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So this is a recap of what we did in the last class on Thursday for those of you  who could not

make it in the morning class  we were looking at the case of constant w temperature boundary

condition and  when you apply earlier when we did the case of constant w flux okay so there  we

came to the conclusion that your DTM  / DX is  = TT w / DX and  these two terms got cancelled

and your DT / DX is  = DT w / DX so  all the three can be equal only if they are  = a constant

and  therefore  the  variation  of  the  temperature  at  any   radial  location  as  well  as  your  w

temperature and mean temperature they  have to be parallel to each other.



And they have to be a linear line okay when  it comes to the case of constant w temperature so

this comes to the fact  that DT w / DX is a constant and therefore these two terms will  get

nullified so you have DT / DX  = T - T w / TM - T w into  DT M / DX so therefore your DT / DX

now related to your DT M / DX now  coming to the energy equation so we will substitute this

whatever conclusion that  we made.

(Refer Slide Time: 01:32)

So we will instead of DT / DX we write that in terms of t - T w  / T mean - T w into DT M / DX

okay also since we have already  calculated the velocity profile which is a parabolic profile we

have substituted  the parabolic profile into this expression now what is the problem with  this

unlike the case of constant w flux boundary condition there your DT m  / DX was a constant so

therefore so this side this was not there you had  only DTM  / DX this side it was t as a function

of r so you could directly  integrate this was this was the integral straightaway and you can find

the temperature profile with respect to R and apply the boundary condition okay.

So that was a very straightforward way now if you look at it  this DTM / DX is not a constant

okay so this is now changing and we do not know  how exactly it is changing strictly speaking I I

we last time derived how  the profile should vary if you plot your profile as a function of X the w

temperature is a constant however your mean temperature will vary such that the  difference

between the mean temperature and w temperature is exponentially  decaying function so our X

going to infinity the difference goes to 0  correct.



So therefore this is the way that the mean temperature varies okay so having known this you

have again on the  right hand side T which is a function of both X and R so you look at this

equation now it is a partial differential equation and there is a  chance that you can convert this

into an OD provided you can express your DTM /  DX as a function of DT/ DR okay so then you

can also substitute for T - T w / TM - T w in terms of  θ and now since D θ / DX is 0 so θ is only

a function of R so then  you can convert this PDE into an ISO D so this is how a we are doing it

so from  energy balance my d TM / DR can be related in terms of the w heat flux  as DT / D R at

R  = 0.

And when I substitute that into the  earlier energy equation so now I have an equation where I

can use fee to denote T  - T w / TM - T w okay so therefore I can non dimensionalized my radial

coordinate also I can introduce a  non dimensional radial coordinate which is R / R 0 which is

which is R  0 is the radius of the duct so final resulting expression if I  substitute that will come

out in the form that is presented here this is  nothing but an OD which can be solved / shooting

method.

Once again I try table  so we look at the boundary conditions So fee at our star  = 1 that is

corresponding to R  = R 0 so that should be 0 because there your T  will be T w and at R star  = 0

you should make use of the fact that the  profile is symmetric and therefore the slope has to be 0

so these are the two  boundary conditions this is a second order ordinary differential equation so

we can solve the OD with the two boundary conditions so how do we do this  once again we can

make use of the shooting technique to get the to solve  this equation and also to get the value of

nusselt number okay.

I will just  briefly explain how you will be doing this it is very similar to the earlier  shooting

technique problems only thing .
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see now the coordinate system what you have been working with starts with the  centre so what I

would like to do is when you solve this with shooting  technique you can start working from the

coordinate system which starts from the  w okay  so why we can do that is that at the w you do

not know the gradient   okay also you do not the gradient  is related directly  to your nusselt

number .

So in this equation you do not know what is the nusselt number also you do not  know what is

the gradient at R star  = 1 correct  so both are not known so in order to simplify this problem if

we start  working directly with a coordinate system starting from the w and  marching to the

center  you can directly  guess the value of Nu and therefore that  will  give you a guess for

directly the slope at the w right so you  understood the problem so right now if you are marching

from the center okay.

You  need a boundary condition for fee at R star  = 0 so you need to guess a  value of V at R star

= 0 and again you need to guess the value of  nusselt  number both are unknowns that  will

involve two guesses and that will  become little tedious whereas if you start from a coordinate

system from the  w and proceed to the center you can you should need a guess for the slope at

the w and that is directly related to your nusselt number so both in one shot  you get it okay.

So that what I am going to ship the coordinate system from the  center to the w okay so I will

have a coordinate system right now I have an R  star non dimensional coordinate system ranging

from zero to one I will shift  that to R   how do I shift it 1- R star so  that when R star is  = 0 R ʹ ʹ



= 1 when R star  =  1 R   will be 0 so then I can substitute that into let  me call this as equationʹ

number 1 substitute into equation number 1 and  I can rewrite in terms of R   okay.ʹ

That will come as one - R   D /  D R 1 - R   D π / mere   of course your DR   will be - D r starʹ ʹ ʹ ʹ

right so that should be  = - twice nusselt number into π into  1 - 1 , 1 - 1 - R   the ʹ 2   instead of R

star 2 I  have 1 - R   the ʹ 2 so this is how my OD will be and the  boundary conditions will be fee

at R    = 0 will be what so now I  should also make the boundary condition transform to R ʹ ʹ

instead of R star  this should be 0.

And D π / DR   at r    = 1 should be  okay so now i can hear your nusselt number is defined asʹ ʹ

twice D π / DR    at R    = 0 this is how your result number is defined correct so earlier it wasʹ ʹ

defined as in  this case your result number was defined as - twice D π / D R star at R  star  = 1

now when you substitute for D for D R star as - D R   so  that will become result number will beʹ

twice D Π / D R   at R     = 0 so that is starting from the top from the w and towards the center.ʹ ʹ

So now this equation is easy to be  solved  by the shooting method so we will call this as 2 so  by

shooting method first I should reduce before for applying shooting  technique I should reduce the

second order Odes into two first order  Odes so / introducing the fact.

(Refer Slide Time: 10:33)

That my D Π  / D R   is  = side this is one of the this is one of the Odes the therefore if youʹ

substitute into equation number two so you should be  getting D / DR this is all your DR   into 1ʹ



- R   into side  should be  = - Nu Π into 1 - R  into 1 - 1 - R    the ʹ ʹ ʹ 2 okay so this is the equation

number 3 this is the  equation number 4 so now you have reduced equation 2 to 2 first order

Odes 1 you have to solve for fee the other you have to solve for side.

So the boundary condition for this So fee at R     = 0 so that basically is 0 so that is sufficient forʹ

solving this  now for solving this you need sigh which is nothing but sigh at R    = 0 which is Dʹ

Π / D R   at R     = 0 this is not known this is nothing but what  nestled / two therefore now youʹ ʹ

see you do not know the nusselt number anyway so  you can guess a value of nestled number and

that is the guess for sigh at R     = zero.ʹ

But what do you know is basically sigh at R    = one  okay so now this becomes a nitratedʹ

process again  so you guess a value of nestled number therefore you guess the value for sigh at

R    = zero you keep marching / the shooting technique you shoot a  new March and you shouldʹ

make sure that your sigh at R    = zero is   = 0-7 so that satisfies the other boundary condition soʹ

you have to do  this iteratively you keep guessing the value of nusselt number you change the

value of nusselt number until you  satisfy this condition.

So finally you end up directly getting the correct  result number that is it okay so once again I

will just write  down the procedure.

(Refer Slide Time: 13:41)

So solve 3 and 4 by shooting the step 1 is to guess Nu and therefore  hence your sigh at are    =ʹ

zero is calculated as in U / 2 that is the  I step number 2 you solve three and four by say oiler



method okay so you  can take a large value of so you go you start from R    = 0 up to R     = 1ʹ ʹ

okay so unlike your external flows where your ETA was going  to say 10 or 15 now your range is

defined so you are our    = 0  to 1 and then check if whatever from your solution if you are sighʹ

at R     = 1 is  = 0.ʹ

If that is true then whatever you guessed is correct that directly gives you or any if not  you have

to titrate till step 3 is satisfied now again for I iteration we  make use of an intelligent guess using

the Newton rap son method  so here the Newton rap son algorithm will be sigh you need to

basically guess  the value of sigh at our    = zero so therefore sigh at our    = zero at K + 2 soʹ ʹ

you first guess  once you go guess twice and then for the third guess you use the Newton rap son

method.

Because again it needs at least two guesses to calculate the difference so this will be  = sigh at R

    = zero so K + 1 s + so this will be f of X divided / F   of X  now f of X is a condition that sighʹ ʹ

at R    = 0 should be  = 0 so anyway that so this - 0 should be 0  or this is  = 0 right Oh R   ofʹ ʹ

sorry our    = 1 so  in this case this comes out as 0 therefore this term should be  I think thisʹ

entire term then should come out as zero here because your f of  X should be anyway zero right.

Here f of X is anyway 0 so sigh at R star  =  1 should be  = zero so therefore so this numerator

completely  so  I  think   using  the  Newton's  method  here  may not  be  that  beneficial  because

anyway so  this does not this term is absent here right this is it right because you are you have

your sigh at R star  =  1 this is your function which it has to be satisfied this is  = 0 your refer of

X is basically 0 okay so therefore  you have to guess your Nusselt number so you can guess it

iteratively  okay.

Trial  and error yeah okay but this is actually  the function that it  has to  satisfy right so the

function it has to satisfy is f of X is  = 0 so this  is basically on the right this is + of X / F   of Xʹ

so this we  are writing as a difference but your f of X itself is 0 here okay so if you if  you had a

condition that this is  = 1 then you can use it this - 1  = 0 is your F of X they are  similar to the

external boundary layer correct so here we have directly your  F  of X is 0 so there is no point in

using this particular method will not give you  lead you anywhere.

But this is what you have to satisfy so you have to say that you are  F of when you say that this is

the equation it has to satisfy this is a stating a we have to force it as 0  here right you can just try



and check but I am myself from thinking whether if  this will work out for this kind of a problem

in this boundary condition  because see when you had the condition clearly that say for examples

I  =  1 so you make sure that it has to satisfy sigh - 1  = 0 so that  is a function there it which is to

which it has to satisfy whereas here sigh is   = 0 directly okay.

So anyway you can try your whether you can apply your  Newton's method and see but in my

opinion this may not lead to the correct  solution using this so you can just do a wild guess

anyway I will give you the  solution you can start with some guess close to the solution and you

will find  that your nusselt number for this case comes out to be 3.658  eight so it is a constant

value once again as I said if you have a fully  developed thermally an hydroynamically fully

developed case that is in Region.

Three you have a constant value whether it is isothermal or ISO flux case for ISO  flux case or

do you remember the value  for point  4.36 so for the isothermal case if you do a trial and error

you will finally  see that at result number 3.658 this exactly satisfies  this boundary condition

sigh at R star add R    = 1 will be 0 okay  so therefore if you compare this to the ISO flux caseʹ

you see the ISO flux case  has a higher nusselt number okay so there has been no concrete reason

why  people observe this experimentally also that this is higher.

But some kind of an  explanation can be given from the thermal boundary layer.
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Now when you talk  about the fully developed thermally so you talk about the region where the

thermal boundary layers and the velocity boundary layers have met so this is your  region 3  okay

so what could possibly happen if you apply a constant w flux is that  the w temperature keeps

rising gradually and due to that if you look at  the property calculations.

In the case of external flows all the properties that we calculated were based on T mean which

was T w + T ∞ /  2  it  is  a  linear  average  between the  w  temperature  and the  free  stream

temperature in the case of internal flows we defined a T mean based on your  mass weighted

average for temperature U of R RDR so you have divided / integral  U of R RDR so this is 0 to R

0  to  R  so  you  have  to  calculate  the   properties  based  on  this  mean  temperature  and  this

temperature varies  from the w till the centerline okay

And if you have a case where your w  temperature keeps varying then therefore and this will

consequently  result  if  you  look  at  the  property  calculation  the   properties  will  be  keep  on

changing due to the w temperature variation  whereas if you have a w temperature which is

constant if you take this kind  of an average it will not vary the way that it varies for the case of

Q all   = constant   so this will  result  possibly due to due to this  dependence of the thermal

boundary layer on the Prandtl number when it when this too much there will be  a possible

fluctuations in the thermal boundary layer okay.

So it will not be  exactly located and it will not be exactly merging at the centre but there will be

some  small  fluctuations  due  to   the  property  variation  okay  because  these  boundary  layer

thickness are  functions of prandtl number and locally the parental number keeps changing due

to difference different temperature values axial so they  attribute that these kind of disturbances

in the thermal boundary  layer will result in possibly a higher diffusion heat diffusion in the case

of  constant heat flux resulting in a higher nusselt number okay.

So this is about what 16 percent higher than the constant  w temperature case so one possible

reason this is a possible reason  although you cannot attribute it to a particular reason 

this is one  possible reason what people say is that the variation in the properties due to  varying

much  you  know  the  variation  property  is  much  more  in  the  constant  wall  flux  boundary

condition  than  the  wall  temperature  case  and  this  will  result  in  instabilities  in  the  thermal

boundary layer which will possibly drive the heat transfer to be much higher than in the case of



constant wall temperature  okay so this is one possible explanation  although in the textbooks it

is not even mentioned if they just say generally.

That this is higher and they stop there is no concrete reason why this should be higher but you

should all  remember that a constant heat flux case will generally result in a higher heat transfer

coefficient  than so this  is  true  even for  external  boundary layers  you observe it  in  external

boundary layers the two boundary layers never  merged they keep the boundary layer keeps on

growing so there the  fluctuations will be quite dominantly seen whereas here the two boundary

layers  merged  and  therefore  you  can  only  attribute  some  fluctuations  towards  the   center

centerline okay.

(Refer Slide Time: 25:18)  

So this is something that that you have to pay  attention now the next thing what we will do is we

will move from region  three so in Region three we looked at constant wall temperature and

constant  heat flux separately and we will now focus our attention to region two that  is this

region right here so where you are hydro dynamically fully developed  and the boundary layer

still have not merged in terms of you know the thermal  boundary layers have not merged or you

cannot say that your D θ / DX is =0 okay.

So you can only say D U / DX is 0 at the last profiles are fully developed but  you cannot say the

temperature profiles are fully developed so we for this  particular region is a more interesting

region we will focus the rest of the  classes another three to three or four classes towards the



region to so any   questions on this so far so I think I will give an assignment where you will be

doing the shooting method you can you  can try out with a knight relative guess you can start

with one two three four  and you will find that progressively this will be satisfying so once you

reach you know close to the solution you can take the guess values much closer  you know 4.1 ,

4.2 then you should see that it should converge  okay.

(Refer Slide Time:27:25 )

So we move on to the thermal entry length region or the region to which I  denote it where you

are hydroynamically fully developed but thermally it is not developed yet so for this case the first

solutions were given by grades so he did the first solutions for the region two  as early as 1835

not 1835 it is 1883 and 1885 okay so he produced the first solutions in fact some of his papers

there are still available but you have to go to a library and get it if you  have the corresponding

journal but whatever grades.

Did he did it for only one case for a very simplistic  assumption that your velocity is completely

uniform that is a slug flow  or plug flow case okay so later on people extended the grades flow

solution to other gender cases where you can have  a parabolic velocity distribution and you can

have other boundary conditions  such as constant wall flux and so on in fact there is a person

called Sellers I have also uploaded a document on module yesterday so you can just have a look

at  it where the great solution.



Was extended by this person this group of people sellers is one of them is a first author so there

is a document where they have proposed two solutions to parabolic velocity profiles and also to

cases where you have linear variation of wall temperature wall flux is equal to constant so there

are further extensions of this first original grid solution so this is popularly called as The Grates

problem also and I will just list down what are the assumptions that he made the first assumption.

That he made is that you are a radial velocity is zero everywhere the  second assumption is the

ratio of K/ Rho CP into u is a constant now this is  a big assumption okay when you say K / Rho

CP this is your alpha so this  you can understand that as a property could be constant but when

you say also  U is constant that means is as assuming everywhere plug flow okay so this is for  a

case where you have only plug flow and therefore you can assume that this is  your slug flow or

a rod-like flow he calls it okay.

(Refer Slide Time:31:00 )

He Calls it as a rod-like flow so he assumes as it is like a solid rod which is passing through a

circular tube okay so where do you have a velocity which is a constant and properties are also

constant and at the starting point where you where you are looking at the thermal boundary layer

okay so there the inlet temperature is a constant so the region that you are looking at now is

where your velocity boundary layer smirched and then you start the thermal problem okay.

So suppose you start your thermal problem somewhere here okay so strictly speaking you have

to start it somewhere after the velocity boundary layers have merged okay so from here you look



at the thermal problem where the two thermal boundary layers grow and then merge okay so this

is completely your region two so now this is region three so you can now see that if you solve

region two where you start from some initial temperature.

Here correct from where the two boundary layers start growing thermally already the velocity

boundary layers have grown and they have merged then you start the growth of the thermal

boundary layer at the inception of the growth of the thermal boundary layer your temperature is

equal to the inlet temperature so from there they grow so you are developing solution for this

region thermally developing region  and asymptotically once the two boundary layers.

Merge you should asymptotically  reach the solution that you had already developed for region

three correct so  that is an asymptotic solution of the solution to the thermally developing region

so we will see that when we  develop the final expression for asymptotic case you will directly

find  that we will be reaching these two limiting values okay for Region three  okay therefore we

could not be strictly speaking we need not look at region  three separately we could have directly

looked at region two and said that for  the limiting case of X / D going to infinity you directly

reach your fully  developed solution okay.
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You so this is your assumption that at the inlet everywhere Inlet where you start  the growth of

the thermal boundary layer your Inlet temperature is uniform it is  constant and so this is for the

case if at X =0 so now your  coordinate starts from a point where you start the thermal boundary



layer growth  okay so this is your coordinate system so it does not start from the inlet of  the pipe

it starts from the point where your thermal boundary layer starts  growing and where your fully

developed velocity profiles are present okay.
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And T =T wall  at  R= R0 if  you are X <0 so he  has looked at  a constant wall  temperature

boundary condition okay so at X >the wall  temperature is applied less than that you do not have

any thermal condition  okay and the other assumption he makes is that your thermal conductivity

in the  axial direction Is 0 or you can say you neglect your axial conduction in comparison to the

radial conduction okay  so then we can write down the energy equation for this case  so now if

you say the energy equation.
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Is you DT / DX is equal to I am expanding  original you have 1/ r d / dr of r dt / d r i can expand

it i can say α  is common so i can differentiate with respect to r keeping dt / d are constant okay

so that will be 1 / r dt  / dr + i can differentiate dt / d are keeping our constant so that will be d2 P /

dr2 so now this is your energy equation so you are neglecting your axial conduction term  with

respect to radial conduction you have neglected your radial velocities  the radial velocity is 0 so

only your axial velocity is there so these are all  the assumptions based on the great is problem so

now you can assume.
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A  non-dimensional temperature θ like the way that you assumed before as t - T w σ now rather

than using T mean here I would like to use TI okay so  I am going to use here is that in earlier

case you somehow manipulated  such that your dt by DX was a constant okay so therefore you

do not have to apply any boundary condition  corresponding to X is = 0 in this case this is a

partial differential  equation so for this you need a boundary condition for T at X is = X = 0 so

therefore at X = 0 you are t = TI so to do that you can  non dimensionalized with respect to TI

such that at x= 0 so σ at X = 0 will be 1 okay.

(Refer Slide Time:37:45 ) 

And σ at R = 1 will be 0 that will be t1 which is a constant so you need two boundary conditions

with respect to radial direction so what is the other boundary condition should be finite or D σ by

dr should be 0 okay so substituting this we can rewrite this as I can say my u = u m which is a

constant based.
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On the  plug flow assumption so this can be written  as um D σ / DX is = K / ρ CP or I can just I

can just leave it as α here d2 σ/ dr2  +1 / r d-σ / d r so this is my non-dimensional temperature and

these   are  the  boundary  conditions  so  now in  the  case  of  thermally  fully  developed   case

depending on whether it is a uniform wall flux or a uniform temperature I can solve this directly

I  can convert this into an ordinary differential equation and I could have  solved it but now in

this case my σ is a function of both x and r and i cannot put the condition that d σ /  DX is =0 so

therefore this is a partial differential equation and how to  solve the PD as it is so how do I solve

the PD  I think most of you have done the solution of PD  is  before what is  the  simplest

technique to solve PD is  separation of variables.

(Refer Slide Time:39:48 )



 
Oh so how many of you have done separation  of variables how many of you have done PD

solution by separation of variable so  how about the other M Tech students I think at least in the

heat transfer advanced heat and mass transfer should  be thought to you I think so I am not going

to spend too much time explaining  the separation of variables but you should understand that

you assume now  this is a linear equation once you have your velocity so any linear equation

now we can assume the  solution.

For σ in this case which is a function of X and R you can split it  into two solutions you can

assume that this is a product of two solutions one  which is only a function of X and the other

which is only a function of R this  is the starting point of any problem for separation of variables

so then this is the assumed solution you put it into the PD let  me call this PD as  number 1 so

substitute the assumed solution into1  what do you get so this will be when you differentiate with

respect to X R will be held constant.

So this will be um R  into DX / DX on the right hand side you have when you differentiate with

respect  to R your X will become constant here okay so you say X d2 R / D R2 +1 / r dr right here

so now i divide both sides by x into our  capital X into R so this will be um by α I bring it here

1 / X you have B  now  this since X is a function of only X all this partial differentials  will get

converted into ordinary differentials my X is a function of only  X and capital R is a function.

Of  only  R  so  all  these  partial  differentials  here   should  be  written  in  terms  of  the  normal

differential so this will be DX / DX on  this side it will be 1 / r d2 R/ V R  + 1 by small RDR here



so on this side I have everything as a function of X on this side I have  everything as a function

of R so on these two have to be equal so this can  be equal only if they are equal to a constant so

I assume that this constant  is negative minus λ 2 so why I put this is that if you look at the

solution for X.

Then it will be an exponentially decaying function if I put a positive constant there it will be an

exponentially increasing function and what is this X standing for here  that is basically variation

of θ with respect to X okay so if you look at  the variation of σ u k you can see that as you start

from this point your T will be = TI okay and then that  will be 1 so your θ will be 1 so if you plot

your variation of θ with  respect to X so it starts from some value 1 and from there it has to

increase or decrease it has to decrease till it reaches the value of T wall. 

 Where it becomes 0 so that has to happen exponentially right so this can be  possible only if

your constant is negative here so this has to be an  exponentially decaying function only then

your θ will behave in that way  ok so this λ square what I am using these are called as Eigen

values  okay this is the principle solution to the problem these are called as  eigenvalues so

therefore now I have two ordinary differential equations.

(Refer Slide Time: 44:33) 

So one  is DX / DX + alpha by um I have λ2 X =0 this I  call as equation number two and d

square R b/ dr square + 1 / r dr / pl+  λ2 are=0 so i can equate this separately to the constant  this

separately to the constant i have two equations to OD so ultimately what i  have done converted



the partial differential equation into two o DS now OD is i can always solve them you know i can

at least use a simple numerical technique to solve the bounties now what  is the solution.

To the OD number two it is an exponential solution okay so it  will be X of X should be some

constant into e power –λ2 by α λ  2/ u so this is my solution with respect to X okay  the other

solution into X sorry okay the other solution is a solution to this OD  so how do i how do I solve

this so d no that is the question  anybody can recognize what kind of an equation is this I think in

heat  transfer have taught  so this is called as a Bessel equation.

We so if for people who do not know what Bessel equations are I will probably give a brief

overview tomorrow about Bessel equation on the solution general solution to the Bessel equation

okay  generally  for  problems  in  cylindrical   coordinate  systems okay when you try  to  do  a

separation of variables  you end up  converting that into a Bessel equation and what are the

boundary conditions to  solve this so how many boundary conditions you would need for this.

How many boundary conditions for this for x1 this is a first order now this is  a second order ode

II you need two boundary conditions for R so what is the boundary condition for X  at X is

=0should be do we have any concrete boundary condition for X now we  do not have we have

only boundary condition for σ so we know that  θ at X is =0 should be 1 so you can write this as

X into our X at  X is =0 and tau should be 1 but from there we cannot deduce anything for  X so

we will hold on and apply this boundary condition in the end okay.

Sso  now if you look at this problem we can apply this boundary conditions directly  because

they are homogeneous boundary conditions okay so already we know that  your θ equal to 1 at R

= R = 1 σ = 0 and it  should be finite at R = 0 so correspondingly if you write σ as R  into X you

can say that R at R = 1 should be 0 and your dr / dr at r =0 should be 0 or your solution for our

should be  finite  okay so this   is  a  OD with two homogenous boundary conditions  and this

becomes. 

What Is called the Eigen function problem so how do you identify which direction is the Eigen

function  problem  you  identify  the  direction  where  you  have  two  homogeneous  boundary

conditions okay  and that gives you the direction where you find the eigenfunction problem why

do you need the eigenfunction problem because you apply the boundary  conditions you find the

roots of the eigenvalues so that that is why this is this equation is the eigenfunction.



Equation so once you know the Eigen function I can values then the our  solution to our is the

Eigen function okay so and then you can express your  solution as a product of your Eigen

function into X okay so this  we will  I   will  explain give you a brief introduction to Bessel

functions and  then I will give you the solution and then I will show you how to combine  these

two solutions okay so any  questions on this so far so for people  who have not had any course on

partial differential I suggest you can you try  to learn up at least the separation of variables this is

a very fundamental  thing the rest of the classes will be working only with the separation of

variables  you. 
 

Shooting method for fully developed heat transfer
And thermal entry length problem

End of lecture 28
Next: Thermal entry problem with plug velocity profile:

Geertz problem
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