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So good morning all of you so as yesterday we were looking at internal flows we started with the

basic introduction about the fundamentals  of internal laminar  internal flows so I was talking

about the growth of the laminar boundary layer in the hydrodynamic boundary layer from the

different walls of the duct and at some point downstream from the entrance the boundary layers

merge and that is that is what is called the the distance where they emerge from.  

The entrance of the duct is called the  entry length okay the hydrodynamic entry  length and

beyond that you will find the entire region is dominated by viscous  effects okay and also the

velocity  profiles if you draw draw somewhere downstream of the region - we will find  that they



take the shape of a parabolic  velocity profile so how do we know that  this is parabolic we will

derive the  from the basic equations we will show  that it is a parabolic profile and apart  from.

That if you also have an Associated  heat transfer either in the form of  uniform temperature or a

uniform heat  flux applied onto the walls of the duct  so you can say that this is constant Q  wall.
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Prime or T wall is constant in this  case you will you will find a  temperature profile so where the

temperature is higher at the wall and is  minimum at the center of the duct now  the criteria for

defining these three  regions one two three that I  have  indicated here so in region one the

velocity profile keeps changing along  with the axial position okay, so  therefore this is a region

where we  cannot make much approximations in the  nervier-stokes once it  merges here so once

the entrance length  is reached as the two boundary layers  merged  if you plot the profile on

from there  onwards you will find that it is a  parabolic profile and it is invariant of  the location

downstream so there are  therefore four regions 2 1 3 you can put a  criteria that D u/ DX = 0.
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You that means the profiles are invariant of position downstream and this region is called as

hydro dynamically fully developed region okay and when it comes to the temperature profiles

however as you can see that when you apply a uniform heat flux or a wall temperature you keep

on supplying energy and therefore the wall temperature keeps  changing keeps increasing 
along with the location simultaneously the fluid which is receiving heat from the wall also.  

Keeps increasing in its temperature  profile therefore you cannot put a  similar criteria saying that

DT / DX =  0 because DT /DX will keep on changing  because of continuous heat addition

therefore we have to look at  a  non-dimensional  temperature  θ which  when defined in this

particular fashion  t - T w/ T- T w so  here  unlike the external flows where you use  the free

stream temperature as the  reference we have to use a new reference  temperature which we call. 

As a mean  temperature or bulk temperature of the  mixing cup temperature and we define the

mean  temperature  we  derived  this  yesterday  based  on  that  if  you  replace  a   non  uniform

temperature with a constant  or a uniform temperature which we call  as T mean so the enthalpy

of this and  this should be the same okay because  this is a flow process so therefore we  talk in

terms of enthalpy rather than  internal energy so for.
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That condition you get an expression for the mean temperature or bulk temperature which
Nothing but mass weighted average temperature you see this this is the temperature and this is 
the mass so you are giving a mass weighted average  at different locations radically and the 
you are summing or integrating them together ok so this is how you define a  mean temperature 
and therefore conditioned on theta okay now the condition on theta will be now your wall  
temperature will be only a function of X  and so is your mean temperature because you are  
averaging out along the radial direction so therefore if you look at the numerator so this t -.
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T wall will have a certain variation along X which is exactly similar to the variation of T my T 
mean - t1 so therefore your θ as a whole does not have any variation with respect to X 
Okay so therefore theta will be only a function of R right so therefore we can put a condition. 
That if it has to be thermally fully developed then Dθ / DX should be 0 so that means theta 
should be only a function of R okay, so therefore if you plot the non-dimensional temperature 



profile it will look very similar to your velocity profile so where it will go 0 at the wall and you  
get some kind of a profile like this and this will remain invariant along the axial location ok.
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So we also showed that if d θ DX has to be zero consequently the heat transfer 
Coefficient in region 3 okay where it is hydro dynamically and thermally fully developed 
has to  be a constant irrespective of what thermal boundary condition that you use whether it is 
a constant wall temperature is  constant heat flux okay so this is a very important condition
that you get in internal flows which is unlike the external flows where your heat transfer 
coefficient is a local. 
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Heat transfer coefficient and it keeps very continuously okay here once you get a fully 



developed profile both hydrodynamically and thermally the value  of heat transfer coefficient 
has to be a constant so we will have to see now what this constant value is and it depends on  
the boundary condition okay so the next couple of lectures we will focus on only  the region 3 
which is the simplest region to start with where you can make approximations with respect to. 

The velocity as well as the temperature profiles and we can derive the expression for it is just a 
Value constant value for the two different boundary conditions one for the constant wall flux 
the other for constant wall temperature and now other thing is when you define Reynolds 
Number in internal flows you have to be careful that you should use again another characteristic  
Velocity called the mean velocity or the bulk velocity so once again what it  means if you. 

Replace your velocity profile with the uniform variation all along the cross section okay the it  
should satisfy conservation of mass at that particular location so the mass flow across 
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This particular cross section in this profile should be equal to the uniform profile so if you do
that  you will get a definition for the mean velocity which is something like this  which we saw 
yesterday and based on that  you define your Reynolds number okay now  for a circular cross 
section of course you know this is the diameter of the  cross section but you can also extend this 
definition to non circular cross sections right so if you have ducked with the say rectangular or  
triangular or square cross-section or some other cross-section so you have to define your 
Reynolds number based on what is called the. 
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Hydraulic diameter so you use hydraulic diameter which is defined as four times area by three 
Meter okay so if you have a rectangular cross-section with the dimensions let me just so if I if I 
Must tell you that  this is your a and this is your b okay  so accordingly this will be so your area

now will be what this will be four times  ab divided by two times a plus B right  so this will be

two a b by a plus b okay  so this is how you have to replace your  diameter with an equivalent

hydraulic  diameter and define your Reynolds number  based on the hydraulic diameter so this  is

for the case of non circular  cross-sections okay so now with the  sufficient understanding also

we have  classified the different regimes whether  it is a laminar or turbulent depending  on the

value of Reynolds number below a  certain critical Reynolds number  critical Reynolds number.
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Generally is  about 2300 so below this value it is  generally classified as a laminar flows  and

above this generally considered as  transition or turbulent although this  value may vary in cases

where you  maintain a very uniform streamlined  profile and your turbulent intensities  are very

low at the inlet and your wall  is extremely smooth you can delay the  transition to turbulence to

as high as  8,000 or sometimes even 10,000 okay  experimentally it has been  that you can delay. 

The transition okay  but this is a generic thumb rule okay so  today what we will do is we will

take up  first the region three okay and in  Region three we will get the solution to  the velocity

and the temperature profile  and now just before that I just want to  write down the conservation

equations   for  momentum  and  energy  in  Region  three   okay  so  we  will  make  certain

approximations when it comes to Region  three so what are the approximations so why we are 
Looking at Region threes it is one of the simplest to start with  because you can make several

approximations so that your  nervier-stokes equations becomes much  simpler so you can get

any. 
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Direct  exact  solution to that so directly  you found D  u /  DX is equal to 0 therefore your

velocity is a function of and you are  now assuming although this is a three  dimensional flow

you are assuming that  right now the profile is two dimensional  that means you do not have any

dependence  of velocity on the theta direction so  strictly speaking you have to write down  the

nervier-stokes equation in the  cylindrical coordinate system because  this is a duct with a. 

Circular cross  section okay so but you are neglecting  the variation of velocity and  temperature

with the third direction and  also you are neglecting the variation  with respect to the X direction

so it is  a function of only R okay and once you  reach the fully developed condition  therefore in

Region three all your  inertial terms get knocked off because d  u / DX =zero okay and V velocity

is  zero correct there is no V velocity  there is only axial velocity there is no  V radial. 

Velocity there is no azimuthal  velocity so the inertial terms all  disappear okay so there is no so

you  have your X momentum our momentum θ momentum so our momentum and θ  momentum

are not there right now only X  momentum will be there and in X momentum  on the left hand

side  you have D u /D X =zero V R 0 V θ =0 so there are entire inertial terms  disappear so only

you have your  diffusion terms and your pressure  gradient okay so therefore for this case  you. 
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Are I will say V R and V theta these  are 0 and also variation so this anyway  I have said that U is

a function of R 1  okay so therefore the momentum will be  only X momentum so you have -1 / ρ

DP / DX this is your pressure  gradient term on the right hand side  plus you have your diffusion

term once  again in the diffusion terms the θ variation since you are d u/ DX =0  so your d2 u /

DX 2 will be  0 also the variation with the   direction is also not there therefore  your d square u. 

By D theta square is  also 0 okay so the only term what is the  only term then which has to be

included  with respect to R okay the diffusion  term due to the gradient with respect to  R right so

that will be in the  cylindrical system mu into 1 by r d by d  r into r bu-by right so this is all in

cylindrical system this is not cartesian  in cartesian you do not have 1 by r so if  you write the

laplasian operator in  cylindrical coordinate system you will  get 1 by rd by dr into R okay and. 

The  shear stress in the radial Direction is  d u by mu into du by D R okay so that mu  divided by

ρ is your kinematic  viscosity here so this should be equal  to 0 so this is a big approximation

okay  so that is why it is much simpler to look  at region 3 because you are not  including any of

the inertial terms okay  only pressure gradient term balances  your your viscous forces okay so

this is  the very significant terms which which  are important in internal  plus an external flows. 

For flat plate  you can say that DP / DX = zero  because your free stream velocity is  invariant of

X but here you have only  these two terms and they have to balance  each other so you cannot

say simply that  DP by DX is zero  in fact the pressure gradient is driving  the flow here okay so

that is why  internal flows are pressure driven flows  okay so therefore they incur a  considerable



pressure drop to drive flow  internal whereas external flows even if  you use a fan or a blower

for. 

Convection  so you do not have any pressure drop or  very negligible whereas an internal flow

internal flows pressure drop is a very  important parameter because to drive the  flow you need a

pressure drop okay so  let us write down the energy equation so  the complete energy equation.
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DT / DX  plus V DT by D are in the cylindrical  coordinate system plus okay so I call  this as VR

V θ / r DT / D θ  this is your inertial term so I am  writing everything under steady state  income

steady state incompressible  these  are the other approximations  incompressible  flow so this

should be  equal to the diffusion terms that is 1  / r d / d r into r into k dt / d r  this is your

diffusion term along the  radial coordinate so you have 1 by rd by  dr r into QR QR is K into DT. 

By DL okay  plus you have d by DX of K DT by DX plus  one by R Square D by D theta into K

into  DT by DT so we are also neglecting what  viscous dissipation we have included  everything

all the terms except the  viscous dissipation term now once again  for this case you can directly

say since  you do not have V R and V theta so  therefore the convective terms involving  V R and

V theta are zero right and we  have also said that variation of both  velocity and temperature

with. 

Respect  to   the  circumferential  direction  is  zero   correct  so  therefore  you  have  only  one

convective term involving the axial  velocity which is balancing your  diffusion in the radial



direction as  well as diffusion in the axial direction  this is your axial conduction this is  your

radial conduction but once again we  will make an approximation that compared  to your radial

diffusion a radial  conduction your axial conduction is very  minor because if you look at the

profiles of temperature the gradient is  dominant along the r direction therefore  the diffusion will

be much pronounced in  the radial direction so compared to the  radial conduction we will also. 
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Neglect the  axial conduction term so finally you are  left left with u DT by DX is equal to 1  by r

so 1 by rd by dr r k dt by  we are so this is your energy equation  in region 3 okay so now since

we have  written down the equations we will go  ahead and start solving solving them so  I will

erase this  okay so let us call this as equation  number one and let us start with the  momentum

solution first see also when  you write down the Y momentum equation  it comes out that your. 

DP / dy is  approximately zero because all the other  terms are negligible right so therefore  P is

invariant of Y it is only a  function of X okay so this is the  conclusion as far as your pressure is

concerned it's a function of X okay so  if you write the Y momentum all the  inertial terms are

zero all the  diffusion terms are zero so that will  leave with DP by dy is zero okay  therefore the

pressure will be only a  function of X therefore you have  pressure gradient only along the X . 

Direction which balances the diffusion  term diffusion of velocity in the radial  direction so with

that why is that  required because now this is a constant  term because this is if this has to

balance this this is a function of R  this is a function of X so they both  have to be constants



correct then only  this can balance this so once this is a  constant that means we can directly

integrate it out so this is the  simplification okay so therefore since P  is a function of X only.
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Okay so - 1  by Ρ DP by DX should be a constant  right since you know this is a function  of X

this is a function of R they can  balance only if there they are constant  therefore we can integrate

one  integrating one with respect to R so we  get if you integrate once Rd u by D will  be you

have to now tell  which one correct but DP by DX also has  to be a constant because this is a

function of P is a function of X and  this is a derivative with respect to X  this is the. 

Derivative with respect to R  and U is a function of R so these two  can be equal only if they are

equal to a  constant that is the only possibility  okay so this will be new by ρ   cancels this will be

1 by 1 by μ  DP by  DX so therefore I can replace the  partial  derivative with an ordinary

derivative differential because U is a  function of only R and P is a function  of X here so I can

say this is R so  there will be an R square by 2 right  here R square by 2 plus a c1 ok so 

Now  if I integrate it again this will be 1  by μ so my R R cancels here so this  will be DP by DX

which is a constant and  if I integrate it again this will become  R square by 4 plus this is c1 by r

if i  integrate that that will be c1 1 of R  plus c2 ok so this is my solution now I  have to find the

constant c1 and c2 how  do I find the constant boundary  conditions ok so what are the boundary

conditions so you are R equal to R  0 so what is U at R equal to R0 bar goes to R 0  and what is

the other boundary condition  in the case of external flows I have I  use we can give a boundary

condition  where you are you going to very large y  Y to ∞ then your U becomes. 
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U ∞ whereas here you do not have  anything like that exactly so at R=zero you should be finite

now  directly you can look at this equation  if R goes to 0 this goes to ∞ so  in order to make u

finite the C 1 has to  be 0 ok so directly this gives you C 1  is 0 so you can use U of our U at R

equal to R 0 equal to 0 to  calculate C 2 and if you do that your  final velocity. 

Profile comes out as  okay so this is your velocity profile  and you can directly see that for a

given pressure gradient DP / DX for a  fixed pressure gradient the variation  with respect to R is

parabolic okay so  at R equal to R 0 this will be 1 - 1 0 and at R equal to 0 this will  be 1 by 4 -1

by 4 μ DP / DX into  R 0
2 ok so now we want to see  what is the maximum velocity so because

when we draw the profile we draw it like  this and we know that we are plotting it  with a

maximum velocity at R equal to  zero but let us show that the maximum  velocity or centerline

velocity is  maximum velocity okay so to how do we  show that  how do we show the location of

maximum  velocity yeah .
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So you take the derivative  D u with respect to D are equated to  zero and you will find that our

comes r out as zero so that means the center  line is the inflection point okay so  there could be a

maxima or minima of  course there has to be a maximum so this  this is the region where so u

max is  equal to u centerline okay the  centerline velocity is the maximum  velocity and the value

of the maximum  velocity here is 1 / 4 μ DP / DX R  0 square this is the value of  maximum. 

Velocity so now we will go ahead  and calculate the other the other is the  mean velocity which is

2 by r 0  square integral 0 to r 0 u of r RDR  ok so if you substitute the velocity  profile and

integrate it or not square  - 1 by 4 mu DP by DX these are all  constant terms which can be pulled

out  outside the integral 0 to r 0 1  - r by r 0 the whole square  into r near okay so if you integrate

it  out you will get - 1 by 2 μ DP by  DX into R. 

0 2  by 4 so which  can be simplified to UM is - 1 by 8  μ DP by DX into R 30 square so

therefore you see um is a it is now a  fixed value in the fully developed  region because DP by

DX is a constant  so  everything is  constant  so therefore  um  is  a  constant  value in  a fully

developed  region okay so so this is your  expression for um we also found out  expression for

you see therefore you can  also write you are you are you of are as  this entire thing is nothing

but you see  okay and you can see from this  expression that your centerline velocity  is actually

twice of the mean velocity  right so so therefore you can express  your you as. 
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Twice of um into 1 - R  by R not the whole square which is also  u centerline's  1 - R by R not the

whole square ok  so so this  is  this  is  how you our  general  velocity  profile  is  written as a

variation in terms of R is it clear  since you have already done this I am  not spending too much

of time you can  just go and look into any fluid  mechanics textbook and you will find the

derivation so any any questions so far  so you can clearly see that at center  line you have R

equal to R 0 you  have your centerline and from there you  have a parabolic velocity profile

distribution okay so therefore we will  find out other integral quantities the  important integral.
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Quantity will define  an internal flows is called the friction  factor okay in external flows we

define  the wall  shear stress and from there we  calculated a non-dimensional  skin  friction



coefficient CF okay the same  way we can also define a skin friction  coefficient okay  but

generally people refer to as we can  we will show that we will show that the  equivalent of a skin

Friction coefficient is your Fanning's friction factor okay so there are two different frictions 

Factors which are defined so  one which is more popular is your Darcy  or your Moody friction

factor so named  after these two people who have defined  it and it is defined as F is equal toΔ  P

by half ρ um square L by D  because here your L by D is also an  important factor so as far as

your  pressure drop is concerned because DP by  DX is nothing but Δ P by L so that  has to be

included as it is okay so this  is how your Moody's friction factor is  defined the other 

Friction factor is  also called Fanning's friction factor  and he defines it  so that is Δ  p by twice ρ

u M  square L / D so you see the basic form  is the same so only the factor here they  use a factor

of half and here finding  uses a factor of two and you will see  why Fanning defined it this way is

that  for the fully developed internal flows  okay so the Fanning friction factor  exactly comes out

to be the same as skin  friction coefficient okay so therefore  you defined it in a convenient form  

Where you can replace the skin friction  coefficient which you which you are used  to an external

flows and that will  become equal to your friction factor in  the internal flows okay so this can

also  be written as - DP by DX into D by  twice ρ u M square right because Δ  P by L is nothing

but - DP by DX  this is a pressure gradient so since  this is the pressure gradient keeps so  your

pressure changes this is decreasing  therefore if you take a pressure  gradient will 

Be negative so therefore  you have to put a negative sign here  okay so this is the way that you

write  it and you can now substitute for DP by  DX from this expression in terms of so  you are

let me call this as equation  number 2 from Equation number 2 you can  write DP by DX in terms

of un correct  and you can substitute that here so you  will find that some of the terms um  terms

will cancel off so if you  substitute that this will be 8 nu into  um divided by R 0 square you 

Have  to ρ  um square okay so this should  come out as 8 mu /  ρ um or not  okay so the um-um

cancels here and okay  so this is a D here so D is twice or not  right and now you can define an

ass  number okay so this is ρ um and this  you can write as D 0 by two okay so  this will become

16 divided by Reynolds  number similarly if you had substituted  here for the Moody's friction

factor  this expression will come out as 64 by  Reynolds number okay so that is the  



Difference the factor is the difference  and now if you define your skin friction  coefficient CF

for internal flows as tau  by half ρ  um square okay and your tau  is nothing but - nu D u by D R

at R  equal to R 0 divided by half Ρ um  square so you can calculate you have the  velocity

profile you can calculate the  derivative with respect to R and you  have to calculate derivative at

R equal  to R 0 and you substitute it so you  will get an expression for CF 
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Which  also comes out to be exactly  identical to 16 / re D so that is why  the way the Fanning

friction factor was  defined both Fanning friction factor and  skin friction coefficient become

identical okay so therefore for the  fully developed case you have CF is  equal to u RF let me call

this as f  Fanning here to differentiate it from f  Darcy  so this is a another important Result  that

you should remember okay now if you  plot the friction factor I think all of  you know 
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How it looks so this is called  the Moody's chart right I hope all of  you remember the Moody's

chart in fluid  mechanics that is the internal force  that is a single most important thing  that you

Might have learnt okay if you  brought half as a function of re D okay  now remember if you plot

on a log-log  scale now this is this is a hyperbola  right you have if say if Darcy F into re  D is

equal to 64 s a rectangular  hyperbola so if you plot on a log-log  scale this becomes linear okay 

So on a  log-log scale if you plot a log-log  scale so this will look so with your  increasing

Reynolds number the friction  factor comes down right so this is your  relationship F is equal to

64 by re D  and this is valid for certain Reynolds  number till what critical Reynolds  number you

can say 2300 so once critical  Reynolds number exceeds the flow becomes  turbulent and the

variation will not be  as straightforward as this it becomes  completely different and in the  

Turbulent region you will find it is not  a single line but you will have several  multiple lines like

this okay so what  these multiple lines indicate is the  friction factor is not only a function  of

Reynolds number but it's also a  function of the roughness okay so you  plot what is called non-

dimensional  roughness that is roughness height  divided by the diameter of the tube so  with

increasing roughness your friction  factor increases so this is completely  turbulent whereas in 

The laminar flow  you find a very linearly decreasing  profile if you plot it on a log-log  scale so

this is called the Darcy or  Moody chart from which you can pick up  for a corresponding value

of Reynolds  number what is the exact value of the  friction factor okay I think all of you  are



familiar with this in the case of  non circular ducts okay this is valid  for a circular duct okay if

you go to  non circular ducts  so your friction factor f becomes 64 by  some factor fie I am sorry.
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It is not 64/  re 64 by re is only for circular ducts  because we have seen that we have  substituted

all this relation for  circular ducts but generally for non  circular ducts you have an additional

Factor fee and this fee will be a  function of the aspect ratio so if you  have a non circular cross-

section okay  you have aspect ratio a over B okay so  it is a function of this aspect ratio  suppose

you take a rectangular  cross-section you can plot V as a  function of a by B so say 

Is a  by B  going from 0 to say 0.5 and on the top  scale say from 0.5 to 1 so you have a  variation

something  like  this   corresponding  to  this  and  you  have  a   variation  another  variation

corresponding to a by B of 0.5 to 1 so  you have typically variation of V for a  smaller range of a

by b 0 to 0.5 you  have one variation for a by be varying  between 0.5 and 1 so the limiting value

1f becomes 1 basically okay so then it  becomes equal to a circular cross a  square cross-section

ok 

So then you  have the value of V at somewhat  approaching to 1 and you are a by B  approaches

1 okay so therefore you have  to know this factor and then you have to  plug it for a non circular

cross section  with the different aspect ratio and that  will give you the corresponding friction

factor so anyway these are some  additional details which you can find in  text books so next

what we what we are  going to do is take the heat transfer  problem so very.
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Quickly in another 5-10  minutes and see how we can find the  temperature profiles  in the

thermally fully developed region  okay now we know how the velocity  profile looks so now in

Region three  temperature solution so once you get the  velocity solution for velocity profile

naturally the next part will be to get  the solution for the temperature and we  have already I

already told you that the  heat transfer coefficient is a constant  in Region three so we have to

know what  is the value of this constant so  therefore first we look at a boundary  condition 

Which will be the uniform wall  flux that is Q w double prime this is  the constant okay now we

have already  defined my D /DX of theta and theta is  t - T wall by t - TM - T  wall this is equal

to zero for thermally  fully-developed case so we will expand  upon this term okay so if you

integrate  if you differentiate it by parts okay  how so what do you get so this is VD u - u DV by

v square right so if you  differentiate and expand it you can just  try I will. 
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Give you some time you should  be getting an expression like this  so all of you please try

expanding this  differential here  okay  so I maybe you can complete it as a  homework but you

should be able to get  very straightforward you should be able  to get this now the important

factors  when you apply the uniform heat flux  boundary condition from the Newton's law  of

cooling you can say that Q R double  prime is H into δ T P wall -δ T  mean so since your. 

Wall flux is uniform  therefore DQ /DX will be 0 right there  is no variation with respect to X

and  therefore your this will give that DT w / DX should be equal to DT mean by  DX very

important conclusion as it  because coming from the fact that you  have a uniform heat flux so

therefore if  you look at the profiles if you  substitute let us call this as now  number one this is

number two  if you substitute this conclusion that  is DT w/ DX should be equal to DT m / DX

what. 
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Happens these two terms will  cancel out so therefore you directly get  the fact also that DT /DX

should be  equal to DT w /DX which in fact is  equal to DT m / DX okay so the slopes  of all the

three profile like we are any  temperature at any location radial  location your wall temperature

and your  mean temperature they are identical and  it can be true only so how how should  the

profile look if you plot your  temperature on the y axis and X if I  want to show.
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Temperature at any radial  location wall temperature and mean  temperature and if the slopes

have to be  the same it has to be exactly parallel  all the three have to be parallel and in  fact we



will see that this has to be  just linear  okay so you can say then this is your  t wall okay this is

maybe T at some  radial location and say this is your tea  me so this is a function of X this is a

function of R and X this is a function  of X but all of them in the region three  will be linear

okay. 

And the slopes are  identical okay so this is a very  important conclusion which characterizes  a

fully developed flow with a constant  heat flux boundary condition so  therefore if you apply this

fact to the  energy equation okay so what was the  energy equation that we had written we  had

written  if u u / alpha DT / DX okay there is  one more thing I forgot ρ  CP on the  left hand side

of the convective terms  in the when you wrote the energy  equation there should be ρ CP.
 
(Refer Slide Time: 47:18) 

Okay on  the right hand side you have K okay so I  am taking Ρ CP by K which is 1 by  alpha DT

by DX should be equal to 1 by r  d / dr r dt / dr now the fact i am  going to use here is my dt by

DX is  exactly identical to dt / DX so these  are all just a constant ok so this can  this can be

through only if they are all  constant because T is a function of both  R and X if this slope has to

be equal to  this and this this has to be equal to X  DT wall by DX the slope has to be a  constant.

Value and therefore it is a  linear variation okay so this is an  important fact you can just replace

this  as DT mean by DX now this is a constant  so therefore you can see that you can  now

integrate this equation with respect  to R just like the way you integrated  the velocity profile

because now this  term is a constant and therefore this  does not become a partial this can be



written  as  an  ordinary  differential   equation  okay so I  will  just  give  you  the  result  of  the

integration and we. 

Will stop there  so if you integrate this equation you  will get solution for T as a function of  DT

DT m / DX 1 /alpha DT / DX and  you have to also substitute the  parabolic velocity profile

which you  obtain from the fully developed  hydrodynamic solution so then you  integrate it with

respect to R so you  get  so this is your temperature profile so  we will stop here for today so.

Tomorrow  we will start continue from here apply  the boundary conditions and calculate  the

constants  and  also  similar  to   calculating  integral  quantities  for   velocity  like  skin  friction

coefficient  and friction factor we will calculate  the heat flux and the heat flux anyways  the

constant will calculate the heat  transfer coefficient and we will know  what what exactly the

constant values.
Hydrodynamically and thermally fully

Developed internal laminar flows
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