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Duhamel’s method for varying surface temperature 

Good morning all of you so any clarifications on integral methods. I  think I have been going a
little bit  slow in the last two three classes so  takes enough time for you to understand  what I
had been doing so last class we  had looked into the approximate solution  for flow with pressure
gradient  Duhamel’s  method and  applied that to heat transfer problem  and finally  we also
looked into an  approximation to the Duhamel’s solution okay the ordinary  differential equation
can be simplified  and directly integrated by what is  called as the volts approximation okay so
there he has his plotted H of K as a  function of K and found that is a level  a very linear curve
and he has given the  approximate profile for the linear curve. 

And that is what if you use it becomes  much straightforward to integrate the  equation to get the
a momentum thickness  okay so once you get the momentum  thickness from there you can get
your other thicknesses like displacement  thickness and boundary layer thickness  which are
required to calculate the flow  average flow properties like skin  friction coefficient and the same
way  you can solve the heat transfer problem  and in the heat transfer problem you  will get an
ordinary differential  equation for  ζ which is the ratio of  your thermal boundary layer thickness
to  momentum boundary layer thickness once  you have the expression for momentum  boundary
layer thickness so therefore  you can calculate your average integral  heat transfer quantities like
heat  transfer coefficient and therefore we  can get the expressions for nusselt  number okay. 

So this is the standard  procedure for all the solutions whether  it is similarity solution or  integral
solution this is the standard  procedure in the integral solution you  guess a profile you know you
approximate  the velocity profile and temperature  profile and from there you calculate  your
boundary layer  nests and thermal momentum and the  thermal boundary layer thickness okay
whereas in the case of similarity  solution you have to solve the ordinary  differential equation
numerically by  some shooting technique or whatever and  get the curvature at the w and from
there you can get the other properties  such as skin friction coefficient and  also you can get your
boundary layer  thickness and other thicknesses and for  heat transfer. 

You can also get the slope  of the temperature profile at the w  and from there you can calculate
your  expression for heat transfer coefficient  and Aselton okay so what we will do  today so we



had so far looked at  application of integral techniques to  for flows without pressure gradient
that   is  a similar  to the Blasius similarity   solution we approximated that  with the  integral
method and also we extended  that to flows including the pressure  gradient terms that is like the
Falkner Skan similarity solution we can apply  the integral methods for a similar  problem for a
wedge with different badge  angles and we can derive approximate  solutions for this okay we
had also  looked at the case of circular cylinder  okay. 

Which is which is a limiting case  is a stagnation flow and also the heat  transfer for flow past a
circular  cylinder now we will look at a case  where you can consider a simpler case or  maybe
even the wedge but we will take a  simpler case that is a flow past a flat  plate  however the
boundary condition here need  not be a uniform w temperature or  uniform heat flux okay so
most of the  real cases you will find that the  temperatures are actually varying along  the surface
okay so if you want to  consider non-uniform temperature or  non-uniform heat flux so how do
we solve  such kind of problems okay.

We do not have a straightforward similarity solution to such kind of problems but it is quite
likely that we can develop a similarity solution for a particular case.

(Refer Slide Time: 04:34)  

Where you are  variation is predetermined that is if  you have a flat plate and your variation  of
the w temperature is something  like a power-law X  M variation  okay where M is some real
number and so  this is a power law kind of a profile so  for this you can develop a similarity
solution also okay we can also very  easily solve this by integral methods  which we will see now
and it need not be  a variation like this it can be any kind  of variation okay that is the advantage



of the approximate  methods okay the   approximate  method give you a lot  of   flexibility  in
approaching problems with  different kinds of boundary conditions  and also things like where
the boundary  condition there is an unheated starting  length okay. 

So there is no similarity  solution if you have an unheated  startlingly so these kind of problems
with the variation in the boundary  temperature and the heat flux can be  easily solved using the
approximate   solution  okay  so  today  we  will  look  at   extending  the  simpler  approximate
solutions to a case where you have more  complicated boundary conditions so the  first case we
are going to do is non  uniform surface temperature  okay so here you can consider a flat  plate
where your temperature is varying  in an arbitrary manner okay and of  course you have your
free stream  velocity and free stream temperature and  we will look at a particular technique
called  the  Duhamel  superposition  method   for  solving  this  problem okay ,so  the   specified
condition is something like  this you can you can maintain locations  where you want to specify a
particular  oil temperature for example. 

Let us call  this as  ζ at the location  ζ = 0 you start with some specified  temperature okay that
could be something  like tu T w one so let me draw how  the w temperature profile will look  so
this is my plot of Tw of course  as a function of my position so at this  particular location  ζ = 0 I
will have for example a piecewise  constant value of w temperature which  is T w 1 okay so this
is existing  till a value of  ζ =   ζ 1 okay so like this I will have  multiple piecewise constant
values of  surface temperature okay so this is a  simpler case to begin with of  course your actual
variation need not be  piecewise constants. 

Now it can be a  gradual variation smooth continuous  variation ok so like this we can look at
temperatures  which  are  success   successively  increasing  the  w   temperatures  which  are
successfully  increasing in a piecewise constant  manner  okay so like that you can go up to some
value  of  finally   ζ  n  alright  so  this   is  how  your  surface  temperature  is  now   plotted  as
increasingly  you  know  a   piecewise  constant  which  is  increasing   okay  so  this  is  like  an
approximation to  a profile which is like this suppose  your w temperature profile was this  them
the basic approximation for this is  to assume piecewise constant you break  this continuous
curve into piecewise  constant okay and you have an increasing  trend in the w temperature.
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Okay so far this how do we approach the  problem okay  thankfully the equation that we are
solving the energy equation is linear  once you know the corresponding velocity  profiles so the
velocity profiles are  not going to get affected as long as  your properties are not affected by the
temperature okay  so in that case your velocity is  decoupled from the temperature and you  can
plug in the particular value of  velocity at a location into the energy  equation and your energy
equation  becomes quasi linear and therefore for  any linear partial differential equation  if you
have varying boundary conditions  okay you can break the solution into  multiple solutions and
superpose the  solutions for each boundary conditions  linearly okay. 

So the resulting solution  is a linear combination or linear  superposition of multiple solutions
each  corresponding to a different boundary  condition okay so if  you solve by method  of
separation of variables you will know  that for example the heat conduction  problem  okay.
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The method of separation of  variables will work if you have for  example homogenous boundary
conditions  in three directions and one non  homogenous boundary condition okay for  example
in conduction case you will  maintain this at some high temperature  and the remaining three
sites or maybe  you can assume that or you can  non-dimensionalize the temperature. In  such a
way that the non-dimensional  temperature is zero okay, for this you  can solve the conduction
equation 2d  conduction equation by means of  separation of variables okay so there  will be an
eigenvalue  problem in this   direction  basically  where you have two  homogenous boundary
conditions in the  other direction. 

You  apply  the  remaining   homogenous  boundary  condition  and   finally  whatever  non
homogenous boundary  condition is there to get the final  constants okay but if you have non
homogenous boundary conditions in all  the four sites so how do you solve this  problem  you
can still  solve  it  by  separation of variables  but  you need  heigen value problems okay for
eigenvalue problems you need homeowner  homogenous boundary condition in a  particular
direction so to do that if suppose these  were nonzero ok this was some something  like TC 1 TC
2 and T C 3 which were not  0 okay, so you can break this into problem  where you have Th here
and you can put  TC 1 here TC 3 and 0 okay, or what you can  if you want to make it completely
homogeneous. 

You can break this as three  zeros here  + you can make the other  three as zeros and you can
make this as  TC 1  + of course you can make these  three as zeros and this is your TC 3   + this
is  your TC 2 and the other   three zeros so you can you can apply you  know Eigen value
problems in different  directions you know in this case you  have Y Direction y direction you
have X  direction here in this case you have the  X direction okay so you create four  equivalent
eigenvalue  problems  and  you   get  solutions  for  each  of  these  case   okay,  with  one  non-
homogeneous boundary  condition and finally you superpose all  these four solutions and that
will give  you the solution for this problem okay.  



This can happen only if the partial  differential equation is linear and  conduction equation is
linear right  so the same way if you look at the  convective heat transfer the energy  equation
governing convective heat  transfer that is also linear so  therefore if you have a combination of
multiple boundary conditions like this  you can superpose solutions where you  have for example
you have  multiple  w  temperatures  you can  solve  one  problem  where  you have  T w one
throughout  okay and the solution to that is known   + you have another problem where from   ζ
=  ζ 1 to the end you  have T w1 - T 1  - or t12 - T w one okay that is  the � � t w so that that is
that is applied to the entire plate and  again you know. 

The solution for that  and from  ζ =  ζ to till the  end so that is you have t w 3 - T w - so like that
you keep on  applying successive  � and you apply  that as your boundary condition and you
solve the problem now if you if you do  that you have individual solutions where  you have an
unheated starting link and  then the rest of the plate where you  have a uniform temperature okay
so like  that you break up the problem into  multiple boundary conditions and then  you get the
solutions  you already have   the  solution  so you add them you  superpose  all  the  solutions
together and  that will give you the solution for this  problem  okay, that is why it is called as a
superposition method okay. 

So this is  also called the Duhamel method so let me  so let me indicate this T w - this  is T w
through T w 4 and so on  so this is your T w and n - one  okay or okay let me call this as P  w
okay so the solution for these is  anyway you have to solve the energy  equation  boundary
conditions are now at y =0 you do not have a constant value  of temperature but T = t1 which  is
a function of X okay and the other  boundary conditions are the same Y going  to ∞ T is = T ∞
and  at X is = zero  okay now following some analogy similar  to the conduction problem we're
also the  partial differential equation is linear  and you can convert the problem into  equivalent
for equivalent problems with  convenient boundary conditions. 

So you can do the same way here also and you  can super force superpose the solution so
therefore the solution for this problem  will be something like you can take one  problem like this
where you have your  free stream temperature T ∞ okay  and this is your starting from your  ζ  =
zero entire plate you  maintained at temperature t1 right so  this is your first problem and already
you have the solution uniformly heated  plate right from without any unheated  startlingly okay
so the if you non  dimensionalize the temperature your  solution to be found out will be in the
form Ф for the case θ =  zero and it is a function of x and y will  be t - T ∞ by T w one  - T ∞ this
is the way. 

(Refer Slide Time: 16:45) 



I am  going to non-dimensionalize  okay, so and how does the corresponding  w temperature the
non-dimensional  temperature profile look at the w if  I if I plot this fee  at  ζ = zero X , y =  zero
so I am I am plotting the  temperature at the w so this will  become T w one okay and throughout
it  is T w one okay so therefore it will  be just one everywhere alright so this  is one case now I
can break it up  into multiple problems okay my second  problem will be what so now I have
solved one problem where everywhere it  is T w 1 but now you can see from   ζ =  ζ 1 2  ζ 2 it is
T  w 2 so now what is the next problem  that I have to solve ok so to do that  what should i what
should I do now I  should not solve for any heat transfer  problem till  ζ 1. 

Because I already  have solved it here okay, so I should  maintain what is what is something
called as the unheated static link to   ζ 1 right and what should be the free  stream velocity that I
should take so  that there is not be any heat transfer  here now this is already at T 1 1  okay. So I
have to choose a free stream  velocity such that there will not be any  heat transfer so that this
remains  unheated so what is that free stream  velocity that I have to take I cannot  take t ∞ if I
take T ∞ the  T ∞ is different from T 1 1  t12 - t1 one way it should be t1 one  okay so if I take a
free stream which is  at T w one so this is also a t-ball  one so therefore they will not be any  heat
transfer till here now at this  point onwards this will be a t1 to till   ζ two okay. 

So now I can introduce  another non-dimensional P corresponding  to  ζ =  ζ 1 non-words okay
now how do I non-dimensionalize this t  - T w 1 by t1 2 - T w 1  exactly okay so if you draw the
non-dimensional profile at the w. Let us the sex how does it look now  initially till  ζ 1 there will
not be  any heat transfer so from here it will  start and this will be 1 throughout so  this will be a
T w - throughout okay so  that means here this portion is now T  w 1 this entire portion is T w -
okay so now you are solving for T 1 2  - T w 1 that is the difference  that you are solving ok so
that means  now you have solved for T 1 1 here now  here you have already solved for T 1 1   +
T 1 2 - T 1 1 so that is  basically s T w - now same way you  have to break this into problems
depending on. 



The number of piecewise  constant that you have all right so now  if you extend this to well just
give you  a representation for the third one  so this  + this  + okay. 

(Refer Slide Time: 20:45) 

So till  θ equals from  ζ = 0 to   ζ =  ζ 1 you have T w 1  okay now from  ζ = up to  ζ 2  you have
T w to now you have to  maintain T w 3 throughout okay  so to do this again we take assume a
free stream velocity where you are  maintaining everywhere has now T w to  and your free
stream not everywhere I am  sorry from  ζ = 0 to  ζ equal  to  ζ 2 as T 1/2 and your free stream
velocity is know T 1/2 from  ζ 2  onwards it will be T w 3 so you  maintain everywhere as T w 3
and you  define your fee as beta =  ζ 2  , X , Y which is = P  - T w 2 by t 1 3 - T w -  so if you plot
again C at y = 0  as a function of X okay. 

So till your  ζ  =  ζ 2 there is no heat  transfer from here it becomes 1  okay so this is how you get
different  solutions okay now you have actually  solved here for the remainder tea w  three - T w
two for this  particular region okay  so already you had solved for T w 2  - T 1 1 and also for T 1
1 - T  ∞ so finally that will be the T  w 3 - T ∞ okay so then you  can superpose all these
solutions  together yes so you have to maintain  this at T w to throw out because you  have
already solved for this till here  you are not interested in this region  okay so you maintain this
entire region  at T w 2 and then this will be from T  w 3 so T here also you have already  solved
here ok so you don't need any  solution the solution is already there  that is this solution till this
region  you already have solution from this so  you do not have to solve for anything  here. 

So you maintain a unheated starting  length forcibly by maintaining the free  stream temperature
and this the same the  same way here ok so you already have  solved from here to here so you
maintain  a same temperature = the free  stream temperature so that there is no  heated length



okay so therefore you  define your Ф in generic terms as t  - T w  ζ n - 1 by T w   ζ n - T w  ζ n -
1 this   is  your generic  formula for defining  your non dimensional  free okay so where  for
example if n = 1 so that is  basically that that is your  ζ 0 that  is this first case  okay n = 2 that is
your second  case n = 3 will be this  particular case okay. 

So this is a generic  formula how you are defining your  non-dimensional temperature okay and
the  non-dimensional form of the energy  equation will be you D Ф by DX  + at  y = 0 now what
will be the value  of fee now till your X < 0  or maybe you can say if you want to  write it in
generic terms θ n -  1 2  ζ n okay so this should be what 0  and for X < ya so for X  greater than
or =  ζ n it  should be 1 okay and you just check that  it has to be easy to eat AM ETA n -  2 - 1 is
that right okay so when you  start with of course something negative  it means it is you can say
free stream  okay free stream so there it will be 0  and then when you start with n =  1 so up to
for this case so up to n 0  basically you do not have any heat  transfer from here. 

Onwards you have greater than that you have your fee = 1 okay so this is your generic solution
okay and this is your generic way of non dimensionalizing fee now therefore the  solution.

(Refer Slide Time: 26:41)  

To the problem for temperature  t - t ∞ so this is what we  finally want to find out so now we
have  broken this into sub problems and for  each already we have the solution okay  we have the
unheated starting length  problem okay so we can just combine all  these for the case where your
ζ =equal  to 0 how do we express t - T  ∞ t - T ∞ is fees n = 0 times T all 1 - T  ∞ okay so this is
T 1 1 - T  ∞ into P  ζ = 0 X ,  Y okay  + the next problem will be t 1  t - t 1 1 which is t 1 2 - t 1 1
into p  ζ =  ζ 1 x , y   + all the way till t w ETA n -  T w ETA n - 1 pi ETA n X , Y  so that is your
final this thing okay.  



So T w ETA n - T w ETA n -  1 that is the last this thing okay so you  keep adding up all these
solutions such  a way that finally if you add up you get  the solution to the problem where you
have variation like this in the boundary  condition okay so already we have the  solution two feet
fee is what t-- you can you can look  at this t - T ∞ by T 1 -  T ∞ so what is it suppose if you
assume a cubic temperature profile so  what is the how can we write fee suppose  you assume
cubic temperature profile you  non dimensionalize it y1 - correct  your what you have said is
correct but y1 - us what you are saying  is correct but it should be 1 -  why it should be one -
signs have  changed no how did we define the  non-dimensional temperature θ. 

When  we were fitting a cubic profile t -  T w by T ∞ - T one so my  fee is what so that should be
1 -  θ right so therefore what it  should be 1 - 3 by 2 y by � T   + 1 by 2 y by � T the whole cube
correct so this is the profile  satisfying the condition X < =  ζ n - 1 right so  where so this is the
corresponding w  temperature so uniform w temperature  correct corresponding to that this is  the
profile in the boundary layer  thermal boundary layer now I already  know the solution so only
thing I have  to know linearly combine all the  solutions that's all  and how do you check that
how do you  know that this is the correct solution  correct for way of superposing the  solutions
how do you verify. 

That the  simplest verification is getting the  boundary condition itself so you apply  this at y = 0
what it will be now  until so this profile will be 1  everywhere okay so this will be T while 1  - T
∞ ok suppose you want to  check that at between  ζ =  ζ  1 2  ζ 2 that this gives me D w 2  - T ∞
does it give  that is the check read so this is T w  2 - T 1 1 and this is 0 before and  it is one
between  ζ = 1  ζ 1  and  ζ 2 and the other things are all  0 okay, the T 1 1 T 1 1 cancels so this is
T 1 2 - T ∞ so this retrieves  my boundary condition ok this is a good  check that therefore this is
the correct  solution because your boundary condition  also is a part of the solution right so  this
is the therefore how you have to  write it and if you check if the w  boundary condition are
retrieved then  let me call this as equation number 1 ok  then one is correct  okay. 

So or one is represented correctly okay,  so now that's it once we write the  solution like this is
valid  if  you  have a piecewise constant  variation in  the actual case the variation should be
continuous so instead of having a  summation of piecewise constants we can  replace that by an
integral which  represents a continuous summation okay so  that is what we are going to do now
so I  would like to rather than writing P w   ζ - the T w  ζ and n – 1.
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I am going to introduce � T w and  which is = P w  ζ n - T  was  ζ n - 1 this is my  representation
so therefore equation 1  can be written as  P X , Y - T ∞ is =  T w one - T ∞ into fee  zero , X , Y.
So this first set  notation here is corresponds to  ζ okay  so  ζ = zero  + I can write  the rest of
summation n = 1/2  totally N � T w n p ZT n , X  , Y so the rest of them I am just  summing over
those n number of discreet  intervals okay so that I can put under a  big summation like this is
that right  so if the temperature variation is not a  piecewise constant but actually is  something
like this which you have  approximated as a piecewise constant  okay so now I am going to
convert this  discrete summation into a continuous  integral okay that is all I need to do  so for w
temperature variation which  is not piecewise constant but continuous  so that is either linearly
increasing or  not linear it is continuously increasing  or decreasing you can rewrite this  discrete
summation as T w  ζ equal  to zero - T ∞ into p zero  , X , y  + integral 0 to X P X   ζ X Y now
how do. 

I write this in an  integral � T so I am going to write  this as DT w by D  ζ which is the  dummy
variable  D  ζ  okay so  all  I  am  doing  is  I  am converting  this  discrete   summation  into  a
continuous integral so  if I have a finite slope and the slope  is continuously varying with the
location okay so all I need to do is get  the slope of the w temperature  variation with respect to
ETA  ζ and  that will be used here okay  so this will this is  also called as we do Mac do hammers
superposition integral okay let us call  this as number two this is referred to  as we do Hamill's
superposition integral  okay so the general super superposition  which we discussed above is a
general  method and usually it is applied where  you have this discrete piecewise  constant kind
of approximation. 

If you  don't make that but directly  you put the  slope of the w temperature variation  as a
continuous variation if you do that  then the resulting expression is called  the Duhamel integral
method  okay so  now  once  you know the  local  variation  of  the   temperature  now we can



calculate all the  other things like the w heat flux for  example so now for example in this case
we had varied the w temperature and  now for the varying w temperature  case we want to
calculate what is the  corresponding variation in the w flux  the w flux also varies right so it is
not  a  constant  anymore  the w flux  also keeps  varying with the  fixed  location  so we can
calculate an X right.
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And expression for  so the local fault flux can be estimated  as this is a function of X of course
and  that will be written as T w zero  - P ∞ into H zero , x   + integral 0 to X its data X into DT  w
by D  ζ 2 D  ζ where your H of   ζ , X is nothing. But - K D  Ф by D Y  ζ X , y = 0  right my this
is my definition of heat  transfer coefficient - - K DT by dy  by T w - T ∞  okay so fee is nothing
but your t -  T ∞ by T 1 - T ∞ so  this is your heat transfer coefficient  so if you differentiate this
with  respect to Y at y = 0 you can  replace your fee as directly now that  - KD DV by dy is
directly H okay now  so how do you calculate the local heat  transfer coefficient so already if we
know for cubic profile my DV by dy at y  = 0 what is the value  - 3 by 2 � T okay so also I know
the  � T okay so how do I know that  because  � T is =  � into   ζ okay and I have got an
expression  earlier which we derived for the flat  place flat plate case with unheated  starting
lengths okay. 

So that comes out  as 0.9 76 by Prandtl number to the power  one third one - so the unheated
starting  line there was assumed as X not in any  generic case where you know the location  of
the unheated starting length you can  replace the text not by the Z here the  whole power three by
four entire thing  raised to the power one-third right so  this was what we derived for flat plate
with unheated startlingly so this has to  be substituted into this expression to  calculate the heat
transfer coefficient  and do you remember how that comes out  you remember the expression for
heat  transfer coefficient that we derived  earlier.
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After we substitute this and also for � � we can assume a cubic velocity profile and we got an
expression in terms of Reynolds number right. So that in this we substitute into  this expression
for H we get a final  expression you recollect that 0.33 1k by  X into Prandtl number to the power
watt  1 / 1 /2x 1 -  ζ  by X (3)/ 4 the entire  thing power - 1 / 3 this is what we  had derived all right
so therefore you  substitute this value of H into this  expression now H is a function of  ζ  okay so
that  ζ will tell you what is  the unheated starting length for that  particular problem so when you
are  breaking this problem into multiple  boundary conditions for each  configuration you have
on one heated  starting link so it starts initially at   ζ = 0 then  ζ 1 then  ζ 2  like that you have
location of the  unheated starting length keep shifting.  

So that value of ζ has to be used in calculating the local heat transfer coefficient and that goes
into this expression right here okay, so that will give us the value of local w heat flux which is
0.33 1  k by X so this is a constant term which  will come out and the rest of the terms  that is T
w zero - T ∞. This is your term and H the other terms  we have taken out as constant now for  the
very first case H of 0 there is no  unheated starting length therefore this  will be 1  + you have
integral 0 to X  in this case you have the unheated start  starting length so there you put 1 -  θ by
X - 1 by 3 DT w by D   ζ easy all right so this is your  final expression for calculating the  local
variation in the heat flux all  right. 

So what we'll do is tomorrow we  will apply this to a problem I will just  do for a simple case
where you have a  linear variation what happens if you  have a linear variation then we will
calculate  the  heat  transfer  coefficient   and the  local  heat  flux w heat  flux   okay now what
happens now if you if you  have a continuous variation like this  and apart from that if you also
have  local jumps something like this. 
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So you have a continuous variation and suddenly you have a jump here and again you have a
continuous variation. So it is  what piecewise continuous okay, so in  such a case you know the
location of  these jumps maybe at  ζ 1 liter tour  so the same expression  + you have to  account
for these jumps local jumps  local discontinuities  okay  so then your expression for Q well
double prime will be H of zero , X   + whatever you had before   + what should you do so this is
the  same as this correct now additionally  you have this local discontinuity so  what you should
do to account for that  so once again that becomes locally  discrete so then you have to make this
again  discrete  this  becomes  H  into  �  T  for  continuous  variation  we  replace   the  discrete
representation with the  continuous thing now once you have  a discrete jump or once again. 

You will  have to replace this integral with the  summation okay so summation suppose you
have say K number of jumps okay I am  going to go from I = 1 to K �  T w into H that is it  okay.
So this will take care of both the  continuous variation wherever and  wherever you have discrete
jumps at  these locations you have you have to  write as � the and sum them ok so  this will give
you the local variation  of heat flux so with this we will stop  tomorrow we'll work out solve an
example  for assuming a linear variation in the  w temperature and we will see how to  calculate
you.

Duhamel’s method for varying surface temperature

End of Lecture 23
Next: Laminar External heat transfer with

Non uniform surface temperature

 



Online Video Editing / Post Production

M. Karthikeyan
M.V. Ramachandran

P.Baskar

Camera
G.Ramesh

K. Athaullah

K.R. Mahendrababu
K. Vidhya

S. Pradeepa
Soju Francis

S.Subash
Selvam

Sridharan

Studio Assistants
Linuselvan

Krishnakumar
A.Saravanan

Additional Post –Production

Kannan Krishnamurty & Team

Animations
Dvijavanthi

NPTEL Web & Faculty Assistance Team

Allen Jacob Dinesh
Ashok Kumar

Banu. P
Deepa Venkatraman
Dinesh Babu. K .M

Karthikeyan .A

Lavanya . K
Manikandan. A

Manikandasivam. G
Nandakumar. L

Prasanna Kumar.G
Pradeep Valan. G



Rekha. C
Salomi. J

Santosh Kumar Singh.P
Saravanakumar .P
Saravanakumar. R

Satishkumar.S
Senthilmurugan. K

Shobana. S
Sivakumar. S

Soundhar Raja Pandain.R
Suman Dominic.J
Udayakumar. C

Vijaya. K.R
Vijayalakshmi

Vinolin Antony Joans
Adiministrative Assistant

K.S Janakiraman
Prinicipal Project Officer

Usha Nagarajan
Video Producers
K.R.Ravindranath

Kannan Krishnamurty

IIT MADRAS PRODUCTION
Funded by

Department of Higher Education
Ministry of Human Resource Development

Government of India

Www. Nptel,iitm.ac.in
Copyrights Reserved

 


