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Thermal entry length problem
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Graetz problem

Good morning all of you so today we will look into some basics of Bessel  functions because we

you need to understand the solution for Bessel  functions before we do the solution to the Eigen

value problem.
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 So  I am not  going to run a class on Bessel functions but just to prime you what should be the

form of the Bessel equation  and what  is  the solution to  a given Bessel   equation and some

properties of Bessel function differentiation and integration  okay now if you have any second

order linear differential equation of this  particular form  okay the form that I have written here



so you have x2 d2 y / dx2 +x d y /d x  + this  coefficient now this coefficient is function of X here

okay so times y =0 .

So this functional form of this equation is referred to as the Bessel  equation after the German

mathematician Bessel so the solution to the Bessel  equation is given as y(x)= some constant c1

times Bessel function  so you use the Bessel function there are two kinds one is the Bessel

function of  the first kind and Bessel  function of the second kind okay the Bessel function of  the

first kind is represented by the letter J okay.

 So J and the order of the  Bessel function is denoted by this value of Nu here this is any real

number and  you use the okay nu here to  denote the order  of  the Bessel  function  this  is  a

function of (mx) where m is the value that you have got here so m (x)+ c2 now the Bessel

function  of  the  second kind is  represented  by  the  letter   Y the  order  is  represented  by  the

subscript nu m(x) okay so this is called  the Bessel function of the first kind  and of the order nu

this is the Bessel function of the second kind and order  nu okay.

 So this is so far to say for a Bessel  function now you can slightly  write this Bessel function in a

different way suppose if you are M 2 here was instead of being a  positive value if you have a

negative value here so you can replace this with  a negative sign and you can write an equation

like this okay suppose your M2 value has to be a negative value in that case then you write like

this then this becomes what is called as a  modified Bessel equation it is the same structure as the

Bessel equation only  the coefficient term here will have a negative sign and correspondingly the

solution to this here this is M.

 So  now this will become imaginary number okay once this is negative here so this  will become

M I basically  an imaginary number so instead of writing everything  in terms of imaginary

functions okay so they have introduced what is called as a  modified Bessel function okay which

takes into account naturally the  imaginary part of the coefficient so therefore for that you have a

modified  Bessel function solution.

 So where you represent the solution as C 1 times the modified Bessel function of the first kind is

denoted by the letter capital I  subscript nu for the order m(x) + the modified Bessel function of

the second  kind is represented by the symbol letter K subscript nu  (m x) ok so these are  your

modified Bessel functions  of the first and second kind and of the order nu okay. So as far as the



solution to our Eigen value problem is concerned I think this is all sufficient to write how to

represent the solution to the  Eigen value problem okay .
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So now we will compare this Bessel  equation with the Eigen value problem that we have okay

so what was what were  our solutions basically when we substituted when we use the separation

of variables into the energy equation we found out that the PD can be reduced to  two Odies one

is the first-order odie  with respect to X so here we have  assumed that the Grates problem has

originally assumed that the profile velocity profile is a slug flow profile .

 So it is a uniform velocity the value is um and the solution to this along the  variation along the

X is given by the first order odie  okay and we have also seen the solution to can be written as

some constant times e-α λ 2 / um  x X right so directly you can integrate it out and  the actual eigen

value problem in terms of R  was this t and the boundary condition for R what were the boundary

conditions to solve this second order odie in terms of our R at R = 0  you have any boundary

condition at R = 0 ok finite or I would say d R/ d r should be 0 okay or R at R = 0 should be

finite  both  are   equivalent  the  other  condition  R  at  r  =  1  should  be  0  okay  because  the

temperature there at the wall is  constant wall temperature.

 So θ has to be 0 therefore R at r = 1  has  to be 0 so now you compare this with your Bessel

equation ok so the original Bessel equation not the modified one so  you multiply throughout by

R2 so you have R here you have again R2 so now you see these and these coefficients are exactly

identical  instead of X you have R ok now as far as this coefficient is concerned you have m2x2



 y okay instead of that  you have λ2  R2  capital R and there is nothing like a nu here the nu =0 .

So therefore the  order of the Bessel functions is 0 th order okay so that is one thing and your  m2=

λ2   so therefore the solution to this odie  will be in terms of the Bessel functions  of the first kind

and second kind  0th order  so  c1j0(λ r)+ c2 Y0(λ r)  okay so this is your solution to the Eigen

value problem so  this is your Eigen value problem so any Eigen value problem should have two

homogenous boundary conditions okay so this is the solution to the Eigen value  problem so now

we apply the two boundary conditions to get the two constants okay  .

So now directly we come to the condition at R =0 R should be finite  and  capital R should be

finite so I will also show you how these Bessel functions  behave so if you draw the Bessel

function J as a function of your X or R  okay so  it will start from 1 and then  so this is your J 0

apart  okay and J 1 will have a behavior like this  and j2 will  have another behavior and so

similarly if you draw the Bessel  function of the second kind that is your Y as a function of R .

So this is negative  and this is positive here so the first the 0th order Bessel function of the

second kind will at R =0 will start from infinity and it will increase  to + value and it will be

oscillatory again okay so this is your Y0(x) and you will find that Y 1 will have another behavior

like this Y1 (r)  and Y0    so this is how your Bessel functions behave okay and your  modified

Bessel functions will have a different behavior .

So you are I versus R so  this is 0 this will always be positive here so this will be your I0 (r) and

then this will be your I1(r) similarly your Bessel modified Bessel  function of the second kind

that is your K function of r   so this is your  K 0 (r) this is your K 1 (r)  okay this is to just give

you an idea how the Bessel  functions  you take  any Bessel  function  chart  you will  find the

tabulated values corresponding  to different values of X or R you will find the corresponding

variation in the first kind and second kind all the different orders are  starting from the 0 th order

first order second or second order the zeroth  order Bessel function here means it is the highest

order it does not mean it is  the lower order it is the highest order and one two three four there are

the  lower order Bessel function okay.

 So now coming back to this particular  Eigen value problem so at R =0 if your capital R has to

be finite now  you can see that at R =0 my Bessel function of the second kind will  be going to

infinity right therefore in order to make my capital R finite c2 has to be 0 okay so at R = 0 my 



Y0 (0) goes to infinity so this gives that c2 has to be 0 for the  solution to be finite so therefore

my R (r)  directly reduces to c1j0(λ r) okay so this is how my Eigen value  problem reduces okay

now again I can find out the constant c1 by applying the  other boundary condition.

 So now the thing is I should also know what is the Eigen value here because the Eigen value  is

also undetermined so the remaining constant whatever is left out that is at  r = 1 capital R =0 that

will be used to find the Eigen  value okay so one of the constants is determined from the one

boundary  condition and the Eigen value is determined from the other boundary  condition .

So this constant is not a problem because final solution for θ  I can multiply and this into a single

constant and I  can use the remaining boundary condition that is at  X =0 that is  one more

boundary condition which I have not utilized so totally there are three  boundary conditions okay
so that I can determine it later but right now I can  use the second boundary condition for the

Eigen value problem and determine the  value of λ here.

 So therefore the condition that R (r= 1) = 0 so this should give me the fact that  c1j0(λ r) =C 1 J

= 0 or in other words so the Eigen values should satisfy this  particular equation so that means

you look at the Bessel function so wherever  it becomes 0 so these are the solution which will

give you the corresponding  value of λ right so okay so this should be R( r = r0)  or  not okay

these are all dimensional so I should write in terms of J or not here please correct it so this is at r

= r these are all dimensional radii so I should use at  r = r0  so  therefore it should satisfy this

particular equation.

 So the corresponding  value of λ  r0 will be the ones where J becomes 0 so you can see  there are

several  values  right  there  are  several  places  where  J  becomes  0  so  this   has  now multiple

solutions ok so I will just give you the first few roots where  I where J becomes 0 so let me call λ

n  r0 as some factor β n  okay so the 0 so these are the zeroes of J0  β n = 0 okay so the first six

zeroes correspond to β 1= 2. 4048 then β 2= 5.5207   then β3 = 8.6537   and β4=11.7915 and

then  β5  =14.9309   and   the  last  one  β6  =18.071  so  these  are  the  first   six  zeros  so  the

corresponding value of λ  r0  okay .

So now I  have determined my Eigen values because these Eigen values are all nothing but  these

values so this says this is λ  λ1  r0  λ2  r0 λ3  r0 and so on and so  forth you can have many number

of solutions but I have given the first six  these are the most relevant okay the other ones will be



of the lower order  which you can neglect all right so I have I will give you two more properties

when you differentiate and integrate the Bessel functions which are important now .
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 So I will give you the derivative identities of the Bessel function  so I will call this as derivative

identities so the identity number one if you differentiate the zeroth order  Bessel function of the

first kind that is your J0 (λ n r)   so that  gives you - λ n J 1 (λ n r) okay  this is your first identity a

second identity if you differentiate (r J 1  (λ n r) so if you multiply R with the Bessel function of

the first order  ok by pestle the first kind Bessel function of the  first order you will be getting (λ

n r)  into Bessel function of the zeroth  order (λ n r)  this is your second identity we will use all

these  identities .

So number three is  the fact the Bessel functions have another important  property that is the

principle  of orthogonality ok so if you look at any Eigen function Eigen value problem  and you

determine any Eigen function so in this case the Eigen functions are  Bessel functions of the first

kind of the zeroth order these are the  Eigen functions right so these are the corresponding Eigen

function to the  Eigen value problem okay.

 So this is your Eigen value problem so the solution to R  is in terms of Bessel function of the

zeroth order of the first kind so these  are your Eigen functions now any Eigen function any

Eigen value problem  where you determine your Eigen function should satisfy the principle of



orthogonality okay we will see that that is very useful to determine the  determine the remaining

constant okay now that principle of orthogonality for  this case can be written as 0 to r0 r J0 2

(λ n r)  dr=   (r0 )2/ 2  (J 1(λ n r0) )2 okay  so this is another important property  when you integrate

multiply R J0(λ n r)   so you get  this particular expression okay.
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 So this is another thing which you should  remember now the principle of orthogonality states

that if the  Eigen functions are orthogonal if you integrate them if you multiply an  eigen function

J0(λ n r)   with the Eigen function (λ m r)    so n being different from M so these are different

integers okay so your n may go from 1 2 3 and for a fixed value of m okay now if  you multiply

these two Eigen functions and you also multiply R okay and if you  integrate it this will be = 0 if

m ≠ n and this is the  principle of orthogonality okay .

So only if m = n the Eigen value integer corresponds exactly same so then only  you have some

finite value non-trivial value so this will be = 0 to r0  r( J0(λ n r))2d r if m = n  so  this is the

principle  of  orthogonality  basically  so that  means see these  Eigen values  are  like principle

directions like your XYZ Cartesian  directions so these represent and the variation of solution in

those principal  directions .

So if you if you multiply the solution corresponding to 1 principal  direction to another so those

two are mutually orthogonal directions so  therefore the product will be 0 okay  so whereas if

you multiply in the same  direction then this is where you get a non-trivial solution so this is



where the principle of orthogonality plays importance and when you are  integrating this 0 to r0

r0( J0)2  we will use this  particular identity here all right  .

So now we will erase this we do not require this is the principle of orthogonality clear I think if

you take any course on linear algebra I think you will be taught this it is like saying you are I .  I

= 1 your i.J = 0 so these are mutually orthogonal  direction so the Eigen values correspond to

principle directions which are  mutually orthogonal and the Eigen function should respect that

orthogonal T all right .
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So now we have  all the necessary background therefore you can write your solution for θ(x,r)

so you have to now tell me what will be the solution this is nothing but  according to separation

of variables and now we found the solution for both X and  R  so how can we write it so let us

multiply C 1 and C and call this is  another constant C okay some constant C or maybe a or

whatever you want to call  it me I have used in my notes as A so I will  use  A and what is the

remaining   J0(λ  r)   C 1  J0(λ  r)   is your eigen function okay and what is  the remaining part X of

X will be e –α λ2 / um  x .

So finally your solution reduces to this so in terms of X it is exponentially  decaying function

your  θ  starts at 1 at the inlet where the temperature = Ti and then somewhere downstream your

temperature should approach the wall  temperature therefore the difference should become 0 T- T

wall should become 0 so that is your exponentially  decaying function with respect to X right



now with respect to R it is a  Bessel function variation now you see that when you found out the

Eigen values  you had multiple Eigen values right .

So you had first I had written down the  first 6 Eigen values okay but there are multiple Eigen

values and they are all  solutions so then how do you include them so you assume that they are

all  linearly super post and you can denote your final solution as a summation of  all those from n

= 1 to  infinity  and you have λ  n  okay  so this  is  your  final  solution so which is  a  linear

superposition of all your solutions for different values of Eigen values for  each value of Eigen

value you have a particular Bessel function you have a  particular exponential term.

 So like that for each λ 1 λ 2  under three you now get all the value sum them up so that will give

you the  final value of  θ of course the first few terms will be the significant terms  the first say

three or four terms after that they will be insignificant and even  if you do not include them it is

not going to change the solution much okay  so therefore this is your final solution and now the

thing  is  how  do  we  calculate  the  remaining  constant  A so  this   A also   becomes  A n  so

corresponding to each value of λ n you have particular  value of this constant A n.

 So now how do you calculate this constant now we use  the remaining boundary condition for θ

(x =0,r)  should be 1  should be one now how do we apply this  boundary condition here so

therefore we say that   n = 1 to  infinity  An JƩ 0(λ n r)   and this becomes x=0 so that  will be 1 so

this should be =1  but still  we have not determined what  is A n because this  is  within the

summation so now we make use of the  orthogonality principle okay .

So what we will do is we will multiply both sides with  J0(λ n r)   where m is  different from n

okay and integrate them so we so for orthogonality condition in  this case of Bessel function you

should be having  r J0(λ n r) so  we will multiply both sides with that so we have 0 to  r0  so my

right hand  side I am writing on the left hand side here I multiplied with r J0(λ m r) dr  that is my

RHS right on the LHS I have this 0 to  r0 Ʃ   n =1 to infinity A n x r J0(λ n r)   J0(λ m r) dr  okay .

 So now of course it has to satisfy orthogonality  condition here therefore for any values of m ≠ n

this will  be 0 and this will be equal to r  J0(λ n r) 2  dr  for m = n so only there it will be a non-

trivial solution so therefore this will become 0 to  r0     so for m = n so only then so you can

imagine the summation here so now I  sum from n = 1 to infinity for a given value of m if  m≠ n



your  so those values are all 0 so therefore the summation will reduce  to the fact that it will be =

J0(λ n r)2 only  for m = n so that should be A n x 0 to  r0   and  r  J0(λ n r) 2  dr  okay.

 So now you understood so this reduces to this particular expression here so the summation is

now gone because for m≠ n so those values are all 0 so the final whatever remains is where your

m = n so your summation is now removed and from here directly you can calculate the value of

An. 
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So this gives A n as 0 to  r0   r  J0(λ n r) 2  dr /  0 to  r0   r  J0(λ n r) dr okay   so now we have to

simplify this further so that is where we make use of the  derivative identities.

 So numerator integral r  J0(λ n r)  so you  integrate both sides so that should be = r J 1 (λ n r)/ λ n

and now you have integral r  J0
2(λ n r)  so that is you use this identity  number three that should

be r  J0
2/2  now of course when you  integrate it you have to apply the limits here this is between

0 to  r0   and when you integrate this from 0 to  r0   you directly get this  particular expression r0
2/2

( J1
2 λ n r 0 )okay  so  at 0 J 1 will be what 0 if you look at the curve .

So therefore this will be r J  1 ( λ n r  0)  / r0
2/2   so this J1 cancels here r0  cancels  so this can be

written as 2 here r0 and   J 1 ( λ n r 0)  are not okay so this is your expression for a final  expression

so therefore you can substitute this into the let me call  this as one number one for A n and you

can substitute and then you can write the final expression for θ as so 2 can  be taken out Ʃ   n =1

to infinity 1 / λ n r 0  you have J0(λ n r) / J 1 ( λ n r 0)  exponential e-α /u m  λ2n  x  so this  is your



final  solution okay  what we can do is  we can cast  this  into a completely  non dimensional

representation okay .

So that  you do not work in terms of X or λ  but something like λ n r we can we  have already

used the notation β okay and even will non dimensionalized this  term so how I am going to non-

dimensionalized this the following  way so I can write this -α /u m  λ2n   x  as I can write this  as
-α /u m  x X  r 0

2  so I am m multiplying and dividing  by ( λ n r 0)  
2   okay and I am also  going to

rewrite this a little bit as so I can write this as X /d0 x  ( λ n r 0)  
2   / u m d0 /α  that is a factor  of 4

okay.
 So this r 0

2  I have replaced this by (d0)
2/  4 okay so and I am grouping x /d0 as 1 non-dimensional

term and I  am left with u m d0 /α  so what is u m d0 /α  Reynolds  number times prantle number

okay so therefore I can replace this entire  thing as a non dimensional group which is – 4(x /d0 ) λ

n  I have used the notation β n okay because λ n   has the units of what  is the unit of λ 1/ r so

therefore λ and   r 0 will be a non  dimensional group okay .

 So that therefore i replace that with β n  / Re x pr now I use another non  dimensional group

called peclet number.
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Which is the product of Reynolds number  times the prantle number which is nothing but um

d0/α  okay so generally rather than all that I am doing Re pr  Re pr so people refer to that as a

peclet number so the product of Re times p r  therefore in terms of the non-dimensional form you

can describe  your θ as 2 n = 1 to infinity 1 / β n J 0   now how do  you write this λ n r so you



divide and multiply by  r 0  so then that will  become β n  times (r/ r 0)okay / divided by J 1 β n

okay into e power this entire  thing can be written as – 4(x /d0 ) λ n   
r 0  is nothing  but β n2 divided by peclet number okay.

 So this is completely non  dimensional so once you know the particular value of peclet number

that  you are solving so that directly has both the Reynolds number and prandtl  number for

different values of non-dimensional r/ r 0  and  different values of non-dimensional x /d0  you can

directly get the solution for θ so everything is now non-dimensional okay  so you can plot the

solution for θ as a variation with respect to  r/ r 0  and x /d0  for a given value of peclet number

okay .

So once we  got the solution now still we are not done so ultimately we need to find what  is the

Nusselt number expression for Nusselt number right so therefore for  Nusselt number we need to

do a little bit further work whether quantities are  required okay the first quantities now when

you define a Nusselt number here so your Nusselt  number is basically hd/K   now you should be

careful here that in the case of thermally developing flow  your h is not a constant h is a function

of the axial location so this should be strictly speaking h subscript X okay .

So  now that you define this as K (dT/dr)  at r=r  0    d/ K (T wall - T means ) this is how you

express your heat transfer coefficient  wall flux divided by temperature difference so now I can

substitute in  terms of non-dimensional θ so θ is defined as T- T wall  /Ti- Twall okay so I can

write this numerator as now - K (dθ)/dr  r=r 0    times (Ti- Twall )d  / K times now (T wall - T

means ) so I can define θ mean as T mean - T wall /  Ti- Twall   so I can write T mean - T wall as

Ti- Twall   θ so  into θ M so K θ m  (Ti- Twall )  so already I put a – sign  because this is Ti-

Twall   I am putting - TM -  t1 okay.

 So this cancels right here and of course your K cancels .So this will be so left with  nu  x  = - d θ

/ dr at  r=r 0   (d/ θ m ) so therefore now to calculate your Nusselt number what are the quantities

that you  need one is your mean temperature θ m the other is your derivative of the  wall so you

have  your  temperature  profile  now we  can  calculate  these  two   quantities  so  first  we  will

calculate your mean temperature  so very quickly .
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We will do that so your θ m is nothing but your Tm- Twall/ Ti- Twall  that will be what so you

integrate you take the mass weighted  average of θ   both θ x r x u  so this will be θ x  u  r dr of

course you have 2 П / integral 0 to  r0    you have 2 П  u of r d r right.

So this is your this is  how you define your bulk temperature or mean temperature mass weighted

average  okay now in your present case your   u is a constant this is a slut plug flow case  so

therefore the   u can be taken out of the integral and cancelled off straight  away so integral 0 to r

0  r d r  will be r 0
2   / 2  okay so this can be written as 2 /r 0

2   integral 0 to r 0  θ r dr  okay now if you

substitute for θ from the final expression that we have  you can write your θ mean as 4 times n =

1 to infinity 1/λ n r  0 3  0 to r  0     J0(λ n r)   rd r / J  1 λ n r  0  into e-α /u m  λ2n  x  so I am just

substituting for θ and multiplying with  r here okay.

 So you can just verify it you know I am going a little bit fast  but it is straightforward there is no

difficulty here so integral 0 to r 0     J0(λ n )   r so already we have that identity so that  will be r  J 1

λ r 0 /λ n  so if you put that and you manipulate it finally you get  your expression for θ m  as 4 x

times you please check this 1/(λ n r 0)2   e-α /u m  λ2n  x  so this is the final expression for θ m  that

you will be getting okay .

So if you if you just use this identity and then you  substitute it here you will cancel off  J 0(λ n r

0)   this  J0(λ n r 0) will be nothing but J 1 λ n r so that and this will get  cancelled off okay so it is

just a very simple manipulation and from your θ  you can also calculate your d θ / d r at  r=r 0   .
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Which comes to  2  summation n = 1 to infinity 1 / β n so now when you differentiate you have

to differentiate J0(λ )r  right .So J0(λ )r   as I said that is nothing but  - l-λ n J 1 lambda n R okay

so that will put a minus sign here so this  will be l λ n J 1 λ n r and at r=r 0   this will be at r 0 / you

already have J 1 λ r 0    into e - 4  β n 2  X by d  by peclet number  so once again these two will

cancel  off and  if  you substitute  your derivative as well  as your mean temperature into this

expression let me call this as expression number 2.

 So this will give me Nusselt number substituting for θ M + d θ/ d R  at r=r 0     into 2 the final

expression I think if you cancel off  some common terms which is straightforward you can do

that you will get - 4  β n 2 (x/d)/ peclet number divided by summation n = 1 to infinity β n 2 power

minus 4 β n 2 into X by D  by peclet number okay this is the final expression for nusselt number

as a  function of X  okay.

 So all you are doing you have this θ M you have taken the derivative of   θ with respect to R at

r= r 0    just you substitute into this it is  a very simple manipulation just one step and then you

finally get the expression  for a N u  x so as you can see it is a function of only X therefore all the

functions  of  r  have   canceled  off  you  have  only  variation  with  respect  to  X   and  these

summations are separate in the numerator and denominator you cannot  simply cancel this term

here okay .

So this is a separate summation this is a period summation okay now this is a general expression

further completely for fully developed hydro dynamically and thermally developing flow okay

now we should asymptotically retrieve the case  for thermally fully developed flows from this



expression what is the asymptotic   case what is the limit  at  which we can retrieve the fully

developed case when  your x/d  goes to infinity for large values okay .

So for large value or you can say for large values of x by d by peclet number or you can just

simply say for large values of x / d you go asymptotically because you now are in the thermal

entry  length  region  so  if  you  keep  going  down  further  and  further   and  further  okay  so

somewhere so you have your thermal boundary layers will  be meeting somewhere here so now

you are X is somewhere here so if you go to  large values of X okay.

 So that will give you a asymptotically it will reach the limit of thermally fully developed flows

so in that limit what happens is  see these values of β n will be smaller and smaller as you go for

larger   values  of  x   so therefore  we retain  only  the  first  value  of   β  that  will  be the  most

dominating term  okay so only the first term is will be significant when you look at large  values

of x/d.

  So that will reduce this to nu going to x/d  going to  infinity this will reduce to just  β 1 2 okay

for large values this  anyway will cancel off no you have this going to 0 this going to 0 you have

only in the denominator 1 /  β n 2 and only the first term will be the most significant term okay so

that if you  substitute the value of  β 1 2 as (2 .4048 )2 that  comes out as 5 .783 okay so this is the

limiting solution for thermally  fully developed flows with this is your  limiting solution for

thermally fully developed with plug flow  whatever .

We  have  derived  earlier  was  with  a  parabolic  flow  with  a  parabolic  flow  constant  wall

temperature boundary condition what was the Nusselt number  3.6 so now this is  much higher

than that value because now instead of parabolic profile you have a  uniform profile everywhere

you see wherever you take the profile so now  what is the significance of a uniform profile

earlier when you had a parabolic profile near the wall the velocity is  very small .

So due to  that  the heat  transfer  coefficient  is  smaller  now when  you replace  that  with the

parabolic prefer with the uniform plug flow  profile the velocities are very high near the wall and

this will improve the  convective heat transfer so therefore you see the Nusselt number has gone

up like anything okay the same thing if you  had if I had asked you to do instead of a parabolic

profile with a plug flow for  the thermally fully developed case you would have reached the same

value .



So  that you are reaching as an asymptotic limit to the thermally developing flow  okay rather

than doing the thermally fully developed flow we could do this and  then we can go for large

values of x/d  and directly get the limiting solution  so tomorrow so this is the classical greates

problem that he did that he  assumed a plug flow and then he did it so tomorrow what we will do

is we will  do an extension of Wright's problem .

So we will do the extension first to  parabolic velocity profile so then you should reach the value

a layer what you got 3.6 okay and the next we will look  at the extension of greatest problem to

other boundary conditions like constant wall flux as well as linear variation so I have already

posted a particular  solution manual in the website that is a basically an extension of Wright's

problem by Sellers the three people who  did this extension work and its original classical work

in 1954 and we look at  some of that solution as well okay  you .

Thermal entry length problem with plug velocity profile:
Graetz problem

End of Lecture 29
Next: Extended Graetz problem for parabolic velocity profile
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