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So good morning all of you so today we will look at in fact continuation of the last class which
was extending right solution the great solution was originally proposed by grades 4 flow profile
and it looks at the thermally developing region or the thermal entry region wherein your hydro
dynamically fully developed and you are looking at only the entrance region where the thermal
boundary layer is developing for such kind of a that is what we call as region2 so grades. 

Assumed  a  sluk  flow  so  where  anyway  the  sluk  flow  does  not  vary  and  it  is  a  uniform
everywhere and here developed solution for constant wall temperature which we had seen earlier
so they are the Eigen functions were what were the Eigen functions essentially in the original
grades problem so the Eigen the eigenvalue problem there was actually a Bessel equation right
so now the same problem can be extended to a case which is bone realistic that is for a parabolic.



Velocity profile okay it was this extension was done by a group of people sell or settle all sell or
stripers and I have posted that in the moodle you can just have a look originally 1954 how they
did the extension to the rights problem of course nowadays the solution is more by numerical
Methods they try to do a approximate technique where they did something for are close to the
wall r which is somewhere in the middle and art which is far away from the wall and they 
Patched  up  all  the  solutions  together  so  what  we  are  going  nowadays  is  directly  go  for  a
numerical solution to the eigenvalue problem so the easier way to start is to introduce these non-
dimensional variables for temperature as you shall be defined thη as t - T w / TI - T w.
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Since this is a constant wall temperature boundary condition and your inlet temperature is also
assumed constant so this is an appropriate definition for thη once you have a constant wall flux
boundary condition then you cannot define thη this way okay because your when you take the
differential with respect to X your wall temperature will not be a constant and therefore they will
not cancel out on both the sides and this is the non-dimensional radial coordinate and your axial
non-dimensional axial coordinate can be non dimensionalized in this manner which is somewhat
similar to an inverse of the grades number your grades. 

Number one by grades number is actually X / D by peclet number okay so this is somewhat
similar exactly now we are not using X / D here but x/r0 so when we substitute into the energy
equation okay the energy equation for thermally developing flow is this and if it had been fully
developed your D θ by DX would have been zero but in this case your flow is still developing
and therefore if you substitute you get a partial differential.

equation  in  terms  of  thη  which  is  a  function  of  both  the  axial  coordinate  ζ and  your  non-
dimensional radial coordinate η and the boundary conditions are at the entry region that is at ζ =
0 your T = TI so therefore your θ will be one and at the location R = R 0 that is at the wall okay



so your coordinate system that you are looking is something like this is your R and this is your X
okay so this is your R0 so at R.

(Refer Slide Time: 04:19) 

=R0 that is your η =0 one that is where your thη equal to zero where y t is = t 1 so this is where
you apply a constant wall temperature and at  η equal to 0 that is at R = 0 centerline there is a
symmetry in the profile so therefore your gradient at the centerline should be 0 so now once you
assume that you can use separation of variables to solve this we introduce θ a and we break up
the solution as a product of two independent.

(Refer Slide Time: 05:03) 



Solutions one is a function of only η the other is a function of ζ so we introduce X as a function
of ζ and R as a function of η and then substitute into the PD and then we get to we reduce the PD
to two ordinary differential equations through the eigenvalue  Λ square okay and the cell the
eigenvalue problem here is basically the one with homogenous boundary conditions which is
basically in then direction and if you compare this to the Bessel equation.
 
You can find that this last term here is not same so therefore this is not a Bessel equation if you
look at these first two terms they appear similar but the third term is not the same as it is a
function of you have η if you multiply by η square you will have η square into 1 - η square that
comes different from the Bessel equation and this kind of general eigenvalue problems are called
strongly will Eigen value problems okay so any kind of an eigenvalue problem whether this is a
Bessel equation or 

(Refer Slide Time:06:28 ) 



A basic bode can be represented as a sturm-liouville eigen value problem so the strum liouville
eigenvalue problem can be cast into a differential equation like this of course you can express
this also in this particular form and this strum Louisville problems have a particular property that
when you integrate your Eigen function you multiply your eigen function and you multiply it
with the weighing function the weighing function is this which appears on the right-
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Hand side so this is the  particular property this is your Chronicle  δ   so if m equal to and then
this will be = 1 otherwise it will be 0 ok so  now if you compare your eigenvalue problem to the
strum liouville problem  ok so you can write your Eigen value problem into the strum liouville
form so  that will come out as - d / d η into η dr / dη  + the term  corresponding to Q of X is 0



here  and   this  term can  go  to  the  right  hand  side  and  that  can  be  expressed  asΛ2  into1-  

ζ square into η into R so I am multiplying throughout by η and the first two terms I can combine
and write it in this particular format ok now the format is the same as the term Louisville format
you can compare the coefficients your (p)  x you is nothing but  η Q of X is zero and you are
weighing function is 1 - η 2 into η so this is your weighing  function as a function of either okay
so this can be written as 0 to 1 so. 
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This is  strictly speaking a to be okay in your case your η goes from 0 to 1 that is  why I have just
used to 0 to 1 there so this is 0 to 1 and this will be our end  of η into our M of bη into weighting
function here which is η into 1 -  η Square D η is equal to δ MN times 1 by 2  Λ because here
your Λ2  is your Λ so this is square root of  Λ square which is   Λ n into D our n by B  Λ n into D
our n by dη  at  η equal to 1 okay.  

So this is this is how the corresponding properties of strum liouville comes out to be in this case
and if you want to write the final solution for thη which is basically X into R so you know the
Eigen functions now in this particular case this is an OD and to get the Eigen function you have
no other option but to solve it  numerically ok you can once again go back to your shooting
method you can reduce it to two first order Rudy is and then here guess the value of Λ. 

Because you do not know the value of  Λ unless you know the value of Λ you cannot find out the
Eigen function so guess the value of Λ and once again you have to satisfy the other boundary
condition and that is hydrate of ly found out and that is the suitable value of so like this for the
given value of Λ you have a particular value of eigenfunction Λ so for each value of Λ you have
to find the Eigen functions and finally the solution will be. 



A superposition of all these eigenfunctions okay so that can be written as a constant times the
eigenfunction into the other solution for X the other four solution for X as a function of ζ that is a
very straightforward OD which can be directly integrated and that will be in terms of constant
times E power -  Λ square  ζ okay so this is your final solution for thη having determined your
Eigen functions and your Eigen values you can therefore plug in into.  

(Refer Slide Time: 10:56) 

This expression and find the variation of the temperature I will just give you  a representation of
how the eigenfunctions look if you solve for  them and if you plot the first three Eigen functions
are n 0 it varies  between negative - 1 to 1 0 0.5  so this is your r0, r1 and r2 this is a this is a
representation of so  these r0, r1, r2 so here you have plotted with respect to η okay  so this the so
this is the Eigen function corresponding to n equal to 0  that is for Λ  0 okay and. 

This  is  the Eigen function corresponding to  Λ 1 so for different  each Eigen value sorry for
eigenvalue Λ 0,  Λ 1,  Λ 2 you substitute into the OD and you can get the corresponding Eigen
function variation with respect to Η so these are the first three Eigen functions so these are the
most important ones there are other higher-order I cannot functions but their contribution will be
relatively smaller so when you sum them you take only the first three. 

Or four important Eigen functions into account okay so now the thing is this is the solution but
still we have to find the constant CN okay so for this we have to apply the initial condition that is
at  ζ =  0 and we make use of  the property  of  the  store movie  when you integrate  with  the
weighing function so this is basically since this is an orthogonal All storm level problems a lot of
orthogonal so this is a property which satisfies the orthogonal condition so this is an. 
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Orthogonality condition of the storm level system of problems and we will make use of this in
calculating the constant so let me call this as equation number one and I am going to multiply
both sides by RM and integrate so for first before doing that I will apply the condition at ζ = 0
which is equal to one therefore one equal to summation n equal to 0 to infinity CN you have rn
or PΗ into (E) - Λ n2 0 that is 1 so I can.
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Now multiply  both  sides  by  RM of  Vita  and  the  weighing  function  okay so  the  weighting
function is here η into 1 - η Square D η and integrate from 0 to 1 so this is also the same I have r
m η into  η into 1 - η Square D okay so multiplied by this r m  η into the weighting function and
integrate both sides so now I make use of my orthogonality property so therefore only for m.
Equal to n this will be nonzero okay so this will turn  out to be 0 to 1 our n of η into  η into 1 -  η



Square D  η on this side you can sum only if m equal to n so  therefore this will be 0 to 1 and the
constant can come out okay so this will be our n square of  η because then if m  equal to n then
only this will be 1 so this will be our n square η into η   into 1 - η square okay so therefore my
constant  CN will be zero to one R and  η into 1 - Ζ Square D  η divided  by 0 to 1 integral. 

R and square η into  so now I have to evaluate these integrals how do I do that for example  the
integral in the denominator how do I calculate integral 0 to 100 square  η into 1 -  η squared 8
yes so that will be 1 by 2 Λ n into this  particular thing right so I already know from the property
of storm Lowell system  of equations that the denominator 0 to 1 are n square into  η into  η into
1  -  η Square D  η should be equal to 1 by 2 Λ n. 

(Refer Slide Time: 17:40)

Into D are n by D Λ n into D are n by Dη at η equal to 1 ok so this is what I get from integrating
the denominator and how about the numerator however the numerator you have a very nice clue
if you have basically the eigenvalue problem here from this if you integrate both the sides okay
so if you integrate this that is basically you have already R into η into 1 - η Square Dη and this
will be therefore on this side - 1 by Λ square into you have η into D R by D η. 

And you are integrating between 0 & 1 so at 0 η will be 0 so therefore this  should be at η equal
to 1 this will be 1 right so this comes from the  eigenvalue problem itself so i can just integrate
and i can find out the value of this okay so therefore now I can  write my constant CN so if I
substitute for this integral in this integral what  will be the constant-2/ Λ n and so this will be dr /
dt at η  equal.
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To 1  and  denominator  dr  by  D  Η these  two  will  cancel  off  so  you  have  only  this  in  the
denominator so you have  into 1 by dr n by D  Λ n corresponding to Η equal to 1  correct  okay
so this and this cancels of you have -2 /  Λ n and this in the  denominator so now for calculating
this constant C as a function of n this is a  function of n so for different values of eigenvalue  Λ 0
Λ 1  Λ 2 I need to know what is the derivative of  the eigenfunction with respect to Λ okay
corresponding to Η equal to ./

So therefore now for different values of Λ for Η equal to 1 I should know what is the value of the
eigenfunction and then i should fit some approximate curve and calculate the slope okay so that
basically corresponding to Η equal to 1 from there I can calculate my constant C okay so I can
finally substitute for C into my equation number 1 for the solution turn therefore the. 
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Solution for thη  can be written as - two this can be taken out and I have summation n equal to 0
to infinity and for CN so the other these are all functions of n so I have  to just keep it inside the
summation I have E power -  Λ n square Ζ  into RN of Η divided by  Λ n into D R and by D  Λ n
at Η equal to 1  okay so I have simply substituted for C or C of n from what I have obtained here
all right so finally one so once I know my eigen.
  
(Refer Slide Time: 22:15)

Functions my Eigen values and this derivative I can now finally find the solution for thη so this
is my final solution so I will go further and I will calculate the expression for the nusselt number
the local nusselt number so therefore now I will define my local heat transfer coefficient as K DT
/ D R at R = R0 divided by T w - T me this is my definition of local H and from substituting the
temperatures in terms of η and everything in terms of non-

Dimensional radial coordinates  eita okay so this will be if you substitute for T in terms of η you
remember that because t - TI by sir t - T wall by TI - t work okay  so this will be TI - T wall into
D η by d R at R equal to R 0  divided by T wall - TM okay now I can define a mean temperature
non-dimensional mean temperature which is thη M as TM - T wall by E I - T 1 so here T is a
function of  both R and X here T mean will. 

Be a function of only X okay so I can define  a non-dimensional mean temperature and you see
that T wall - TM by PA -  T wall is nothing but - thη M okay so I can write this as - K D η  by D
R at R equal to R 0 by thη n  what I can also do is replace R in terms of Η so therefore this will
be Η  into R 0 and this will be at Η equal to 1 because you are η is higher by are not so I can
replace directly  with respect to Η so all I need to know is my mean temperature thη M and  also



the non-dimensional gradient of temperature at the wall  so once these two are calculated I can
find the expression for H X so.
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From the equation for thη let me call this as equation number two now I can go on and calculate
the expression for first thη M so therefore I can write my thη M as follows so how do i define my
bulk mean temperature according to the basic.
  
(Refer Slide Time:25:28 )

Definition I take my non-dimensional temperature multiply it by the velocity and
 integrate across the cross sectional area so that is 2 pi into r dr okay so this is from zero to R 0 so
this I divided it again by the mass flow rate so that is 2 pi integral 0 to R 0 into U of R into RDR



okay this is this cancels now I define my bulk mean velocity or mean velocity as once again 1 by
so this is 0 to R 0 U of R into RDR so this will be 1 2 this will be 2 by R 0 square. 

(Refer Slide Time:27:37 ) 

Correct okay so  I can now substitute for this right here in terms of the mean velocity so this is
basically integral 0 to R 0 η into U of R into Rd R divided by this will be hard not square into um
by 2  okay so since um is only a function of X I can take this inside the integral and  I can write
this as u by u n into Rd R so I can now convert this completely in  terms of non-dimensional
coordinates okay so this will be 2  zero to 1 η into you by um into Η into. 

DITA because I have are by are not here dr by or not okay so this will be my expression for thη
M as a function of non-dimensional η + u bi um okay so I can now substitute I already have my
expression for u bi um what is the expression for u by u a that is from the fully developed
parabolic  velocity  profile  right  that  is  twice  1  -  η  square  in  terms  of  the  non  dimensional
coordinate okay so I can substitute for η coming from Equation 2 and the 

velocity profile from  this into η M so  this will become - 2 summation of n equal to 0 to  infinity
e power -  Λ n square Η divided by  Λ n into D RN by D   Λ n responding to Η equal to 1 into 0
to 1 then I have so 2 into 2 4 ok  into Η into 1 - Η square into R which is also a function of Η ok
RN of  Η into D Η this is  okay so I am the substituting for η and you buy um into this and I am
grouping all the terms which are
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Function of Η and that I am  integrating from zero to one so that is basically four times Η into 1 -
Η square into R into D Η right so this Η into 1 - Η square R  and Η D Η what is this value so we
have already seen that this is nothing but 1 by  Λ n square into d r by  D  Λ that Η equal to 1
okay so we will just substitute that and my η M  now becomes so 4 into 2 becomes 8 here this is
a - sign here  okay this take note of. 

It so - and - become + here so 8 into summation n equal to 0 to infinity into  so that is a DR by D
R by D  Λ and at Η equal to one no this should be  with respect to Η so therefore this comes out
with respect to Η please  correct it okay so this is d dn by D Η here okay so this is one of the
terms multiplied by E power -  Λ n square into Ζ and divided by you  have  Λ n square here and
there is a  Λ in here this becomes  Λ NQ  into.
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Already you have a term d RN by D  Λ n so this becomes D R and by D   Λ n corresponding to Η
equal to 1 ok so this is your expression for thη M so now you have a closed form expression for
thη M as a function of  the Eigen value and the derivative of Eigen function both derivative as a
with  respect to Η as well as with respect to  Λ okay so now we need to still  find D thη by D Η
with respect to Η equal to 1 what is this value.  

Directly you can differentiate that is - 2 summation n equal to 0 to  infinity e power -  Λ n square
Ζ into this will be your dr and by d  Η at Η equal to 1 divided by  Λ n into d RN by D  Λ and a T
type  photo what okay so therefore we will substitute for  thη m and D thη by DT a so therefore
if I substitute I can so I can also  write my so I have my expression for HX as - K by r-0 I can
directly get an expression for nu which is. 

Defined as  H into R 0 by K so it should be actually defined with respect to D  therefore I will
write this as H into D 0 and so this will be D 0 by 2 therefore this will be - 2 into D  thη by D Η
at Η equal to 1 divided by thη okay so I can substitute for D  thη by D Η and my thη M so that
gives my nu X as summation n equal to 0  to infinity a and E power -  Λ n square Ζ divided by
twice n equal to  0 to infinity a n by  Λ n. 
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Square e power -  Λ and square Ζ where  a n is nothing but d RN by D Η at Η equal to 1 divided
by  Λ n into D RN  by  okay so I will give you a couple of minutes you can substitute and check
for yourself it is just straightforward I am just grouping this entire term d R by D  Η divided by
Λ into D R by D  Λ this has a constant which is a  function of n okay so I call this as a n okay so
this will be nothing but  therefore a and into summation of. 

N equal to 0 to infinity power -   Λ n square that is the numerator divided by the η M also has the
same  term so in addition I have  Λ n cube here so therefore this will be a n by   Λ n square into
this okay the numerator has basically 2 into 2 for  denominator as 8 therefore there is 1/ 2 there
okay I hope all of you are clear  I am going the pretty slow here so therefore this is your final
expression now to calculate my Nestlé’s number here  I need to. 
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Basically know numerically the values of all these slopes of eigen function with respect to Η as
well as with respect to Λ and also the eigen values so from there I can calculate my nusselt
number once I know the location axial location where I need to so - alt number is now only a
function of my axial location non-dimensional axial location so what sellers did if you look at
that particular paper which I posted so he did it numerically and he has.  

(Refer Slide Time: 37:34)

Predetermined the values of all these constants and tabulated them so I am just going to give
only the final values tabulated by sellers okay so you can also see the therefore the value of
corresponding to n Λ n the value of CN and a okay so CN is required where in your solution for
η okay so that also everything has been computed numerically so for n equal to zero the most
important Eigen value that is your 2 point 7 0 for 3 the value of CN .

1.466,0.748  and similarly for one two three will also  give the fourth value this is a  6.6790,
10.67 ,14.67 and 18.66 - zero point eight  zero two zero point five eight seven - zero point four
seven four +  zero point four zero four zero point five or for 0.462 to 0.38  so the most important
the first five eigenvalues a corresponding constant CN  and a and they were all numerically
calculated and tabulated by sellers at a  1954 so therefore you can just directly use. 

These values you do not have to sum them to so many terms you can just sum them to the first
four or five terms okay you can directly substitute the corresponding value of  Λ a and in the
solution for temperature the value of C then you can get an expression  directly in terms of Ζ
okay so which is basically a non-dimensional axial  coordinate so for different values of Ζ you
can actually plot and see how the nusselt number varies right from the  location where. 



Your thermal entry length starts okay now for the limiting case if you look at a very far away
distance axially so that is for large values of Λ but Λ very large you can see that this is an
exponentially  decaying function okay so except  the smallest  value of Λ if  you go for larger
values of Λ that is corresponding to n = 1 2 3 4 so these are large values and it is already an
exponentially  decaying  function  so  there  will  be  very  small  okay.  so  only  the  first  .Term
corresponding to n = 0 will be important when you look at large values  of Ζ so for that. 
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This will be reducing to your a 0 into so basically you have E power -  Λ 0  2  x e power -  Λ 0
square Ζ right why I am ruining only the  first term and neglecting all the higher terms so these
scans  how and this will become 

So your nusselt number corresponding to large values of Ζ will be nothing but two Λ 0 square
divided by two so if you substitute the value of Λ 0 corresponding to n equal to 0 what will be
the value of Nu so that is basically 2.7 the whole square divided by 2 any of you anyone who is
having a calculator can quickly check that 3.6566 anybody remembers the significance of this
number this is for the case where we started fully. 

Developed flows in the fully developed both thermally and hydrodynamically fully developed
Region three and constant wall temperature boundary condition this was the nusselt number okay
so now that we are getting as a asymptotic solution to the thermal thermally developing case for
large values of Ζ the same value so this is your fully developed okay that comes out naturally as
an asymptotic solution now to wrap up this particular case as you can see. 



The storm liouville problems any general sturm-liouville problems you cannot find direct closed
form solution you have to do a numerical solution and therefore sometimes it is difficult to do so
once the numerical values are calculated and tabulated and.
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There was a person called Heusen who actually fitted the empirical curves to this numerical
solution for different values of n he took and then he substituted them there and then he fitted set
of  numerical  empirical  curves  to  The  numerical  solution  and  then  he  directly  proposed  an
empirical correlation which is independent of all these constants and the eigenvalues okay so that
is a very famous correlation  so that goes as nu is equal to three point six six + zero point zero six
six eight into grades number divided by  one + zero point zero four Brides number to the power
two-thirds okay  where your grades number is defined as one over or we can say one bike rides
number is 

basically X by D by peclet number okay so this is a very simpler correlation you just substitute
the axial location non-dimensional form as Christ number into this expression and you directly
get your local nusselt number okay you don't have to find out Eigen values the corresponding
constant corresponding to n equal to 0 1 2 3 4 this okay this is an empirical correlation which fits
very well with the exact solution okay so you can see for the limiting case where your x by d 

goes to very large values your one bike rides number is basically say here your grades number
becomes very small for large values of x by d so then this particular term here disappears and it
will lead to the limiting case of 3.66 which is the nusselt number for fully developed flow okay
so  if you want to just plot the axial variation of the local nusselt number with respect to one our
grades numbers  so you will find that this is for the constant heat flux 



case anybody remember what is the asymptotic solution for point four point three four point four
point three roughly this is for a constant heat flux and this dotted line here is for constant wall
temperature and the asymptotic  case leads to the value of 3.6 okay so if  you plot  the local
variation you know once you have the first five dominant terms you plot it as a function of 1
over grades number and you will find that exponentially it is a decaying function 

Okay, and also you can plot both the constant wall flux boundary  condition case constant wall
temperature boundary condition case the constant  flux case has a slightly higher nusselt number
and asymptotically that will  reach to a value of 4.3 and constant wall temperature case reaches
to three point six okay, so this is to give an idea about the thermally  developing region now as I
said how do we get the constant heat flux case okay,  so that is a there is a slightly different
problem okay, the problems that we have solved in  the class corresponding to constant wall
temperature boundary condition ok and  parabolic velocity distribution. 

This was an extension which was proposed by  Sellars extension of the grades problem now the
other extension is for a non uniform wall temperature that is for  case where you can have an
axial variation of wall temperature which is a  linear variation or you can also have a constant
heat flux boundary condition so  these were proposed also by sellers and I have uploaded a
document on the Moodle  which gives the extended solution for the case of a plug flow the
velocity   profile  is  plug flow but  the  boundary condition  is  a  constant  wall  flux  boundary
condition okay. 

So there I will probably in the tomorrow's class give  you hints how to approach that problem
there the  condition is non-homogeneous because you have a defined heat flux so the thing is
how do we homogenize that boundary condition for getting an eigenvalue problem so that that is
the key once you  know how to do that after that the rest of the things are straightforward so to
get an idea you can just look into the Moodle Lovera have posted for the case  of parallel plates
okay that's a much simpler case to deal with say Cartesian  coordinate system and taken case of
plug flow and constant water wall flux  condition okay.

So I will give you I will just describe the procedure briefly and you can go over the document
and  you can   do  the  same thing  for  the  case  of  circular  tube  balls  okay  so  with  that   the
developing case will be over the thermally developing case of the thermal  entry length cases will
be done and finally we look at the case of  simultaneously developing simultaneous entry length
problems so those problems  we cannot do analytical solutions because you cannot neglect any
terms  strictly speaking okay we have to go for a full numerical solution. 

To the  navier-stokes equations  there have been some solutions  where some approximations
have been made but still they were involving a numerical solution so I will  just give you the
empirical correlations coming out of those solutions and I think tomorrow we should be able to
complete  this  part  and  the  last  two  classes  on  Thursday  and  on  Saturday  we   look  at  the



approximate solution to the internal flow problems so how do we use  the integral method here
okay.

Extended Graetz problem

End of Lecture 31
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