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Good morning so in today's class we will   look at the some of the fundamental laws  which govern

convective heat transport  and we will try to derive the first  which is the continuity of mass or that  is

your conservation of mass or  continuity equation .

(Refer Slide Time: 00:31)

So  the  three  fundamental  laws  which  are  governing  the  convective  heat  transport  are  the  law  of

conservation of mass which is your transport of mass which is also called as a continuity equation 
and the  transport of momentum which is nothing  but your classical Newton's second law  of motion this

is also called the  momentum equation momentum conservation  equation and finally for convective heat



transport we will also look at the first  law of thermodynamics applied to an open  system which is called

the conservation  of energy or transport of energy.

 So all  these laws will be applied to an  infinite similarly small control volume, which is located in a

moving fluid and  when you look at therefore when we  define a control volume of course there  are

different  approaches  to  solving   these  governing  equations  either  as   treating  the  fluid  as  particles

individually and tracking each of these  particles in writing the Newton's second  law for the motion of the

particles and  the energy of the particle and if you  look at the other approach. 

Which is  called the continuum approach which  we'll be following in this particular  lecture we define a

control volume in a  particular in a moving fluid and how we  define continuum here is that if you  plot

the ratio of dense the mass by  volume that is if you define density as  mass by volume and then you plot

this  ratio for different  volume of the  control  volume that  is  for  different   Δ V that  is  the different

controls.

Volume sizes if you plot  this below a certain volume which is  maybe approximately about one micron

cube you find the plot of density looks  very distorted like you can see lot of  fluctuations in defining the

value of  density below this certain critical  volume and if you use volumes which are  greater or which

are larger than this  critical volume and you calculate the  ratio of the mass divided by the volume  that is

you weigh the particles in that  particular control volume divided by the  volume that it occupies you find

after  that this becomes more or less a  constant okay.

 So this signals that we  have moved from a regime which is non  continuum where you have few very

few  particles or very small control volume  where it could not statistically define  an average property

such as density  sufficiently where your particle  approach could be valid could be used  whereas if you

look at volume sizes  which are greater than this critical  volume there the density the  definition of

density carries a certain  meaning and you find the density becomes  a constant so therefore here the

continuum assumption is definitely valid  so we will restrict all our derivation  equations to a control

volume which is  satisfying continuum approach.
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 Once again we can define two kinds of a control volume so one where you fix the control volume in

space and then you look at the transport of fluid across the fixed control volume and this is called the  
Oil Arian approach which is shown by the figure B here and the other approach  where you look at

control volumes which  are moving so in space and time so this is called the Lagrangian approach  of

course each of them have their own  advantages and disadvantages, however the Arian approach is more

conducive.

(Refer Slide Time: 04:23)

When  you especially look at comparison of  your  measured data with whatever you have  computed or

whatever you have analyzed  with your governing equations so in the  Lagrangian approach primarily the

control volume is considered to be  moving while the with the fluid as a  whole so you look at packets of



fluid  particles which are moving and you  define a control volume which is  basically also moving with

the fluid  particles and in the Arian approach  you assume a fixed control volume in  space and then you

as you see look at  the motion of the fluid.

 Which is coming  in and leaving this particular control  wall so except for dealing with certain  types of

unsteady flows the Arian  approach is basically generally  preferred for because it is a generally  simple to

look at and also comparing  your properties from the solutions to  equations in the Arian framework to

measurements made with stationary  instruments most of the times .

when we  use stationary instruments let such as a  piton tube for measuring pressure or hot  wire for

measuring  your  velocity  or   using  laser  Doppler  or  particle  image  velocimetric  so  on  so  we  try  to

compute the velocity field or the  pressure field at any depending on a  particular location so these can be

directly compared with the solutions of  differential equation which are  generally derived using the fixed

frame approach or the Arian approach  therefore when we derive these governing  equations we shall

prefer using the  combination of continuum and also the  Arian approach.

(Refer Slide Time: 06:03)

 so the I would like to  acknowledge for the introductory  material have taken borrowed extensively  from

the open textbook which is  available online by Leonhard  John  Leonhard of MIT it is a heat transfer

handbook and also professor  that  is   lectures  on convective heat  and mass   transfer  which are  also

available and  from NPTEL so he is a professor at  I T  Bombay, and some of the illustrations  also have

used from his lectures so  this is to give you the basic  introduction into a convective heat  transfer



 so today what we will do is we  will go  to start with the derivation of some of  these conservation

equations we will  start with the continuity equation so  for deriving the conservation equations  first we

will define the control volume  in space.

(Refer Slide Time: 07:00)

So the  topic  will  be  conservation equations  and we will  first  start  with  the  derivation of  continuity

equation in Cartesian framework in your Cartesian coordinate system so therefore we will first describe

the Cartesian control volume in three dimensions.

So you can look at a look at a  control volume a parallelepiped for  example the origin will be from the

left corner the left front corner here  so this is your X Y & Z and the control  volume sizes are in the X

direction it  has a dimension of Δ X and Y  dimension it has a dimension of Δ Y  & Z Direction Δ Z so

these are your  dimensions of the control volume and  this is your coordinate system when we  look at the

continuity equation or the  mass transport we have to look at for a  fixed control volume what is the

amount  of mass which is coming in a certain  direction and the mass which is leaving  in the same

direction.

So if you look at  the mass flow rates for example the mass  flow rate which is entering the control

volume along the x direction that is  from your left  end of the control  wall so the mass flux here will be

the  mass flow that is your density basically  if you look at the mass flow rate that  is your density times

the velocity into  the cross-sectional area here the cross  sectional area for this particular case  is Δ Y and

Δ Z so that is Ρ AV.



So that is your mass flow rate which is  entering through the left control volume  and in the X direction

the mass flow  rate which is leaving can be related to  the mass flow rate which is entering the  left control

volume by means of Taylor  series expansion so this can be written  as Ρ u Δ Y Δ Z + D / DX of  Ρ u Δ Y

Δ Z x Δ X  similarly the mass flow rate which is  entering the control volume from the  bottom plane is Ρ

V and multiplied by  the cross sectional area which is Δ  X times  Δ z and the flow rate which is  leaving

the control volume from the top  surface is Ρ V Δ X Δ Z + D  by DY due to the gradient in the Y

Direction Ρ V Δ X Δ Z into  Δ Y .

So this is again by using the  Taylor series expansion from the  variable at this particular y equal to 0  you

can write down what is the variable  or the quantity at y equal to Δ Y  using the Taylor series expansion

the  same thing can be done in the Z  direction as well so if you look at the  front phase the mass flow rate

which is  entering along the z direction in the  front phase is Ρ W into Δ X Δ  Y and which is coming out

of the rear  phase can be written in terms of your  Taylor series expansion + D by DZ of  Ρ W Δ X Δ Y Δ

Z so these  are all your mass flow rates which are  entering and leaving the control volume.

(Refer Slide Time: 11:22)

 You  therefore we should first define the  conservation of mass so what we will say  is that the change of

mass inside the  control volume should be equal to the  mass which is coming in minus mass which  is

leaving the control world so that is  the net change in the mass that is  entering and leaving the control

volume  should be equal to the mass which is  accumulating R which is depreciating in  the control world.

(Refer Slide Time: 12:25)



Therefore if you look  at the net flux of mass through the  control volume boundaries or control  volume

surfaces which is basically your  mass in minus mass out I can subtract in  each direction in X direction

for  example the mass which is entering minus  the mass which is leaving is minus d by  DX of Ρ u ∇ Y ∇

X and ∇ Z so  this is your mass flow rate net mass  flow rate which is leaving in the X  direction so to get

the net mass which  is leaving you have to multiply that for  a time Δ T so this gives you the net  mass

which is leaving along the X  direction so similarly you can write  down the expressions for the flood. 

The  net mass which is leaving in the other  directions as well so along y direction  so you have minus D

by DY so you have  mass coming in minus the mass which is  leaving which is Ρ V ∇ X ∇ Z ∇ Y  into Δ T

which will give me the mass  so this is the flow rate multiplied by  the time or duration over which you

are  monitoring the mass so that is your  Δ T so similarly your net flux  along Z direction will be minus D

by DZ  of Ρ W times Δ X Δ Y Δ Z  into Δ T.

So the change of mass  inside the control volume will be if you  look at the rate of change of mass so  that

is your density times your control  volume itself which is Δ X Δ Y  then so this is density times the

volume  which is the mass so the rate of change  of mass which is happening and if you  want to look at

the change of mass to  multiply it by the time duration Δ T  so this is the change of mass inside the

control volume and that should be equal  to the net mass in minus mass out so  therefore summation of all

the mass flux  massive fluxes in all. 

(Refer Slide Time: 15:03)



The three  directions so that should give me so D  by D Ρ by DT into Δ X Δ Y  Δ Z Δ T left-hand side is

equal  to minus D by DX of Ρ u +D by DY  of Ρ V + D by DZ of Ρ W  multiplied by Δ X Δ Y Δ Z  Δ T so

this is common for all  the  reflux in each direction so I am taking  them out so you can cancel this

straightaway  and  this  will  give  me  my  general  form of  the  continuity  equation   in  the  Cartesian

coordinate system.

So in a coordinate free representation  you can express you can instead of  deriving this for different

coordinate  systems you can write this in a  coordinate freeform as follows you can  take the derivative

with respect to time  and write it as it is now the spatial  derivative that is D Ρ u DX D Ρ VD  by D Ρ VD

Z can be expressed as  divergence operator operated upon Ρ V  vector where V vector is basically UI  +

VJ + W K in the Cartesian  coordinate system so therefore in a  coordinate free representation you can

express the continuity equation as this  particular form so let us call this as  equation 1 and this is equation

2 .

So  therefore you can use the necessary  divergence operator in any coordinate  system whether it is

Cartesian or  cylindrical or spherical and expanded to  that particular coordinate system that  is one way

of simply writing down the  equations in that particular coordinate  system now what I am going to do is

write down some simpler forms of the  continuity equation making several  approximations so what will

be can do is  we can also rearrange equation 1 in the  following manner.

(Refer Slide Time: 17:35)



So we can write D Ρ by DT + we can  expand the derivative of Ρ u we can  split it up as u into D Ρ by DX

+ V  into D Ρ by DY + w0 by DZ + you can  take essentially Ρ common and you can  write this as d u by

DX + DV by DY + DW  by DZ is equal to zero that means I am  separating this into parts so I am  writing

Ρ into D u by DX + du u Ρ  into DV by DY + Ρ into DW by DZ  that is this term and the first and the

second third and fourth terms are  basically coming from taking you out and  writing this is u into D Ρ by

DX +  V into D Ρ by DY + W into D Ρ by  D Z .

So now we can define what is called  as a total derivative for any variable  for example fee you can write

your total  derivative DV by DT now if your fee is a  function of time and also your position  X Y Z you

can expand this total  derivative as in terms of partial  derivative D phi by DT into DT by DT  + you have

D phi by DX into DX by DT  + b v by DY into DY by dt and so on  in the Z coordinate system now we

all  know that DX by DT is nothing but the  velocity in the X Direction DY by DT is  the velocity in the Y

direction and DZ  by DT is the velocity in the Z  direction and this cancels of two  therefore one way to

represent a partial  derivative of V with respect to T and  in this particular form with respect to  XY and Z.

Is to use the notation of a  total derivative so that you can make  the notation more compact and if you can

see this particular form here so instead  of fee we have row and other terms are  similar to the terms here

and therefore  we can write this equation as D Ρ by  DT that is the total derivative of  density + Ρ times D

u by DX + DV  by DY + DW by DZ is equal to zero so  this again I can use the coordinate free  format I

can write this as divergence of  week which is equal to zero.

So I will  call this as equation so these are  different ways in which I can write the  continuity equation

now for steady flows  if you are looking at flows where  essentially you do not look at the  change in any

property like velocity or  the density and so on so you can neglect  the change with respect to time and

therefore for steady flows you are left  with the particular expression that the  divergence of velocity is



zero or the  velocity is divergence free and whereas  for incompressible flows you can go one  step further

and you can also say that.

When you are looking at incompressible fluids where the density change is not  much or incompressible

flows where your  density variation is not much because of  very low Mach numbers.

(Refer Slide Time: 22:05)

So in such cases  for incompressible fluids and  incompressible flows since your density  is it invariant

can assume density is constant and in  that case also even if the flow is  unsteady the derivative with

respect to  the total derivative will be zero  because the density is invariant of  space and time and in that

case  also  you   get  the  expression  that  your  velocity  is   divergence  free  okay  our  in  rectangular

coordinates this means D u DX + DV DY + DW by DZ is equal to zero so this  is your incompressible

form of the  continuity equation this is your  incompressible continuity equation.

If   you are  looking  at  compressible   continuity  equation  but  in  steady  flow  then  you  neglect  this

derivative with  respect to time and then this becomes  your  ∇ dot Ρ V equal to zero becomes  your

compressible continuity equation  okay so this is so far whatever we have  done is all in one coordinate

system  which is the rectangular coordinate  system one way of writing this in other  coordinate systems is

to simply replace  this divergence operator by the  respective divergence operator in that  coordinate

system and get the equation  in that coordinate system.

We can also do  from starting from fundamentals we can  derive the continuity equation in the  other

coordinate system I will just do  this derivation in the cylindrical  coordinate system for continuity to give

you an example so let us define the  control volume for the cylindrical  coordinates.

(Refer Slide Time: 24:20)  



So in this case we will take a cylinder  a fluid volume which is in the form of a  cylinder and this is your

axial  direction Z you can have radial  direction R and of course variation in  θ  direction so this is your

cylindrical coordinate system let us  chop of a particular control volume a  particular control volume like

this and  we look at that control volume in detail.

So here we look at a sector again and  maybe I should draw this in a much  clearer manner I will try to use

another  chalk  so this is this particular control  volume and I am going to take a sector  of this join this

sector right here so  now you have the three directions this  is your Z direction and this is your  θ direction

right here and this is  your radial direction okay so therefore  we will start from the bottom the  coordinate

system can be assumed to  start from the bottom right here this is  the origin .

Now the first thing that we  are going to do is write the  differential areas in each of the  directions

because unlike the Cartesian  coordinate system it is not explicitly  seen what is the differential area so

therefore will first write it down the  differential area in the Z direction  that is your DSE if you look at

either  the bottom surface are the top surface  we want to look at the shaded region  here so the shaded

region here is your  top and the bottom areas is your Da3.

So  if you say that this is your radii R and  this is your radiate R + V R so this is  essentially the shaded

area here is  basically the area of this sector of  radii R and the area of the sector R + D  or if you subtract

these two areas you  get the resulting differential Arians  DAC so that is the area of the sector  which is

enclosed by the radii R + d R  will be R + D are the whole square into  D θ okay similarly the area of the

sector enclosed by the radii  R will be R  2 D you subtract these two  that gives the differential area

between  R and R + D R so if you neglect the  higher order terms you can cancel off  Square D θ  half R

squared D θ   minus half R 2 θ  and you have  two Rd R divided by two so that is  basically RD θ and you

have D R  square T θ  so that is a very small  term considering that these are all  differential elements.



So therefore we  can neglect the higher order terms and  we can approximate your DAC in terms of  the

dimensions is RD θ and so we  this is coming out of neglecting your  higher order terms and similarly the

variation with respect to θ direction that is if you if you look at  the region which is shaded in red so  that

is your θ the one which is left  this is basically this the other one is  this so therefore in this particular

case you can write this as DZ into DR  because this is essentially DZ and this  is basically DR so this can

be written  as DZ times DR and finally coming to the  differential area in the radial  direction if you look

at the  differential area at the bottom so if  you if you look at the differential area  of this  the one which I

am highlighting in white.

So this is corresponding to DAR which is  entering and the other which is leaving  is essentially this

bigger one right  here so the one which is leaving  so therefore the one which is entering  the differential

area here will be  basically our D θ  into DZ or D θ   into D Z because the area of this  particular set the

length of the sector  is basically our D θ times DZ will  be the area of this and the differential  area in the

radial direction which is  leaving out here will be R + D R into  D θ into DZ R + D R into D θ  into D Z.

So now we can write the mass  fluxes which are coming in each  direction in the z is axial direction or

the Z direction which is colored by the  violet color here in the bottom plane  the mass flow rate is

basically Ρ into  VZ into the differential area of this  the one which is exiting out here will  be Ρ VZ + D

by DZ of Ρ VZ into DZ  into DA3 this is by Taylor series  expansion similarly the if you look at  the mass

flow which is entering this  particular phase along the θ direction this is Ρ V θ into DA  θ the one which is

leaving in the  θ direction from the Taylor series  expansion we can write this as Ρ V  θ  + D by D θ  into

V θ   into DA θ   into D θ  and if you look at the flux  mass flow which is entering in the  radial direction .

So this is Ρ into V R  and this is entering through the  differential element D R DA are in and  the one

which is exiting in the radial  direction by Taylor series expansion be  Ρ V R + D V R by DR into DAR  in

into DR so this will be in terms of DA  are out here okay because this is  corresponding to the cross

sectional  area of the radial plane and the plane  in the radial direction which is through  which the mass

flow rate is leaving and  therefore now we will apply the  conservation of mass and we will express  the

native flux of mass first the net  flux of mass in all the directions.

(Refer Slide Time: 33:26) 



 So we will add them together say along the z direction you have ρ VZ ρ VZ  into DZ DA said we already

know is RD  θ RD R into D θ – the flux  which is leaving in the Z direction from  the top.

(Refer Slide Time: 33:48)

 You  which is Ρ VZ + D by DZ of Ρ VZ  into DZ into R DR D- θ so this is our  DR into DZ so once

again i should be  multiplying the entire thing by DZ here  and similarly just a small correction i  will be

writing this is d θ and  multiplying this entire thing as DA  θ  and this also row VR into DR into  DAR out

okay  so this is the net flux of paths in the  Z direction so that + the native flux  of mass in the θ direction

will be  Ρ V θ  into Δ Z DZ Dr minus ρ  v θ  + D by D θ into Ρ V  θ into D θ  into DZ DR + the  net flux

of mass in the radial direction  which is Ρ VR into R D θ into D Z  minus Ρ V R + d by DR of ρ VR  into

DR x r + V R into D θ  DZ.



So  I am multiplying everything by the  corresponding areas  and this is your native flux of mass  coming

from the control volume surfaces  so according to the continuity of mass  this should be equal to the

change of  mass inside the control wall so we can  write the change of mass so within the  control

volumes all of this can be  multiplied by Δ T so this will give  the change of mass that is the mass  coming

in minus mass going out the  change of mass will be the mass flow  rate which is accumulating or which

is  deteriorating over time multiplied by  the time step that will give me the  change of mass inside the

control volume  that is d ρ by dt into the control  volume here if you look at this will be  d AZ into DZ.

So this will be the total  volume differential volume of this  control volume already we have seen d AZ  is

RDR into D θ   so therefore the entire control volume  will be r DR d-θ  into DZ x dt or  Δ t will give me

the corresponding  change in the mass okay so now you can  knock off the common terms if you do  that

you will end up with the final  expression which will be d ρ by dt  + d by DZ of Ρ VZ + 1 by r d by  d θ

into ρ v θ  + VR by r  + v by DR of ρ VR this is equal to  zero.

So we can also write the last two  terms together as 1 by r d by DR of R  via  into ρ VR so this is therefore

your   generalized continuity  equation in   cylindrical  coordinate  system so  basically  coming out  of

balancing the  mass fluxes going in all the directions  through the control volume surfaces to  the change

of mass within the control  volume so if you simplify knock of all  the common terms and neglect all the

higher-order terms the terms which are  very small so then you end up with this  particular equation once

again for  incompressible flows if you neglect the  density variation with respect to time  and space then

this will reduce to DV Z  by DZ + 1 by r DV θ  by DR d-θ   + 1 by r d by DR of R VR is equal to  0 so

this is your incompressible form of  continuity equation in the cylindrical  coordinate system ok.

So similarly if you can do the derivation in the  spherical coordinate system as well  although a little bit

tedious because  you have curvature in all the three  coordinate axis you have a radial system  there you

have a polar angle and you  have the azimuthally angle all the three  of them coming into picture and

becomes  a little  bit  more rigorous however you  can still  express all  of  them as a  divergence free

operator and you can  substitute the appropriate divergence  operator in that coordinate system to  get the

equations so in the next class  so we will stop here for today.

The next  class will start we will continue our  derivation of the momentum and the  energy equations

okay so for the  momentum equation is straightforward  once you write your control volume you  have to

write down all the forces acting  on the control volume and the flux of  momentum which is  entering and

leaving the control volume  so we use the Newton's law and we  balance all the forces to the fluxes of

moment and that gives you the momentum  equation and similarly we have to do  the energy equation

derivation which is  a little bit more rigorous so we will do  this in the next subsequent two lectures  okay.
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