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Heat transfer across a circular cylinder:

Walz Approximation

Good morning all of you, yesterday we were looking x the von Karman poll house in solution for
heat transfer problem I just want to make a small correction probably when we looked x the
solution for Ζ so we had the λ a value for the stagnation region as 7.0 5/2 and the resulting
expression for Ζ so we have to serve hard.
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To  solve  this  OD  and  the  solution  as  a  combination  of  the  homogeneous  and  the  non
homogenous parts came out 0.669 9 / Pr okay so you can look at the non-homogeneous part. Is
actually  based basically a constant so that is why  we know the particular integral has to  be a
constant okay if it is a function  of X in any form then we have to assume  that particular form
and you have to  calculate the particular integral and  coming to this particular  equation now this
is for the case where  we have flow past a circular cylinder  you have the heated circular cylinder.
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Okay and this is the stagnation value of  λ which corresponds to seven point  0 five two so now
at X is = to  0 this is where you are starting your  X okay so you should be careful that the
boundary layer thickness is actually not  0 okay because the stagnation flow  comes ahead and
then it basically  bifurcates like this so you have a  certain value of boundary layer  thickness and
the same thing holds true  for your thermal boundary layer  thickness also.
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You so you have to be careful then when we stated that at X is = to 0 we came to the conclusion
that the  constant is 0 essentially because of the fact as x2 tends towards 0 the  solution will go it
to ∞ okay  because this is a negative power so in  order to make this value of Δ T that  is the
thermal boundary layer thickness  finite at X is = to 0 this  constant has to go to 0 okay so this  is
why we put this constant as a  problem I did not explain it very  carefully so you have to be
careful  that   at  the  stagnation  region  both  the   thermal  boundary  layer  thickness  and  the
momentum boundary layer thickness are  both non0 okay and therefore in order  to may give a
finite value of Δ T.

So your constant has to be 0 that is why the final solution was cube is = to 0.66 99 / and from
this we have calculated the expression for a self okay so this is I just want to clarify before we
proceed  further  today  we  will  introduce  a  smaller  approximation  to  the  entire  approximate
method and this is also called as.
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Was approximation some  people also referred this to a straights  approximation I am not sure
why this is  attributed to two people I do not know  the historical reason but some books  some of
the more recent books may refer  this to all is approximation in some of  the earlier books refer
this to a  straights  approximation and what essentially  happened is this person walls he pointed
out that we had defined this function H  of K right so a complex function which  was function of
F 1 F 2 K and so on so  he said and we were thinking that we can  construct a lookup table where
we will  change the values of λ   for different values of λ.

We will plot F 1 F 2 and therefore we can plot H  so he said when he did this plotting we  found
this H of K was actually a linear  function of K okay so and he got a curve  fit of a straight line
which was 0.47  _ 6 K so he just simply plotted H of  K as a function of K at k = to 0  this was
like 0.47 and then it was  decreasing like this.
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Okay so this was a  very good news because now since this is  a linear relationship we can
simply  directly use this to calculate Z okay so  we know the expression for the momentum
reduced momentum integral equation which  was DZ / DX is = to H of K / u   ∞ so this was the
expression that  we derived after we substituted those  velocity approximate velocity profiles
finally where what is your z del 2  square / μ so this is nothing but a  parameter which involves
the momentum  thickness okay so this has to be  solved in order to get new values of Z  and then
we found from there you  iteratively solve for new values of  λ  and keep doing this as you keep
marching from one region to the other  region till it separates.

Okay now this  was because we did not know a very good  functional relationship for H of K so
now when Wald's plotted H of K as a  function of K we found this is nothing  but you can fit it
very nicely with a  linear line and therefore the linear  approximation was derived now we will
substitute this x this expression so  this will be 0.47 _ 6 K / u   ∞  okay so this is called the walls
approximation the rest of the thing is  it is just how do we now simplify this  equation now
directly we have DZ / DX  is = to this we can integrate it out  so one more step we can write this
as u   ∞ DZ / DX is = to 0.47.
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Anybody remember what K is Z x D u   ∞ / DX this is coming  essentially from the pressure
gradient  parameter okay  Z x D u  ∞ / DX right so  therefore this is a function of K is  nothing
but basically a function of Z  okay so it is wiser to put this in terms  of Z D u  ∞ / DX now you
see we  have  an equation  directly  for  Z okay  which  we can integrate  it  out  we can  also
rearrange this as u ∞ power  6 Δ 2 square / μ so I am going to substitute my Z as Δ 2 square / ν so
this can be rearranged in this manner  Oh point 4. 7 u  ∞ power 5 okay so  now you can expand
and check so this  will be the same so you have ν is a  constant which can be taken out so you
have D / DX 1 / μ so we can take  Δ 2 square.

And u  ∞ so this  will be 6 x u ∞ power 5 Du ∞ / DX + I have u  ∞  power 6 okay 2 Δ 2 x little T
Δ 2 / DX is = to 0.47   ∞ power 5 okay so I have six and  now my Z is nothing but ν square Δ  2
square / ν I have this so I can  divide throughout / u  ∞ power 5  so this will give me Δ 2 square /
ν leave ∞ this is 6 leave ∞ / DX + u  ∞  - Δ - Lee Δ 2 / DX is = to  0.47 so this is U  ∞ so this is
six set D u  ∞ / DX and I have u ∞ yeah so this DZ / DX is nothing but 2 Δ  2 x D Δ 2 / DX that
is = to  1 so therefore you can you know all this  can be combined x one neat way of  clubbing
together this particular term.

And this will be nothing but the  expanded version of this okay so now with  this we can we have
an expression  directly in terms of Δ 2 which we  can integrate it out okay so if you if you
integrate it so integrating so we can  say Δ 2 square is = to 0.47 new  / u  ∞ power 6 of X okay
and so  I am going to integrate the right-hand  side which will be 0 to X u  ∞ to  the power 5 of
some Z DZ okay so this is  my final expression that I now get so I  simply integrate both sides.
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Okay and just  I write this in terms of Δ 2 square  so therefore I will call this as number  1 so
your earlier expression for solving  for Z in fact that is solving for Δ  2 was doing numerically
you have to  solve this OD numerically now once you  introduce this linear slope  approximation
ok constant  slope  approximation x this  and you directly   integrate  it  out you get a simpler
integral okay if your function is known u  ∞ you substitute here you  directly integrate it out and
you can  get an expression for Δ two right  away so there is no numerical work  involved in this
okay although this is  an approximation you know nevertheless.

It is a very good approximation in fact I  can give one homework where you can  check this that
this linear  approximation is valid okay you can  calculate H for different values of K  plot and
check for yourself all right so  this is the thing and here we have used  the fact of course then you
integrate it  out they have a constant here constant  of integration okay so now what  basically X
is = to 0 when you  are integrating this with respect to X  is = to 0 you are you  ∞ that  you are
using so this entire term has to be 0 because I have the stagnation point your  free stream velocity
is 0 so therefore  this entire term will be 0 therefore  the constant will be 0 okay so we have  used
that that at X is = to 0 to R u   ∞ over 6 Δ 2 square / ν  = to 0 okay so it is not that your  boundary
layer thickness is 0 but your u ∞ is 0 which leads to this  particular conclusion that the constant



Is 0 therefore this is the final  expression okay now we will apply this  again for the cylinder
problem earlier  we had I had given you the algorithm to  solve for the cylinder case in a more
rigorous way solving the OD in  numerically  okay so first we will look at the  cylinder problem
near the stagnation  region  so if you substitute the profile of for  u  ∞ or u  ∞ is basically  two V
0 V  ∞ R 0 /  sorry x / r 0 so if you substitute  this and you integrate it out you get  Δ 2 square is =
to 0.23 5 x μ x R 0 ÷ / V  ∞ X  power 6 okay so this is basically 0.47  ÷ / 2 and you have V  ∞ X
power 6 ok that is U  ∞ power 6 actually everything is power 6.

But  inside the integral also when you  substitute for u  ∞ to the power 5  the extra terms cancel
out so you have Z  power 5 DZ is what is left out inside  okay so you are basically substituting
for u  ∞ here u  ∞ power 6  here u  ∞ power 5 so you have to  you in to V  ∞ / r-not which is  the
same ok so then you will he'll be  left with the factor that this is V   ∞ x V  ∞ ÷ / R  0 here you
will have X power 6 here  you will have C power 5 so this you can  integrate out directly so this
will be  point so if you integrate this.

(Refer Slide Time: 15:25)

Will be nothing but X power 6 / 6 okay so 0.235 ÷ / 6 will be point 0 3191. X power 6 X  power
6 cancels so you have knew R  0 / v ∞ okay so therefore  there you go you directly have got an
expression for the momentum thickness without solving the ODE  rigorously  you know near the
stagnation point  directly you find it okay and you can  also calculate the value of λ   for doing



that  we need to estimate  the  boundary layer  thickness  which is   estimated  so how do you
estimate the  boundary layer thickness Δ square  there is an expression because Δ is  a function of
λ  okay what is the original  expression how did we define Δ  λ  ν / D u  ∞ / DX right so  we
defined this parameter λ  like  this  okay so Δ Square D u  ∞ / DX  / ν is that right okay so
therefore  for this particular case we can  substitute D u  ∞ / DX which is  nothing but a constant
- V  ∞ / r  0 and that comes out to be λ   / 2 x ν R 0 / V  ∞ ok  so now we know λ  Δ as a  function
of λ  ok we have an  expression for Δ 2 so we can  calculate the ratio of Δ 2 / Δ  the whole square
so you let me know what  this expression will be so if you take  the ratio of these two VR 0 / V
∞ will be cancelled out okay this  will be point 0.391 x 2 /  λ.

Which is 0.078 - what we are  trying to do is we are trying to solve  for λ  ok  so Δ is a function
of λ  and we  have we have an expression for now Δ  2 / Δ the whole square which is now  a
function of λ  we also have  derived Δ 2 / Δ square we have  expressed this as another function of
λ  do you remember that originally  that is 1 / 63 square 37 / 5 _  λ  / 15 or you can say that this is
= to √of this and then  you can you can write like this λ   square / 144  okay all right so now we
have a  expression algebraic equation in terms  of λ  since Δ two / Δ is  originally this in terms of
λ  okay  now we have another expression for this  particular problem.

Which is like this so  we can equate both and you can find out  λ  if you do that in fact this has
to be also solved iteratively so λ   will come out as 7.25  okay now you can compare this with the
λ  that we got earlier that was  7. 05 right so it is  slightly off but nevertheless it is very  close
okay so I think this is now μ CH  easier to solve than the earlier case  what we will do is now go
ahead and  complete the heat transfer solution so  for the heat transfer problem whatever  we
have derived we have to assume the  cubic polynomial  and then we have  substituted x the
energy integral and  we have finally calculated the  expression for Ζ. Which is the ratio of Δ T / Δ
s point this is there is Ζ cube this is .69 / frontal number right so the same expression is valid
because as far as the energy integral is concerned.
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All  you are doing is you are substituting the  velocity profile approximate velocity  profile
approximate temperature profile  and finally you have expression in terms  of Ζ which you are
getting the  solution for okay now when you are  getting the solution you are substituted  a value
of λ  there okay the  original expression was something like  this.

So your expression was Ζ D / DX  at Ζ Square  √of λ  12 + is =  to 90 up till here everything is
the  same okay so this is coming from  substituting x the energy integral  right for the velocity
profile and the  temperature profile and simplifying a  little bit we are where we are  neglecting
all the higher-order terms of  Ζ and only Ζ square comes finally  so now from here we should use
the  particular value of λ.

Which we got from the walls approximation okay so that is basically 7.25 instead of 7.05 which
we substituted earlier if you do that earlier you got your Ζ as 0.75 875 / PR to the power 1 / 3
now with this you will be getting Ζ as 0.864 / PR power 1 / 3 so only the constant will change a
little bit.
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Because now your λ  is slightly  different if you substitute it your  solution for Ζ will be just
slightly  differing / constant it will be 0.864  / PR power 1 / 3 so that is it so once  your Ζ is
determined. You can  calculate your heat transfer coefficient  and your nusselt number okay so
you know  that the heat transfer coefficient is 3  / 2 K / Ζ Δ okay so the  expression for Δ is the
same for  both the walls approximation and the original von Karman pool house and  solution so
only the value of Ζ is  differing slightly if you substitute  this you will be getting an expression
for H which is like point six for Phi K  /  r- 0  x prandtle number or 1/3 re power half  okay now
if you define your nusselt  number H x D 0 / K okay so this  will be what 1.29 prantle number
power  one-third re power half okay where you  are is nothing.

But V  ∞ D  0 by new so compare this with the  expression that we obtained yesterday  you
remember that expression when we  used λ  7.05 what was the expression  that we got  one point
once you know that that is the  exact solution 1.291 correct okay so this is 1.291 so finally in
terms of nusselt  number there is any hardly any  difference okay whether you use the  walls
approximation or not so that is I see this is to just give a good  idea that walls approximation is
pretty  good especially in terms of the heat  transfer calculation you get a very good  agreement
with your poll how since solution as well as your exact solution  is what 1.145 and that  has
prantle number 0.4 independent.

So  there is some difference between the  exact similarity solution and the  approximate solution
but using the  waits approximate walls absorb  approximation is much more judicious you  know
you get faster solutions than  solving the OD now the same problem  where you are looking at



circular  cylinder can be done by using walls  approximation right okay so the same way  you
take the profile the complete  profile u  ∞ of x is = to 2 V   ∞ θ X / r-0 where your X is = R 0 Θ.

(Refer Slide Time: 25:45)

You  right you take your full profiles which  is coming from the potential flow  for describing the
free  stream velocity  for  a  circular  cylinder  and that  can  be  substituted  x  this  okay maybe
expression number 1 right here so that  u  ∞ can be substituted now you  can integrate it now you
have to be  careful when you integrate it you are  integrating sign power 5 X / are 0 there okay so
in the stagnation region  you have made the approximation that for  small values of x / r 0 θ x /  r
0 is = to x / or not but if  you are looking at integrating for the  entire flow from the stagnation
point  still the separation point you have to  use this profile as it is okay and when  you put this
profile you have θ power  v term here θ power sixth term.

So if  you are finding it difficult to  integrate you can use some  numerical techniques such as
you know  trapezoidal rule for integration simple  trapezoidal rule or even simple  rectangular
rule will work so you have  to start from some point right here at  this point you know the value
of  Δ  to  that  that  is  what  you have determined  okay you also know the value of  λ   and
everything so you can start from  that point 0 to some point next okay  so you can keep on
integrating that way  okay till any X that you want till you  go to separation okay for each point
that you go so now you calculate the new  value of Δ to square and therefore  you can calculate
the new value of  λ  like this because you know the  ratio of Δ two / Δ correct for  each value of x
you know the new value  of Δ 2 / Δ you also know the  original form original relationship you



can equate those two and solve for  λ  so  we will give you solutions for λ   basically okay so this
you keep doing  till you hit separation point.

Where your  λ  becomes = to _ 12 so  now this is a little bit more easier you  can do this on an
excel sheet you do not have to program it so you can simply do  numerical integration and you
can solve  this equation also you know you can find  roots of this in an excel sheet  itself so that
will give you again the  boundary layer thickness and the  momentum thickness and also the
separation point so everything can be  obtained from the walls approximation  okay then this will
be nearly as good as  doing it / the solution numerical  solution to the OD.

Okay so in fact I  will give the next assignment which will  be assignment 3which will include
all the integral solution problems I  will also give ask you to do this for  scepter cylinder and see
for yourself  how you can basically find the  separation point and get expression for  boundary
layer thickness momentum thickness okay so the same thing can be  done for any wedge problem
you know the  Falkner Scan solutions where you had  assumed some kind of a wedge flow and a
velocity profile of this particular sort.
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Now you can apply the walls  approximation you can substitute for u ∞ here you can integrate it
out   okay and finally  you can  calculate  the  value  of  λ   and from there  of  course  you are
boundary layer thickness and again you can use that x the heat transfer  problem where you
substitute the  expression for Δ and the particular  value of λ  you calculated you can  derive the
expression for nusselt number. So you can do this for any value of M  okay like the way you did
your  similarity solution you can do this and  you can compare the result with the  similarity
solution you will find the agreement once again is pretty good.

Okay  so any problem with pressure gradient  and we handled with the walls  approximation
okay so probably we will I  will stop here but I will probably will  have some kind of a small
discussion so  if you have any doubts because I will  start I have one more last topic left  under
integral method which is  non-uniform temperature boundary  condition so far we have assumed
and the  entire plate is heated with the uniform  temperature or uniform heat flux in most  of the
cases that is not true okay the  profile will be varying.

(Refer Slide Time: 31:00)

So what happens  if you have a variable temperature  profile okay so we cannot do with the
similarity solution this kind of a  problem of course you can use similarity  solution if it varies



only linearly but  if it is any other variation you have to  do integral solution so we will see for  a
flat plate case what is the technique  to how to introduce a non uniform  temperature boundary
condition how do we  solve this okay so that will be the last  topic I will take that about a couple
of  hours next week before your quiz 1 okay so quiz 1 will have all the  topics till your integral
solutions.

So pretty much training any doubts that you  have in this I hope you understood the  walls
approximation because you will be  now using this to solve this flow past  circular cylinder okay
so if you have  any questions you please ask me is it is  it clear you have you understood huh
this is just a dummy variable yeah this  is just a dummy variable you can if you  if you are having
say CX power M this  will be C Ζ power M so that will  be  just a dummy variable  and it
indicates  that whatever upper limit till where you  are interested to integrate.

So that will  be used x the dummy variable okay so  earlier X indicated  some arbitrary location
now when you are  integrating it you have to use the dummy  variable because you should not
confuse  this will with the limit of integration  okay so many a times we use the same  thing you
know but we know that we  should use the upper limit but to  differentiate it clearly strictly
speaking you always have to use a dummy  variable okay so you are clear with all  of all of this
like how to calculate  your Δ - numerically and all that  you have to numerically integrate it by
representing rule you can start  from say  the stagnation point ok assume this is a  trapezoid
between these two so you can  if you are integrating to the first  point it is just only one step if
you  are integrating somewhere till somewhere  here you have to assume any trapezoids  and
sum them all together so the area  under each trapezoid sum them all the  trapezoids together will
use it will  give you the area under the integral  basically so that is that is the  approximation that
we are so at each  location so you calculate the value of  Δ - and so like this.

 You will have  an expression for Δ - right here  right now we have completely there is no
dependence on X here ok so there when  you are putting a sign profile there it  will have a
dependence on particular  value of x so for that particular value  of x you will have a particular
constant  okay for Δ - okay  so and then you now this is so this is  the expression for Δ - this
expression for Δ will be there this  is again a function of the position  because you are now
differentiating sign  profile okay so there will be a X  dependence so for each position the  value
of Δ 2 and Δ will be  different and that you take the ratio.



So  you will be getting an expression in  terms of λ  okay only this constant  will keep changing
for each location and  then you can solve this find roots of  this okay get the new value of λ   and
you know that  whether we are the region is know as and  when the λ  keeps going negative and
increasingly negative you know that you  are approaching close to the separation  point and then
you keep doing this  integral till we are at a particular  point where λ  becomes _ 12  and then
you know that you have hit the separation okay so all this can be  done in a excel sheet you know
you do not  have to write any program for that  separate. 

Heat transfer across a circular cylinder:

Walz approximation

End of Lecture 22

Next; Duhamel’s methods for varying surface temperature

Online Video Editing / Post Production

M. Karthikeyan
M.V. Ramachandran

P.Baskar

Camera
G.Ramesh

K. Athaullah

K.R. Mahendrababu
K. Vidhya

S. Pradeepa
Soju Francis

S.Subash
Selvam

Sridharan

Studio Assistants
Linuselvan

Krishnakumar
A.Saravanan



Additional Post –Production

Kannan Krishnamurty & Team

Animations
Dvijavanthi

NPTEL Web & Faculty Assistance Team

Allen Jacob Dinesh
Ashok Kumar

Banu. P
Deepa Venkatraman
Dinesh Babu. K .M

Karthikeyan .A

Lavanya . K
Manikandan. A

Manikandasivam. G
Nandakumar. L

Prasanna Kumar.G
Pradeep Valan. G

Rekha. C
Salomi. J

Santosh Kumar Singh.P
Saravanakumar .P
Saravanakumar. R

Satishkumar.S
Senthilmurugan. K

Shobana. S
Sivakumar. S

Soundhar Raja Pandain.R
Suman Dominic.J
Udayakumar. C

Vijaya. K.R
Vijayalakshmi

Vinolin Antony Joans
Adiministrative Assistant

K.S Janakiraman
Prinicipal Project Officer

Usha Nagarajan
Video Producers
K.R.Ravindranath

Kannan Krishnamurty

IIT MADRAS PRODUCTION



Funded by
Department of Higher Education

Ministry of Human Resource Development
Government of India

Www. Nptel,iitm.ac.in
Copyrights Reserved


