different boundary conditions.

But  before  doing  that  so  now  that  we  derived  the  governing  equations  let  us  try  to  non-
dimensionalize them taking some reference parameters and see what are the non dimensional
numbers that come out okay so I request all of you to scale the all the variables here that means
you take your position X and scale it with the length of the plate this will be a non-dimensional
X similarly your non-dimensional wide and how do you scale velocity here.

(Refer Slide Time: 31:30)

U max because we do not have you ∞  but the complication here is we  do not know what is u
max a priori right this is happening within the  boundary layer which comes out of the solution



but for the time being you  do not worry about it you just assume that u max is your reference
okay so  we will call this as a reference velocity u subscript R some reference  velocity it need
not be u max also it can be any other velocity okay so some  reference velocity which we don't
similarly your V OHS okay now we don't  have pressure term explicitly.

So you don't have to worry about non  dimensionalizing the pressure and what about temperature
now  so  again  we   introduce  non-dimensional  temperature  Θ   okay  when  we  do  the  non
dimensionalization let us do it assuming a constant wall temperature so that we  can write this as
T _ T ∞  by T w _ T ∞  all right so I  will give you about five to ten minutes time you please
substitute this  into the governing equation and find out what are the non-dimensional groups so I
will write the final expression on the board but you please work it out and  check  so all of you
let us check whether you get the same non-dimensional groups  so is that okay so you have
therefore 1 over  Reynolds number here okay and you  have 1 over Reynolds number times
prantle number okay so if you define  your Reynolds number.

(Refer Slide Time: 35:38)

Now as  u are  x L by nu some reference  velocity  times   the total  plate  lengths  so you can
therefore  write  this  as  1  over  Reynolds  number  and  this  is  1  over  Reynolds  number  times
Prandtle number what about  this now you have an additional non dimensional group if you see
this is no  units what is the unit of β Kelvin inverse okay so this entire thing will  be again a non



dimensional group okay now this represents the ratio of two  forces the numerator is nothing but
the buoyancy force okay where G β into T  w _ T ∞  is nothing but the density difference Ρ _ Ρ
∞  and the denominator is your inertial force okay so we will now  define a non-dimensional
number in natural convection this is called the  Grashalf number.

(Refer Slide Time: 37:04)

So usually denoted as Gr okay this is the ratio of buoyancy force G β into  T w _ T ∞  x L cube ÷
by the viscous force u square okay so this is basically the ratio of buoyancy and viscous force so
you can  imagine that this Grash of number is somewhat analogous to the Reynolds number in
force  convection  so  there  you  have  inertial  force  here  the  inertial  force  is  replaced  by  the
buoyancy force  or in fact the inertia here is driven by buoyancy okay  and therefore you can
write this ratio of buoyancy to viscous from using the  grashalf number and also number because
grashalf number is a function  of buoyancy and viscous forces now somewhere function of is
nothing but  inertia and viscous force.

So therefore you can write G β L x T w_  T ∞  / μ R square how do you express this in terms of
grashalf and  Reynolds number turns out to be that this is nothing but trash of by nonce  number
square okay so therefore this entire non dimensional group is nothing  but the ratio of rush off to
Reynolds  number  square   okay  so  in  the  process  we  have  therefore  defined  a  new  non-
dimensional number  which is very much relevant to natural convection which is now called as a



grashalf number ratio of buoyancy to viscous force analogous to the Reynolds  number now from
this can we kind of estimate what is the order of the reference velocity okay so what is the
equivalence of grashalf under north number so you can say that grashalf  number to the power
half is of the same order as the Reynolds number correct.

Because we have Gr by re square that means the order of Re square should be  of the same order
as Gr now therefore you can substitute the expression for grashalf number Reynolds number then
calculate what is the order of the expression for calculating the order of  view reference okay so
this is nothing but G β T w _ T ∞  l q  ÷ / nu square to the power half which is =u r l /.

So from this what do you get first you are hmm so you have L power 3 by 2 _ 1 which is L
power half okay so you have nu which cancels therefore you are should be square root of G β x T
w _ T ∞ x L okay so to get your reference velocity at least the order of it you can therefore use
this particular expression.

Okay otherwise from your you know when you non  dimensionalize e do you do not know what
is your reference velocity but you can  now using the order of magnitude between grashalf and re
square you can therefore come to some reasonably good estimate of  reference velocity okay so
you can see that this reference velocity is nothing  but what is going into your annals number
definition  and  here  it  is  driven   by  your  temperature  difference  if  there  is  no  temperature
difference therefore there is no inertia okay the inertia is  essentially arising from the buoyancy



term which is actually a function of  your temperature difference therefore now you can classify
different regimes  now what we have seen is a pure natural convection case but you can also
have a case where you can combine your force  convection.
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With buoyancy that means you can have a regular bulk velocity through  let us say this is your u
∞  and the temperature difference is also  substantial  so that you can have a boundary layer
growth now this is a combined effect of both your forced  convection and natural convection
okay so in  such a  case the same equations  are  valid  right  so but in that  case you are you
reference that you can actually use as u ∞   because even if you do not have any temperature
difference the force  convective boundary layer  will  still  exist  okay so when you define the
Reynolds number in that case you can define Reynolds number using u ∞.

 Okay which indicates  the external  bulk convective  motion  and the  grashalf  number  is  still
decided by the buoyancy ratio   of  buoyancy to viscous forces  okay so in  that  case what  is
important what are the different regimes? And what are they? How are the different regimes
classified? is by the ratio of inertia of bytes re square okay so if you are  talking about these
values much lesser than 1 that means your bulk velocity is  now overpowering your buoyancy
force so in that case you can ignore natural  convection and therefore this is only pure force



convection so remember in  this case we define a nonce number as u ∞  L by μ correct so in this
case.
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When grashalf by re square is very small you ignore your natural convective effects buoyancy
fits on the other hand if you are grashalf by re square is very large that means your buoyancy
force is dominating your bulk motion so here this will be your natural convection so by the way
the other name for natural convection is called free convection since you do not spend you know
you are not putting any effort in driving happening in making this convection happen.

It happens naturally therefore it  is called free convection so the regions where this is significant
that is the order of one okay  so here this is called mixed convection  so in the case of mixed
convection  both  the  effects  of  forced  convection  and   natural  convection  will  be  equally
significant you cannot completely  ignore therefore either of them so we have already seen cases
of  forced convection derive the correlations for nusselt number and so  on similarly for natural
convection we will do it now what happens in mixed  convection..
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Okay so in weeks convection the most simplest way of approaching  this is the Nu in mixed
convection  is  simply calculated  from  independent  correlations  for  post  convection  and free
convection and we  just  use some power law to blend these two okay so this  is  one of the
simplest  approaches so here the value of M could be either 0.3 or 0.4 okay so we will  stop here
so tomorrows class we will look at the different ways of solving  the governing equations okay
so for first starting with the constant wall  temperature case then the constant heat flux case and
so on okay thank you.
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