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Fully developed laminar internal flow and heat transfer

So good morning all of you so let us today to continue on the discussion with respect to the fully

developed both hydro dynamically and thermally.
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Fully  developed region so I denote this as  Region three and we solved for the  velocity profile

in the hydro  dynamically fully developed region we  got a parabolic velocity profile and we

also started the solution to the heat  transfer  problem the first  case that  we  to okay was a

constant  w flux boundary  condition so Q w double prime is  constant and for this particular case

we  have also shown that if your Q w is  constant that means your DT w / DX  should be = DT m

/ DX this comes because of the fact that this is equal  to H into T w - TM.

Okay also we  have expanded the fact for thermally  fully developed flows you have a non

dimensional temperature gradient  variation axially is 0, so from which  we had obtained an



expression for DT /  DX in terms of DT  w / DX and  DTM / DX that was DT w /  DX - P -  T  w

/ DM - T  w into DT  w  / DX + T - T  w / TM - T   w D TM DT mean / P X  correct so you can

note the partial and  the standard derivative that I am using  here so this is a function of one DX

this is a function of only X whereas  temperature is a function of both R and  X therefore I use a

partial derivative  for DT / DX okay.

So now if you substitute  this result okay if you call this as  number 2 and this is number 1

substituting the consequence 2 into 1  you cancel of this terms because they  are identical and

therefore you come to  the conclusion that my DT / DX should  be = DT all / DX which in turn

is = VT m / DX and we have seen  that this can be possible only if these  are = a constant

because this is  a function of both R and X but these are  only a function of X so this can be

holding true the slopes can be the same  if this is = a constant.

And  therefore if you plot the variation of  temperature axially so you can visualize  for example

a temperature profile  so where you have tea  w X here you  can calculate T mean X and of

course  this is your T X , R so if you plot  your temperature somewhere here local  temperature

along the axial direction so  you can say that this follows a profile  linear profile like this maybe

somewhere  at this radial location okay so this is  the center and the mean profile will be  slightly

lower than the temperature of  the at this particular radial location.

So you can say that this is your so this  is at some particular radial location we  can say R = R 1

for example okay  that is this particular location where I  am plotting this R = and at the   w of

course that will be the highest  temperature amongst all the three and  that will also vary linearly

like this  okay so this is the characteristic of  the temperature variation as far as the  constant heat

flux boundary condition is   concerned so all  the three variations   are  identical  they are just

parallel to  each other.

But  they keep vary with the  axial  position so that  is  the  characteristic  nature  of  the fully

thermally fully developed of course they  have to be hydro dynamically fully  developed also

now having seen this we  wanted to calculate actually the  temperature profile itself so if you

substitute the fact that your DT / DX  is actually a constant that is =  some DT  w or 3 divided /

DX or  ETM / DX into the energy equation okay  so therefore it becomes much, much easier  to

integrate the energy equation  directly so you have.
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 U / α now the  DT / DX  can be replaced as some DTM / D-X now  which is a constant = T2  /

DX2+ okay so we have  neglected the axial conduction in  comparison to the magnitude of the

radial conduction so therefore we will  retain only the radial conduction terms  R DT / D R okay

so now since the left  hand side is a constant we can just  integrate it out the same way we

integrated the velocity profile where  you are DP / DX is a constant so this  is a much simpler

way of looking at the  solution.

So if you integrate it twice I  am not going to spend time integrating I  will give you the final

expression 1 /  α DT / DX which is actually a  constant so I can either use DT / DX or  DT m /

DX they just mean the same and  they are they are just constants so you  have you see R 2 / 4 - R

power  4 / 16 R 0 to the power 2 + c1 learn of R + c2 so this is what I get  somewhat similar to

the velocity profile  where you had a pressure gradient in  term in the place of this DT / DX you

had DP / DX there and you had a similar  variation okay.

So now we have to find the  constants C 1 and C 2 and in order to do  that we have to apply

boundary  conditions once again two boundary  conditions are required okay so what are  the two

boundary conditions  okay so at R = R 0 let us  say the temperature is = some tea   w of course

which is a function of X  okay so if you want to apply at a  particular axial location so that that

is a particular  w temperature which  is a boundary condition and at R equal  to 0 the temperature

has to be finite.



Now if you look  at this directly similar  to the velocity profile if for a finite  temperature at the

center  your C 1  should directly  be 0 because this  term  otherwise goes to infinity  okay so

therefore we directly eliminated C 1 so  we can use the other boundary condition  R = R 0 T is =

T  w  to calculate the second constant C 2 so  if you substitute you can determine the  constant it

will come out as so at R  = 0 or = R 0 T will  become T  w this will be T  w of X  - this entire

thing goes to the left  hand side this is you see / α into  so now this is evaluated at R 0 so  this is

R 02 / 4 - R  02 / 16 okay.

So if you  simplify it comes out as so you can  take 1 R 0 square into DT M / DX  okay I can

maintain this is DT M / DX  into 3 R 02 / 16 I think and  you just check if this is correct  this is T

w - you see / α R 02 this  R 02 cannot  come here  I think this are not square should not  come

here right so it is just three are  not square / 16 okay so   this is your  C 2 and therefore you can

substitute for  C 1 and C 2 and write your final  expression if C 1 is anyway 0 so  therefore T of

R comma X so you can  substitute for C 2 and you see, you see  / α DT m / DX so this is a

common  term here and here.

So that can be just  taken out as a common term so of course  you have your T  w of X which

can be written as this - you see in -  you can also pull out R 02 as  common by α so you see you

can take  out 1 R 02 so that everything  can be expressed as non-dimensional form  and R 02 also

is here into dt  m / DX that is also common so this will  be left with the 3 / 16 which is this  +

you have 1 / 16 so you have  already R 02 taken out so this  will be 1 / 16 R / R 0 the whole

power 4 okay and this remaining term  will be R / R 0 1 / 4 this will  be - 1 / 4 R / R 0 the whole

power 2  okay.

So this will be a final expression  for temperature variation at this let us  call this as equation

number three so  therefore you can see at this state it  appeared like T is a function of only  arc

because your DT M / DX was constant  but once you calculated this constant C 2  now it is a

function of X through t1  therefore the final expression for T is  a function of both R and X all

right  okay.

So once you got the expression for  temperature we will go ahead and  calculate the expression

for  the  mean   temperature  which  we  define  or  the  bulk   temperature  or  the  mixing  Cup

temperature so how is the mean  temperature defined so we now know the  variation of P with



respect to both X  and R now we should get an expression  for the mean temperature varying

with X  okay and of course the  w temperature  R T - TM - T  w okay the  difference between

them.

So how do we define the mean temperature  yeah so it is basically a mass weighted  average of

temperature and how do you  mass wait 0 to R 0 T into so what  is the mass Ρ into a into u okay

in  the numerator and denominator the Ρ  can cancel off so you have you and of  course U is a

function of only R okay  and what is the differential area 2 π  RDR 2 π cancels in the numerator

and  denominator you have RD R in the  denominator it has to be divided / the  mass flow rate

okay so 0 to R 0 you  have U of R into  our dear okay so therefore you have the  velocity profile

I will just write down  the velocity profile for you again.

So  you are U of R is 1 / nu okay  - 1 / 4 nu in through DP / DX R  0 square into 1 - r / r 0  whole

square so this is your velocity  profile and this is your temperature  profile right here so you have

to plug  both these inside and you know so this  DTM / DX is a constant DP / DX is a  constant

okay so therefore you will have  to integrate this with respect to R you  have to multiply all the

terms with  respect to R and then you have to  integrate it is a little bit lengthy  integration .

Which I am not doing you can  also if you find it too difficult you  can also use Mathematic and

try to do  the integral but finally if you do that  the expression for PM comes out as T   w of X -

11 / 48 into you see R  02 / 2 α into DT m / DX  okay so this let us call this as number  4 this is

the variation of mean  temperature with respect to X okay  so  therefore you can see your t TM -

T   w is going to be a constant because d  TM / DX is a constant okay.

 So the difference between the two TM - T bar has to be a constant all right so  once you got your

TM now we can take   calculate  the  non-dimensional   temperature  so your  non dimensional

temperature is defines as.
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T - T  w of X / T m of X  - T  w of X okay so now you have  of course T - T  w an expression  for

T - T  w here from the  temperature profile and also an  expression for T M - T  w here  okay so

if you just substitute those  expressions so T - T  w will be so  you have your you see R 0 square /

α into DT m / DX into 3 / 16 +  1 / 16 R / R 0 to the power 4  - 1 / 4 R / R 0 2 that  is basically t -

TW there is a -  sign but in the numerator and  denominator the - sign cancels of  similarly T M -

T  w will be -  of that I cancel the - sign this  will be 11 / 48 into you see R 0  square / 2 α into

DT m / DX o dt m  / DX cancels your you see R 02  cancels α cancels out okay.

So  this will give you an expression as 96  / 11 because you have 48 into 2 so that  goes up 96 /

11 into this entire factor  here 3 / 16 + 1 / 16 R / R 0  to the power 4 - 1 / 4 R / R  0 2  so this is

your final expression for θ now once you have calculated your  non-dimensional profile now you

can see  the non-dimensional profile is not a  function of X now okay the way we  defined your θ

in the thermally  fully developed region θ is supposed  to be independent of X so and that is

what comes out correct okay.

So this  proves the fact that the assumption what  we did of course we use that assumption  also

but that correlates with what we  find finally for θ so this is only a  function of R now you can

use this  definition of θ and calculate your  heat transfer coefficient we had shown  that in the

case of thermally and  hydroynamically fully developed flows  the heat transfer coefficient has to

be  a constant now we have to determine.



What is that constant value so for the  constant heat flux case we have arrived  at the particular

profile for  non-dimensional temperature so I will  probably give you about 5 minutes you  can

from this step calculate what is the  heat transfer coefficient.
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I suggest all of you to do it yourself  and check  okay so therefore finally you get your  heat

transfer coefficient as a constant  value for a given diameter K / D into  48 / 11 therefore you can

define an  nusselt number okay for internal flows  based on the diameter of the duct so it  is not a

local nusselt number anymore  and if you define like that you get a  constant value for point three

six so  for internal laminar flows both  hydroynamically and fully developed and  for a constant

heat flux boundary  condition this is your constant value of  nusselt number 4.36 six okay.

So therefore you see that internal flows  are quite different there is no local  variation once you

reach a completely  fully  developed condition and after that   the heat  transfer coefficient  is

becoming a constant value so even in  your external flows one of the quiz  problems had given

you the poorest flat  plate where your suction is continuously  happening on the surface and you

are  asked to prove at large values of X your  boundary layer thickness is becoming a  constant.

And therefore as a consequence  of this the heat transfer coefficient  also becomes a constant so

even in  external flows if you maintain a suction  boundary condition you can show that  your

heat transfer coefficient can  become a constant somewhere down the  length in the case of

internal flows  that is true if you have a fully  developed flow region okay and now so  this is a



straightforward  case as  far  as  relatively  straightforward  when you look  at  in  terms of the

simplification that  we have done for the constant heat flux  now let us look at the other boundary

condition.
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 which is your what constant  w temperature so only these two  boundary conditions are the

primary  boundary condition that we will see one  is  additional boundary condition the  other is

in hyper boundary condition  okay  now when you look  at constant  w  temperature what this

means  you  are DT  w / DX is 0 correct so  now let us go back to our equation for  DT / DX and

substitute  this  expression   what  do  you get  so  if  you substitute  DT   w /  DX is  0  in  that

expression  yeah correct this will be partial  derivative you are right.

So I want all  of you to also participate you how to  tell me if you apply this condition DT  / DT

w / DX is 0 what will be  the resulting expression for DT / DX  yeah t - T  w / TM - T  w  into

DT m / DX okay so the other first  two terms get cancelled off you have  only this last term so

now this is your  approximation for DT / DX right so of  course your mean temperature is only a

function of X but this T here this is  the problem this is a function of both X  and R .

So now if you substitute this into  the energy equation now what happens so  you in your energy

equation on the left  hand side you have your DT / DX so if  you substitute in place of that you

have  now you / α into DT / DX I am  going to substitute this particular  expression here t - T  w /



T  - T  w into DT m / DX so this is  = of course your 1 / RD / DR  into R DT here so now this is

what you  need to solve okay let me let me call  this as another equation number one okay.

So this is the energy equation which you  need to solve to find the temperature  profile now the

problem  with  this  now   earlier  when  you  had  constant  heat  flux   the  left-hand  side  was

completely a  constant okay you had only DT m / DX  which again was a constant therefore you

could directly integrate it out now you  have t - T  w / TM -  T w now T  is actually not a constant

now so this  entire expression now has cannot be  solved analytically the way that we did  last

case.

So therefore we have to do it  numerically and also iteratively so one  way of doing it is you can

guess some  value of temperature profile preferably  from the earlier case the constant heat  flux

case and substitute as a first  guess  and then you can integrate it along the  radial direction okay

and again get a  new temperature profile and again keep  putting it on the left hand side and  keep

doing it until you reach a convert  solution okay so the other smarter way  of doing it is again go

back to a  shooting technique.

So we should try to  reduce this equation to another simpler  form where we can apply shooting

technique and solve that equation so  that is what we are going to do now okay  what I am going

to do now first let me  before going into the shooting  technique we have to prepare we have to

get appropriate expressions for DTM /  DX so to do that we will do a small  energy balance.
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So let us look at the  profiles of temperature T as a function  of X of course your  w temperature

is  now a constant okay  now you want to know how the mean  temperature is varying earlier  w

temperature mean temperature and  temperature at any location were just  straight lines with

equal slopes so now  it is not the case right so there from  the Newton's law of cooling you

directly  showed that the slopes have to be the  same but here it is not true.

So  therefore  in  this  case  the   w   temperature  is  of  course  a  constant  but   how  the  local

temperature how the mean  temperature vary is not clear so to  determine the variation what we

will do  is just take a simple energy balance so  you take a duct so you take a control  volume so

this is your heat transfer  � Q  differential amount of heat  transfer for this differential control

volume and you have some enthalpy coming  in and enthalpy which is leaving of  course there is

a mass flow associated  with this enthalpy.

So therefore you can  apply energy balance and say my ∇ Q  dot is = m dot CP into DT M  okay

so that is ∇ G ∇ Q is =  m dot into � H D H and D H  corresponds to CP into DT M because this

enthalpy is the mean enthalpy or bulk  mean or mean enthalpy that I am talking  about so for the

given heat transfer  this is the corresponding change in the  enthalpy of the fluid and I can relate

my differential amount of heat input to  the change in the mean temperature  corresponding to the

change in the  enthalpy.

So this is the starting point  of the energy balance so I can just  divide everywhere / DX so this

will be  now d TM / DX will be = now this  is your heat transfer rate okay so this  can be

expressed in terms of heat flux  you can write this as Q double prime  which is in what per meter



square into  if you assume that the control volume  has a differential length DX into DX  into

parameter right so this will be  your surface area where you are adding  Heat alright so this will

be divided /  m . C P.

And of course you are dividing  / DX so DX cancels and now your Q  double prime you can

apply Newton's law  of cooling and write this as H into T   w - T me okay therefore you have  dt

m / DX is = P / m dot CP p  is your perimeter into H into T 1 -  T means so this is this is like

expression coming out of the simple  energy balance that you are doing so we  can what we can

now do since your t  w  is a constant we can write this as d /  DX of T  w - TM correct T  w is  a

constant so you can just introduce d  / DX of T  w - TF okay.

Now there  will be a - sign so  we can put a - sign on this side  also P / m dot CP into H into T  w

- TM is already here okay so let us  call T  w - TM as some  � T  okay so with this you can

integrate this  expression so this will be d � T /  � T  with this you can integrate this from  � T

one to � T two so what it  means if you have a duct long duct at  the inlet that will be your � T

one  that that is the difference between your   w temperature and the mean  temperature and at

the exit somewhere  that is your � T two okay.

So once I  have an equation for this temperature  difference T  w - T mean I can  just simply

integrate it from the inlet  to the outlet so that this should be  = - P / m dot CP into h DX  so this I

integrate from 0 to your  entire length or wherever whichever  location there you want to find the

appropriate temperature difference okay  so this will give me Lon of � T 2 /  � T 1 = - P / m dot

CP H  into X okay.

So our mighty  w - T  mean at some location 2 / T  w -  t mean 1 will be = exponential of  - P H

X / m dot CP  so this is my expression which tells me  how the mean temperature varies because

my  w temperature is constant if you  know the mean temperature at some inlet  from that you

can calculate what is the  mean temperature at some location X  using this expression so if you

plot  this expression okay.

If you start with  some mean temperature at the inlet you  will find that the mean temperature

keeps varying in a logarithmic fashion  like this and it asymptotically go  and meet this T 1 when

your X goes to  infinity so this becomes 0 and  therefore your T mean will become T 1  where



your X goes to infinity okay so  this is the variation of your TM okay  the mean temperature of

the fluid  okay.

Now having known this and we have  this particular expression here let me  let us call this as the

expression  number  4 okay I started with 1 okay  let me call this a stool so we will use  this

expression now simplify for DT m /  DX because why we are doing this is we  have a DT m /

DX term in this equation  so we have to simplify this a little bit  so for that we are using the

energy  balance now we will simplify it also we  should know how the mean temperature  profile

varies so for that we can use  that equation and integrate it out.

So now from 2 so you can write your.
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 DTM / DX as okay  for the case of circular duct your  perimeter is 2 Π R so Π D divided /  your

mass flow rate will be Ρ into Π  / 4 D2 Ρ AV so the velocity is  mean velocity into CP into H TM

T  w -  T mean I can replace this / your heat  flux Q double prime okay so this cancels  Π cancels

here V cancels so this will  give me your Q double prime will be K DT  / D R at R = R 0 this will

be divided / your Ρ into u M into D  will be R 0 / 2 and I can write  this as R 0 / 2 into CP so this

will be 2 R 0 yes so that is  correct.

So now I can Club this as K /  Ρ CP K / Ρ CP is α so this can  be written as DT M / DX is actually

α times DT / D R at R = R  0 divided / this will be 2 times  so UM R 0 so this is my expression

for DT m / DX in terms of DT / D R at  R = R 0 this a little bit of  mathematical manipulation



nothing more  so as far as circular  duct is concerned  you are just writing in terms of your

diameter and of course your mass flow  rate little bit simplification and you  get a relationship

between DT m / DX  and DT / D R at R = this is  a gradient of temperature at the  w.

So  this can be substituted into equation 1  for DTM / DX so substituting into one  so of course

on the right hand side you  have the same on the left hand side you  have so I am going to write

my I am  going to substitute my velocity profile  fully developed velocity profile for you  so that

will be twice UM into 1 - R  / R 02 / α  and DTM / DX is substituted from here  so which will be

now this is t - T   w / T M - T  w DT m / DX will  be 2 α / UM R 0 into DT / D R  at R = R 0 so

this is equal  to the right hand side which is 1 / RD  / DR of R ET / here okay.

So here UM  you have cancels α cancels here okay  so therefore your final expression which  you

have to solve will be 1 / RD / DR  of R VT / DR that should be = 4  / R 0 2 into 2 4 divided / R  0

into 1 - R / R 02 1 / R / R 02 into T - T  w / T  mean – T w into DT  / DR at R = R0 okay  so let us

call this as my equation  number 3 so this is the equation  finally which comes to the form which

I  want to express as a OD in order to  apply my shooting technique okay.

So you please stop and ask me if you have any questions any doubts anywhere so these are all

just mathematical manipulations I am going a little bit fast here so now.
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I am going to introduce a  non-dimensional temperature θ or fee  I am using the fee here to

represent the  non-dimensional temperature I can write  it as t - T  w / T mean - T   w and a non-



dimensional  radial   coordinate  R star  which  is  nothing but  R  /  R 0 so this  I  am going to

substitute  into  my  equation  number  3   and  rewrite  the  entire  equation  in  terms   of  non-

dimensional variables V and R  star okay .

So if I do that  so from this expression I get that my DT  / DR is = PM - T  w into  D5 / DR so i

can substitute for D / DR  as TM - T  w into D Π / DR TM  - T  w cancels here okay and I can

also define – nusselt number as DT / D R at  R = R 0 divided / T  w  - PM into diameter the

diameter  is   nothing but  twice  R 0  so  if  I  use   these  expressions  and substitute  into   this

governing equation three I request  all of you to do that and tell me what  will be the final non-

dimensional  equation for fee.

In  terms of V and R star so with that we  will stop for today  so what do I get so I have now I

can  write this one so 1 / R star D / D R  star R star now for DT / DR i can  substitute as team TM

- T  w TM  - T  w is a function of only X so  that can be taken outside the derivative  right so

have TM - PR into D Π  /  D R star this should be = 4 / r  0 into 1 - this is R / R  0 is our star so

this I can write  as R star2  T - T  w / TM  - T  w this is fee so this will be  x fee and DT / D R is

nothing but again  TM - T  w into D Π / D R . 

So  this I can write as TM - TR T  w  into D Π / D R at R = R 0  so now so I have RR this cancels

here so  I have R 0 into R 0 R 02 so I have divided / R 02 here and here I can have again  R0 and I

can write this as R star  so R 02 R 02 will  cancel TM - TR TM - TR cancels  so therefore I am left

with the final  non-dimensional form V / V R star into  R star D Π  / D R star which is equal  to

now.

 I have got the expression for  nusselt number as - 2 R 0 into  D Π /  so I can replace d Π / DR   /

r not as nusselt number / 2 r  0 so this will be a - 4 into 1  - our star square into fee into this can

be written as nusselt number / two are  not so there is a factor of our knot  which is somewhere I

have to cancel so  this is this is are not are not here  cancels this is are not square and on  this side

okay I think yeah so  this is anyway  I can write this as the D5 / DR star  you are right so this is

already 5 / DR  star .

So therefore this will be in terms  of nusselt number okay so this is my  final expression you see

this has  reduced to an OD  no I will call this as number 4 so this  entire expression is now

function of fee  now remember fee is a function of only R  so earlier I had a partial differential



equation  now  I  had  reduced  that  somehow   /  any  means  of  manipulation  and  non

dimensionalization to an OD which is a  function of R and this is of course a  higher order OD I

can break it up into  two first order OD and you shooting  method so we will see that in the next

class okay I will just give a summary of  the shooting method which you are  already used to

solve this equation  okay.  
Fully developed laminar internal flow and heat transfer
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Next: Shooting method for fully developed heat transfer

and thermal entry length problem
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