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Lecture 20
Integral method flows with pressure gradient

(von Karman –Pohlhausen method)
So in today is class we will look at some  more approximate solutions but this time  we will take

into account the pressure  gradient term know in the last couple of  classes we have ignored the

pressure  gradient we have done the approximate  solution for flat plate and we have  assumed

they say linear profile and we  saw with the linear profile you get some  kind of number which is

in terms of the  boundary layer thickness and the skin  friction coefficient there little bit  off from

the exact solution if you  assume a cubic profile it is much closer  okay.

So it I mean it is something to do  with the right boundary conditions that  you are satisfying so

you start with the  wall boundary conditions which are to be  satisfied and then go to the free

stream  boundary condition so if you satisfy  those necessary boundary conditions  definitely

your  solution  accuracy  will   improve and today what  we will  do  is   will  extend this  basic

approximate  methods to also non Blazes cases and we  will start with a very general solution.
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 And this solution is called as Von Karman Pohlhausen  method  okay so this is also an extension

of the  boundary layer integral method but this  is applied to any general case now you  can think

that this is a Falkner Skan  case instead of a similarity solution we  are doing this by new by the

approximate  methods so this method was first  introduced by Pohlhausen  so that is why  it was

named after him and in fact not  only by that not only by that this  name is given as Pohlhaus

Method.

But  also Von Karman was involved because it  was Von Karman who has who had given the

idea to Pohlhausen  and  von Karman  was a student of prandtl and he gave the  suggestion to

Pohlhausen  that we can  extend these approximate solutions to a  class of problems including the

pressure  gradient so therefore this method was  named after both these pioneers and  called as

Von Karman pohlhausen method.

And  this  is  a  complicated  method  in   terms  of  solution  so  later  on  it  was   simplified

considerably / a person  called waltz   and this came to be known  as the walls approximation

okay the  waltz introduced a further approximation  to the integral  solution of Von Karman

pohlhausen some in some books this  is also referred to as Thwaites  approximation okay so both

mean the same  thing the same kind of approximation  they have introduced okay.

So the basic assumption in this case before we go  into the Von Karman Pohlhausen let us rewrite

the boundary, boundary layer integral equation for a generic  case.
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So D / DX okay so this was the generic  momentum integral that we had derived  where what is

your Δ this is your  momentum integral okay so one over you  can write this is one over u  ∞ R  I

will take the U  ∞ inside so 0 to Δ 1 - U / U  ∞  into U / U  ∞ DY ok and Δ 1  is your so this is

your momentum  thickness or momentum integral this is  your displacement thickness 0 to Δ 1

U / U  ∞ DY ok .

So in the  case of Flash is solution we ignored this  term and then we simply had only the

momentum integral and then we  substituted the approximate profile and  integrate it will doubt

in this case we  have to also see the term which  includes the displacement thickness okay  so

now the next step what we are  going to do is to make a guess for the  approximate velocity

profile.

Now in this  case you have included this term because  your u  ∞ is going to be a  function of X

so this includes any kind  of general case including the Falkner  Skan which problem now  in

order to first substitute you know we  have to make a guess value so what, what Von Karman

Pohlhausen did okay  in fact  Pohlhausen  profile.
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Was  something like this he used a fourth  order kwatick  polynomial A + B Η  + C Η 2  + D Η 3 +

C Η4 to power four okay so  where your Η was defined basically yes  Y upon Δ okay so he

assumed a fourth  order polynomial okay not a linear not  the quadratic neither cubic okay so

why  he did it  in fact so in order to satisfy what we  call this important boundary conditions  and

when you include also the pressure  gradient another boundary condition has  to be satisfied

okay.

We will  see  those   following  boundary  conditions  which  have   to  be  applied  to  find  these

coefficients  so at Y = 0 so what is the  boundary condition U = 0 that is  the first boundary

condition and at Y  =  Δ  your  U  should be equal  to your ensure two boundary conditions  we

have so we need three more okay so at  y = 0 what else okay so D2 U / DY2 now in the case of

Blazes solution we made this directly a  0 from the momentum equation okay so  if you write the

momentum equation at  the wall  so at the wall the momentum terms the  inertial terms are 0

okay so you are  friction term exactly balances your  pressure gradient term unlike in the  blushes

clays case where this is 0  and therefore this is 0 okay.

So you  can write your new D2 U / DY2   as 1 / Ρ DP / DX so this is  your condition and the wall

and also we  know that outside the boundary layer if  you go out if you write the momentum

equation there you do not have any  frictional term and you do not have any V  velocity you have

only the velocity in  the X direction okay that will be u   ∞ D U  ∞ / DX should be  exactly = 1 -

1 / Ρ DP /  DX okay set Y going to  ∞ this is  at Y = 0 and we also have seen  that in the boundary



layer   approximations  your DP / DY = 0  therefore P is approximately the same  anywhere

therefore we can replace this  term 1 / Ρ DP / DX with U  ∞  so this will be - U ∞ U   ∞ / DX this

is a very important  boundary condition ok.

Now we have three  so we need two more so now at y =  Δ what is the other boundary  condition

this has to be anyway  0 because the profile velocity equals  U ∞ and there is no friction  there so

outside the boundary layer so  it has to satisfy the 0 gradient  condition ok and finally the last

condition will be  so in terms of the order you see we  started with the wall this is you equal  to 0

and then so we do not know what  is the gradient at the wall but we have  applied a second order

derivative  condition at y = Δ you know  =  ∞ .

We know the first  order derivative should be 0 and  again the curvature also so this is, this  is

how all the five conditions are put  and if you substitute these five  conditions into the assumed

profile the  fourth order polynomial finally you will  get the following profile so which is of  the

form u / u  ∞ is =  capital F of Η +  λ G of Η  now where your f of Η is nothing but  2Η - 2 Η3 the

η 4 okay.

G of Η is = 1 / 6 and finally  your  λ is nothing but a  non-dimensional parameter which is the

ratio of the pressure force to the  viscous force it is written as ∇2 / μ into D U ∞ / DX  which can

also be written as - L  2 / μ so I can write my D U   ∞ / DX as 1 / Ρ U  ∞  into DP / DX so this

will become μ  into DP / DX  okay so is it clear so I leave this  as a exercise in fact I will give

you as a  part of the assignment where you can  substitute these conditions and you can  check if

you will be finally  reaching this particular profile okay.

Now the thing is this value this λ  carries some meaning here okay so  typically  if you are

looking at adverse  pressure gradient flows so where your DP  / DX is positive.
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 so for flows with  adverse pressure gradient typically what  should be a condition for  λ  your DP

/ DX is positive then this has  to be negative okay for favorable  pressure breaking so their DP /

DX will  be negative so  λ should be greater  than 0 and for flat plate case  λ  should be = 0 okay

so in fact  if you put  λ = 0 this  profile will become u / u  ∞ is  capital f of  λ so which is nothing

but the flat plate profile that you get  if you assume the quadratic polynomial  okay.

So that is the check now so this is  how you get it now you can also plot the  value of u / u  ∞ as

a function  of Η  okay so Η along the y axis so η  varies from 0 & 1 and same thing with u  / u  ∞

okay so now what I am  going to do is I am going to plot this  for different values of  λ now

theoretically speaking I do not know  what is the extent of  λ okay  λ  could range from -  ∞ to +

∞ but if I plot for  λ some  value like 30 what is observed is so  this is this is like 1.2 .

So  this is for  λ = 30 so the  value of U / u  ∞ crosses 1  somewhere which is non-physical

basically with this kind of this is an  approximate profile so you don't know  where it the profile

will  become  physical  or non-physical  but if  you use  very large values  of  λ like 30  this

becomes non-physical okay so now if  you go to smaller values like for  example  λ = 12 now

this  becomes well-behaved  it goes smoothly to 1 and then  λ of  0 this is your flashes profile

and   λ of say -12 so this is your  λ  - 12  λ = 0  λ equal  to 12  okay.

So now you could have it gone  to various negative values but we are  just plotting till here now

the reason  why we are stopping at - 12 is that  you can check from the profile you can  check the

condition for separation okay  so the condition for separation is what  D U / DY at Y = 0 = 0 so

if you put that condition and check the  value of  λ comes out to be - 12  that is the  λ 4 criteria



for  separation so that is why we are  stopping it 4 - 12 so B if you go  below - 12 so the

boundary layer  would have separated and you cannot find  solutions from the boundary layer

equations.
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Okay so that is the lower cutoff and the  upper cutoff is not thirty because it  becomes non-

physical so we are stopping  from the value of 12 so the  λ  values that we are usually interested

will range from - 12 to 12 okay  - 12 that is the extreme case of  separation and even when you

have very  favorable pressure gradients you should  not have such large pressure gradients  such

that the profile becomes  non-physical okay .

So this is the condition under which you know you are  doing the solution so a condition of

separation that is this you will check  that now okay.
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So let us check  D U / DY  so from this profile that will be what U   ∞ into so this I can write  as

D U / D Η into D Η / D Y okay  so my η is nothing but Y / Δ so D  Η / DY will be 1 / Δ so that

will be this x so you have to  differentiate F which will be 2 - 6  Η2  + 4 Η3 +  λ  into G Η okay if

you differentiate  that you will get  λ / 6  1 - 6  Η + 9 Η2 - 4 meter 3  okay so now D U / DY at Y

= 0  nothing but D U / DY at Η = 0  here which is C U  ∞ / Δ into  all these terms get knocked off

2 +   λ / 6 .

The condition for separation  is this should be 0 therefore  λ  will be - 12 this is, this is why we

are stopping there okay so we will  restrict our values of  λ to -  between  - 12 and 12 for most of

the cases that we  are interested okay so now so we have  estimated the approximate profile so

this is how pearl house ended he guest  assumed aquatic profile and then he  let us  look at the

values of  λ  because this is the separation case and  the other one goes non-physical beyond  that

and then this profile is now  substituted into the momentum integral  equation okay.

So if you if you now substitute this so  first we calculate the momentum and the  displacement

thicknesses from the  profile.
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So first if I  substitute  okay let me call this profile as let me  call this as number 1 okay this is

number 2, 3 and this is profile is  number  4  substitute  4  into 2 and  3 and calculate your δ1 and

δ2  so we will get Δ 1 / Δ so what  I am going to do I am transforming my  variable Y in terms of

Η okay so this  will be DY  / D Η into D Η so DY  / D η is nothing but Δ okay so  therefore I can

bring the Δ in the  left hand side so this will be Δ 1  / Δ will be the limits will become  now 0 to 1

into 1 - u / u  ∞  which will be 1 - this profile right  here which is F of Η - G of  λ  into G of Η.

Okay now if you substitute this profile  and you integrate it out you will find  that this comes out

to be 1 / 10 into T  -  λ / 12 okay let this call  let us call this as number 4 okay this  is number 5

alright so similarly if you substitute  into the momentum thickness and  integrated this is 0 to 1 ,

1 - F of  - G  λ your B η  sorry into F of Η +  λ into G  of Η  D Η so if you integrate it  out this

gives Δ 2 / Δ as 1 /  63 37 / 5 -  λ / 15 -   λ 2 / 144 so this I will call  as equation number 6.

So what I am doing this I am just  calculating estimating my an expression  for the momentum

thickness and the  displacement thickness in terms of   λ okay because now  λ is a  function of X

strictly speaking if you  look at a particular problem and if you  define your X like this your  ∞ is

a function of X your  λ is also a  function of X so because your boundary  layer thickness

changes with X and so is  your displacement thickness and momentum  thickness so everything

is a function of   λ which is internal for internal  function of X okay.

So  for  different  way   of  positions  as  you  keep  marching  from   the  stagnation  point  say

somewhere so  the value of  λ keeps changing and  accordingly the value of these different



thicknesses will change okay so once we  have estimated this we will now  substitute this into the

momentum  integral one so before that we are going  to slightly rewrite the momentum  integral

such that we will eliminate  terms which are appearing in terms of  Δ okay.

We will reconstruct the momentum integral so what we will do is  we will.
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 Multiply equation 1 / Δ to  buy new on both sides and rewrite so  this term can be split as you

can write  this as U  ∞2 D Δ 2 /  DX + you can write this as 2 U  ∞ into Δ 2 L U  ∞ /  DX + you

have Δ 1 U  ∞ be U   ∞ / DX is = so if you  multiply  so Δ to my new Δ to buy new so  this will

become simply Δ to okay  now if you rearrange this so what I am  going to do I am dividing

throughout /  u  ∞ okay so the first term here  will be u  ∞ Δ to / μ into D  Δ to / DX + I can

combine these  two terms because D u  ∞ / DX is  common to both.

Okay  the second and third terms and I can  write this as 2 + Δ 1 / Δ 2  into Δ 22  / μ into D U   ∞ /

DX so I can combine these  two terms in this way so the first term  will be twice so I am dividing

/ U   ∞ so twice Δ 22 / μ  into D U ∞ / DX the second term  the third term here will be so

basically  Δ 2 cancer so this is Δ 1 Δ  2 / μ into D U  ∞ / DX okay it  is just a little bit of rewriting

on the  right hand side I have Δ 2 / U   ∞ into me you / okay now this is  my modified slightly

modified form of  the momentum integral equation which I  will number as number 7 okay.

Now the  reason why we are rewriting this is now  these are in terms of Δ 1 / Δ 2  okay  and Δ 1 /

Δ 2 will eliminate  basically Δ okay and even terms like  Δ 22  into D u  ∞ / DX  is actually can



be written in terms of   λ and this particular expression so  all of them will in will not finally

involve an expression for Δ okay  so now I am going to introduce certain  terms here just to

simplify the equation  I am going to say.
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That Δ 22 / μ I will call this as some  parameter Z and this entire factor here  as a parameter K

okay so and since K is  a function of  λ because now K is a  function of Δ - 2 D  ∞ /  DX which is

nothing but a function of   λ okay  so K is a function of  λ and I will  I will express this ratio Δ 1 /

Δ 2 as some function of K which is  also a function of  λ basically  indirectly okay if I write f 1 as

a  function of K which is nothing but a  function of  λ and the term on the  right hand side I will

call this as  another function f 2 which is a function  of K which is nothing but a function of   λ

so therefore.
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My Z is = ∇  22  / μ and my K is nothing but Z  into D u  ∞ / DX and my K is  = now I can

rewrite this K now  this K is Z into D U ∞ / DX I  can rewrite this in terms of Δ 2 /  Δ the whole 2

into  λ  because this D U  ∞ / DX I can  write this as  λ into μ / Δ  2 okay so already this Z is Δ

22 / μ cancel so you have  Δ 2 / Δ the whole 2 into   λ so therefore I can express my K  in terms of

λ directly okay  so once again you see now the K is in  terms of Δ 2 / Δ okay .

And F 1  of K which I have introduced here is  nothing but Δ 1 / Δ 2 okay now  we have got

expressions for Δ 1 /  Δ 2 / Δ so I am just  going to take the ratio of these two  okay so this comes

out as 63 into 3  -  λ / 12 / this is 15 -   λ 2 / 144 okay so this is  just the ratio of Δ 1 / Δ 2  okay

now my F2 of K is nothing but Δ  2 / u  ∞ into DU / DY at Y  = 0 this is my RHS term so even

this can be written so D U / DY at Y = 0 we have already determined  that was coming out as 2 +

λ /  6 if you remember okay .

So this  is this is nothing but Δ 2 / U   ∞ into D u / D Η okay into so  in fact this is the D U / D Η

into at  Η = 0 into D Η / D Y okay so  DU / we have already the polynomial  for you if you put

that you will get 1  / 6 2 3 2 +  λ / 6 into 37 / 5  -  λ / 15 -  λ 2  / 144 so this will be the expression

for F 2 of K  okay so this D U / D Η = 0  we have already derived that is two +   λ / six okay we

have  we have   differentiated  the  profile  in  the   previous  step  you can  check  that  we have

differentiated the profile and at y  = 0 that council comes out as  U  ∞ / Δ into two +  λ  / 6 and U

∞ U  ∞ there  cancels so this becomes ratio of Δ  two / Δ okay so this which is  nothing but this

expression right here 1  / 63 okay.



If you are having  problem I will just maybe expand it so  this will be Δ 2 / U  ∞ into  U  ∞ / Δ

into 2 +  λ  / 6 okay so this entire term right here  is this  okay this is from the previous step when

we calculated D U /  D Η equal  to 0 into data  / device this  entire   expression okay this  is

Multiplied so U   ∞ this cancels now this is 2 +   λ / 6 into D Δ 2 / Δ so  we have already derived

an  expression for Δ 2 / Δ in terms  of  λ so this gives you the final  expression for so now we

have expressed  everything in terms of  λ okay so  that is a function of Δ 22  and  Δ 2 is a function

of  λ K is a  function of  λ f 1 is a function of   λ f 2 is a function of  λ okay.

So  now that we have everything so we can  substitute these expressions into the  momentum

integral equation of the form 7  and probably as you might have guessed  by now we cannot

solve this equation by  hand okay  so this is a tedious expression so we  will once again how to

use the numerical  method to solve it  so I will just cast it in the final form  so I can I can express

I can write my  Δ - D Δ 2 / DX in terms of Z ok  so I have Z is Δ 22  / μ  therefore DZ / DX will

be twice Δ 2  into D Δ 2 / DX ok so this will be  half of what DZ / DX okay.
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So substituting  into  equation number seven I can write this  as half of U  ∞ into DZ / DX okay

so I am writing this in terms of Z here  and the other terms we cannot do  anything they are just

there as it is  algebraic terms so this will be 2 +  F1 okay 2 + F1 of K multiplied by K this  entire

terms K on the right hand side  you have  F2 of K  okay  now K is a function  of  λ so therefore



this can be  written as DZ / DX is = H of K  / U  ∞ where my H of K is nothing  but what 2 F 2 -

2 times 2 + F 1  into K okay.

So this is the final ordinary  differential equation that I have to  solve okay  in order to get the

value of Z  and now Z is nothing but Δ 2 which  is nothing but the momentum thickness okay  so

once you get your momentum thickness  from this expression you know for a  particular value of

Δ 2 you can  calculate the corresponding value of   λ and therefore you can calculate  your Δ 1

and also your Δ okay so this is how this is how it goes  you know you have to solve this OD for

different values of Z and you know now Z  can be expressed in terms of  λ okay .

So for that particular value of Z you  have to solve for  λ and then you  calculate the other

expressions for  displacement thickness and the boundary  layer thickness so this is how we have

to numerically  solve this equation so to just give an  example in fact if you if you just  happen to

see this particular equation  this H of K can be predetermined before  it can be solved and kept as

a table  because it is purely a function of K  which is a function of  λ so for  different values of  λ

between -  12 and 12 you can get all these  functions right.

You can calculate now  this is a function of what F 2 F 1 and K  okay so you can get expressions

for K F  2 F 1 everything as a function of  λ  put it in a nice table and  therefore you can

determine H of K  directly okay so now this can be arranged  as a table now every time that you

solve  for new value of Z you put the  corresponding value of H of K  corresponding to that value

of  λ okay.

And then get the new value of Z and from  there you return my new Δ and  therefore you

determine the new value of   λ so from the lookup table you can  keep on taking the correct for

current  value of H of K okay so in fact all this  had been tabulated by Holstring Bohlen and if

you happen to look at the  book  by boundary layer theory by schlickking  so he has mentioned

he has tabulated all  these values know F 1 F 2 K H of K as a  function of  λ ok this has been

table in fact you yourself tend to that  as a very nice exercise you know this is  not difficult.

You take values of  λ  between - 2l and 12 calculate all  these parameters we just create a table

and once you do that every time you  solve for new value of Z and you  calculate new value of  λ

you have  to simply take the value of H  corresponding to that  λ that is it  okay so like that you

keep  marching  so   this  is  also  a  marching  problem you  start  from some point  maybe  the



stagnation point and from there you keep  marching for different values of X  so for each value

of x you get a new  value of Z you new value of Δ 2  Δ 1 Δ like that you keep  marching  till

separation okay.

So how do you know  whether it is separated so each value of  Z you now calculate the new

value of   λ so  λ comes out to be -  12 that means that at that point the  flow has separated okay

so this can be  applied to any kind of pressure  gradients you know adverse or favorable  for

favorable it is restricted to a  maximum value of  λ = 12 okay  for adverse pressure gradient it is

restricted up to the point of separation  that is up to  λ = - 2l .

So using this let us quickly apply this to a small case where it is flow past a circular cylinder and

we will see how we can use this algorithm to calculate all the parameters okay. so  I am I am just

going to use this final expression here.
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So flow past circular cylinder  so this is your cylinder with radius  let us call R or not and θ

therefore   the  coordinate  that  we  are  talking  about   X  this  is  the  is  basically  the  angular

coordinate the space swept by the sector  that is nothing but R θ okay and  when it is approaching

the  cylinder  the   flow has  a  velocity  a  constant  velocity   V  ∞ T  ∞ now once  it  comes

encounters the stagnation and starts  flowing past this then this becomes the  free stream velocity

which is a function  of X okay.



So for this particular problem  if you are looking at a region close to  the stagnation point how

are we going to  find the solution to the stagnation  point problem so once again in the  similarity

solution we did this okay we  took the stagnation flow for the Falkner  Skan solution and we

have transformed  that to a cylindrical coordinate system  and that,  that gave us the solution for

the stagnation region skin friction  coefficient as well as the nasal  number.

So here  you  similar way we will assume a profile  from the invades potential flow which  is

nothing but X Y or not okay so at X  is = 0 so this becomes 0 and  at X is = R naught / 2 so this

becomes exactly = twice of  U  ∞ okay so for this particular case  we are going to look at for the

region  close to stagnation point so I can  replace my sign X / R 0 as X / R 0 you know for small

values of  X / R 0  so therefore u  ∞ of X in  that particular region will be 2 V   ∞ into X / R 0.

This is  valid only close to the stagnation  region where your X / R naught is very  small so the

condition is X / R 0 is  quite small now the velocity  distribution we have already determined

and we have also determined the final  expression for DZ / DX now if you if  you are smart

enough and it quickly  observe now you are U  ∞ now here  is a function of X and at stagnation

point your U  ∞ is 0 okay so for  this expression to be finite okay if U   ∞ goes to 0 that means

DZ / DX  goes to 0 at stagnation point to avoid  that H of K should go to 0 okay.

So  therefore at the stagnation point the  condition is for the circular cylinder  case H of K has to

be 0 so we already  have the expression for H of K which is  nothing but this has to be 0 that

means 2 F2 of K - 2  into 2 + F  1 of K = 0 so if you substitute for  F 1 F 2 and K in terms of  λ

you  will get a nice cubic polynomial into a  cubic algebraic equation in terms of   λ this will be

147 point 4  λ2  so this is the resulting  algebraic expression that you will get .

If you substitute for F 1 F 2 so if you  solve this algebraic equation you will  get 3 roots because

it is a cubic  polynomial you will get the value of   λ one of the roots will be 7.052 the second

root will  be 17.75  third root will  be - 70 okay since our region of  interest is – 2 , 12 to 12  will

ignore these two roots we will   take only the root which gives you seven  point 0 five two

therefore the value  of seven  λ = 7.052  corresponds to the  stagnation point okay.

This is the value  of  λ stagnation point please  remember that at the stagnation point  also there is

a certain value of the  boundary layer thickness boundary layer  thickness is not 0 because here

the  flow comes like this and it divides like  this if you remember the 2D stagnation  flow for the



Falkner Skan which problem  where your M  = 1 okay the  flow comes like these hundred

bifurcates  okay and here the boundary layer  thickness is not 0 okay.

At the  stagnation point okay I am corresponding  to that you have a finite value of   λ which is

seven point 0 five  two okay so this value of  λ  corresponds to a particular value of  Δ in fact

okay so you can calculate  the value of boundary layer thickness  for this particular value of  λ

now  how do we do that how do we calculate  the value of Δ so we already have  expressions  for

λ which is nothing but ∇  2 / μ into μ u  ∞ / DX  you remember this is how we defined our   λ

okay.

So once you have your  λ  you can directly calculate your Δ  from here okay because you know

for this  particular problem what is the free  stream velocity gradient okay so  therefore your Δ 2

will be new   λ by which will be nothing but new   λ or this problem it will be 2 V   ∞ R 0 okay

so this is your  profile  alright so therefore your Δ 2  will be nothing but if you substitute  the

value of  λ 7.052  in the  stagnation region your Δ 2 will  be 3.526 into V R 0 / u   ∞ okay.
So if you multiply  and  divided by R 0 you can write this  in terms of the Reynolds number now

U   ∞ R 0 / μ so this becomes  the Reynolds number so you can get an  expression for Δ2 to Δ / R

naught in terms of the Reynolds number  okay so this is how you have you get the  expression

for Δ and now once you  get it this is valid only for the  stagnation point or the region which is

very close to the stagnation point.

Now  if you are interested in calculating the  flow past the cylinder from the  stagnation point all

the way where it  separates okay so it may separate  somewhere here for example maybe at 75

degrees okay so till separation you can  use this technique to mask our word and  calculate the

value of boundary layer  thickness the displacement thickness  momentum thickness also you can

calculate the separation point  okay.

The location where exactly it  separates okay for that you have to use  the complete velocity

profile okay so  use the full velocity profile  and you have to solve this ODI  numerical so you

start  from the  stagnation point  at  the stagnation point   you know the value of Δ from this

expression okay so you know the  corresponding value of Δ 2 and  therefore  you know the value

of Z okay.

So at the stagnation point you know the  value of  λ you know the value of  Δ so you know you

can calculate the  value of Δ 2 okay therefore you can  calculate the value of Z so that is  their



initial condition ok you start  from there you march from the stagnation  point you keep solving

this OD /  Euler's method you can get the value of  Z at each of those locations for example  you

can discretized this into 100 points  for example okay I am not putting 100  points I am just

giving a rough  estimation.

So for each of these points  you can calculate Z and on the right  hand side this is the value of Z

for the  previous point okay so H of K  corresponding to the previous point so  every time you

calculate Z now you can  you have to calculate the new value of   λ okay  so for that we can use

the expression  that is = Δ 22  / μ  and okay so let me erase this  okay.

(Refer Slide Time: 48:23)

So Δ to 2 I am  substituting from here okay  so this is nothing but this into Δ  2 and Δ 2 is nothing

but  this particular expression right here  okay so I am combining this expression  where I can

calculate Δ and put it  into this I can calculate my Δ to  and from there I can determine my

relation between  λ and Z so for a  given problem this is all fixed okay now  the value of ∇  λ is

to be  determined okay.

So for a given value of  Z that you solve so this equation is an  algebraic equation now this is not

so  straightforward to solve  by  hand you  have to solve it  iteratively again you  can use some

numerical method like  Newton's method or bisection method okay  solve this iteratively for the

latest  value of  λ at that value of Z so  now this will become from this value of   λ you are



already prepared the  lookup table you can calculate the  latest value of H and now you can go to

the next point get the value of Z.

And  again keep doing it so till you reach a  point where  λ reaches - 12 okay  at that point you

stop okay so this is  how you determine where exactly the  separation happens and also the

corresponding values of all the three  thicknesses boundary layer displacement  and momentum

okay so with that I think  we will stop here and tomorrow will  continue some this point to the

heat  transfer problem. 

Integral method for flows with pressure gradient
(Von karman –Pohlhausen method)

End of Lecture 20

Next: Integral method with pressure gradient:
Heat transfer
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