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Lecture 16
Similarity solution for flow and heat transfer with transpiration at walls

So  good  morning  all  of  you  we  are  continuing  our  derivations  for  similarity  solution  two
different kinds  of external boundary layer problems so we had looked at Falkner Scan solutions
and  the  corresponding  heat  transfer   solution  associated  to  Falkner  Skanvelocity   similarity
solution in the last  class and we had taken some special  cases for that where m = zero  indicates
flat plate and m = 1  indicates stagnation flow and in fact  the stagnation flow is very useful
because if you take for example the case  of flow past a circular cylinder. 

And if   you are looking at  the stagnation region  you can convert  the you can convert  the
coordinates from whatever you have here  to the cylindrical coordinate and you  can derive an
expression for Nusselt  number in the stagnation region of a  circular cylinder that is what we had
seen last day okay  so apart from that in fact the most  general generic case which we should
have done is to consider a case of a  boundary layer where you have  transpiration at the walls.
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Okay so the  Falkner Scan solutions that we did  consider no slip at the wall and no  transpiration
okay so in most of the  cases where you employ what is called as  boundary layer control okay so
you want  to control the boundary layer because it  is sometimes detrimental sometimes it is
beneficial so accordingly we may want to  control it to your requirement so most  of the times
you may have to remove the  reduce the boundary layer or if you have  a separation you want to
reduce the  separation so all these things can be  done if you actually not make it  impervious but
slightly porous okay.

 So  that means you allow some kind of  vertical velocity which could penetrate  through the
walls  of this edge okay so this is basically  your wedge angle b η pie  okay and your coordinate
system is this  is your u velocity V velocity and this  is your X and   y alright the limiting  case of
M  =  zero  leads  to  b  η   =  zero  for  which  you  have  the   flat  plate  case  where  you  have
transpiration from the walls of the  plate all right.
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So we will consider the similarity  solution for that today and in fact this  will be the most
generic case and you  can also apply the case that we derived  before where you say there is no
vertical velocity and that gives you the  solution we derived in the last class  okay so for this
particular case we will  look at only the this flat plate but it  doesn't matter we will apply the
general  Falkner Skan solution applicable to many  configurations so the similarity  equation that
we derived in the last  class is still valid. 

Because the  boundary condition is not going to  change the similarity equation right so  what we
did was simply  substitute for u u velocity V velocity  and also all the gradients derivatives
everything in terms of the similarity  variables so that is still  going to  remain the same and
therefore the  similarity solution that similarity  equation that we derived similarity  equation for
Falkner Skan solution is  still going to be valid .So I am going to  write it down.
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Okay so let us call this as equation number one this is your Falkner scan similarity equation okay
so the equation is the same the only thing that you need to modify is what the boundary condition
okay so earlier we put the boundary  condition that since u = 0 .

So  you are DF by D  Η at  Η = 0 so  this should be = 0 right and at   Η going to ∞ this should be
= 1 and apart from this what was  the other boundary condition that we  gave the Falkner Skan
case we just  talked to only about the flow right now  f = 0 okay so what does that  indicated V =
0 so this  corresponding to the boundary condition  V = 0 right okay so in fact if  you had look at
the expression for the  velocity V maybe I can just write it  down for your benefit  we go back to
yeah.

So that that is  basically V by u ∞ is =  half √of µ by u ∞  into X into  Η DF by D  Η - F so  this
was the expression for V so at the  at the wall we have already mentioned  that DF by DT = 0 so
in  order  to   satisfy  the  condition  no-slip  be equal   to  0  this  also  has  to  be  0  right  so  this
corresponds to the fact that we =  0 now in this case we cannot do that  because you have some
small velocity  transpiration velocity okay which has to  be specifically accounted for in the
boundary condition so therefore the  solution for the equation has to be  different because the
equation although  it is the same the boundary condition is  now different okay  so this is how
you are including the  effect of transpiration into the Falkner  Scan  solution so far this let me let
us look  at what is the appropriate boundary  condition.

 So now let us write down the  expression for V will let us derive it  from first principles because
now you  are u ∞ is a function of X ok so  let us derive from first principles and  see how it looks
so this is nothing but  D by DX the stream function in terms of  the similarity variable can be
written  as u ∞ µ X into f of  η right  so all of you agree so we had derived  this for the Blasius
case so the same  thing is valid only thing now your u  ∞ is a function of X okay so we  are
looking at solution to problems  where u ∞ varies as CX power M  okay.
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So if you now differentiate it let me  also do that once myself  - D by DX of we can take f out
differentiate by + you have square  root of µ ∞ UX x DF / D  Η  in fact this will be B total
derivative  here DF by D  Η into the  Η by  d x okay so  you can substitute for u ∞ in  terms of
CX power M so this will be M  + 1 inside the √okay so  this also can be written as C nu X power
M + 1 right so now how will you  differentiate it so you have - f of   Η so d by DX of this √of C
nu this is a constant so this is M +  1 by 2 right into X to the power M +  1 by 2 - 1 all right so
then +  you have √of C nu X power M  + 1 so you can also write this as  √of C nu into X power
M +  1 by 2 into DF by D  Η into D  Η by DX. 

 So now again we have to differentiate   Η with respect to X and we know our   η is nothing but
Y √of u  ∞ by nu X  okay now again you ∞ you have to  write in terms of X so this will be Y  √of
C by new so X X power M  - 1/2 okay 2x M - 1 by 2 so when  I say D  Η by DX so this will be
M  - 1 by 2 into y √of C by  µ into X power M - 1 by 2 - 1  okay, so this is what I get for D  Η by
DX. 

Which I can substitute here  okay so I can I can just write it  touch D  Η by DX in the next step I
am  going to substitute and simplify so this  will be - F of  Η M + 1 by 2  into X + X power M - 1
by 2 into  √ C nu + - C into so  what I am going to do is now my D  Η by  DX has √ C by µ
square  root of nu and nu cancels √  C into √ C is C. 

So  therefore I get a C and X power M -  1 by 2 - 1 x X power n + 1 by  2 okay  so what does it
give X power M - 1  okay so therefore I will have X power M  - 1 into I have M - 1 by 2 into  y



so I have Y into M - 1 by 2 into  DF by D  Η okay so finally this is what  I get for V velocity  in
fact you need to know this when we  derive the Falkner Skan solution I think  I omitted these
steps because I want you  to do that yourself now I have done that  you can substitute then for u
and V into  the boundary layer equations and finally  use cancel of all the common terms you
will end up with this equation .

Okay I am  doing the same thing now because we are  more interested in the V velocity at the
wall therefore I am doing this  specifically now so now at the wall  you are y = zero right so what
happens is the entire term disappears  okay so therefore at y = zero let  us call this as let us call
the vertical  velocity for transpiration as some  V  small s okay so therefore this will be  = V
small s which will be - F  of 0  Η = 0 M + 1 by 2 X  power M - 1 by 2 √of C mu  ok so this is the
expression for the  transpiration velocity at the wall now  what can you say what can you say
about  the variation of the transpiration  velocity with respect to X now the  transpiration velocity
need not be a  constant okay.

 So you see from here it  says that it can vary with X okay but to  find a similarity solution this
particular boundary condition gives us a  constraint for the variation of V s so  can you guess
what should be  the variation of V s how it should vary  and it vary in area arbitrary manner say
some x power n suppose it varies as X  power M let us say okay so what  will be the expression
for f of 0 we  have something to the power dependence  on X right so once you have dependence
on X is that a similarity solution so it  will not be a similarity solution right  so it will not lead to
if you have a  boundary condition in terms of F. 

Which  is a function of X so it does not give a  similarity solution  so therefore in order to make
sure  your f is a constant so only a constant  value of f can lead to a similarity  solution it should
not vary with X or Y  okay so for that case so your vs has to  vary as X power M - 1 that is the
only possible way correct  only then your f of f at y  Η can be  equal  to 0 can be a constant okay
so from this  it clearly demonstrates that you can  have a similarity solution to the  Falkner Skan
problem with transpiration  only if your velocity varies as X power  n - 1 by 2 so only then the
similarity solution is possible  okay only then your F of not is a  constant for a given value of M
then  your F of not will become a constant  okay.

So now putting this condition we can write in terms of the boundary condition for f of f at  Η =
zero let us call this as equation number  two.
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So therefore from two you can  in fact you can also expand one step  further you can write your
C in terms of  u ∞ by X power M so let you can  write C is = because that is your  condition here
for the free stream and  you can substitute into two so that will  give you V s as - M + 1 by 2 into
F of  0 into so if you multiply and  divide by u ∞ I think we should  be getting something like u
∞ of  X by √of u ∞ into X by  nu okay  you please check this is correct u  ∞ by X power M. 

So this is  basically √of u ∞ that  is correct yeah  X power m the thing that you give you  square
X power - half  yeah right so that should lead to this  particular form right so this is nothing  but
√of u ∞ by square  root of x by nu ok so if you substitute  this into c  there you will be  ending up
so why am doing the same this  rewriting in terms of Reynolds number  that is all okay so now
from here you  will get your F of 0 as - 2 by M  + 1 okay into vs by u ∞ of X  now this is nothing
but what Reynolds  number to the power half so that will go  to the numerator  so this is your
boundary condition now  okay so you have put a condition on. 

The  variation of your transpiration velocity  with your exit has to vary this way for  a given
value of n okay so when do  you say that you have a similarity  solution so you have of course
reduced  your partial differential equation in  terms of the similarity variable  Η you  do not have
any X&Y here okay also the  boundary condition should not have any  terms in terms of x and y
okay now when  you write down the boundary condition  for F of 0 now you see it is a function
of some X okay, if you want to make this  independent of X and make it a constant  it has you
have to make sure that your  transpiration velocity varies exactly by  the same factor okay.

 So that is this  that this is the constraint that is  required in order to get a similarity  solution for
this particular boundary  condition so on so that as this has to  satisfy this particular constraint
okay  for a given value of M your V has to  vary according to along X as this  particular relation
okay only then you  get the similarity solution because once  you rewrite now what you are



saying is  this entire term is now what constant  okay if your V as varies that way your F  not has
to be constant so this entire  term has to be some ratio which is  constant or fixed okay. 

This ratio is  called the blowing ratio  okay you can give maybe some other  notation to that I do
not want to give  anything I just want to describe V s by  u ∞ into re X basically is  nothing but
your blowing ratio which  means that is something like ratio of V  by X power M - 1 by 2 which
is  nothing but some constant okay so  that blowing ratio is specified for a  particular problem
you  specify  that   you're  blowing  ratios  say  some  value   something  like  0.5  or  -  point  4
depending on whether you blow or whether  you are sucking the flow and based  on that for a
given value of M there is  a constant value of f(0) which gives  you a similarity solution okay so
you  solve the same similarity equation.

 Okay   your  other  boundary  conditions  remain   the  same so  what  is  your  other  boundary
condition you are f dash 0 = 0  okay and your f dash at ∞ equal  to 1 so these two boundary
conditions  are same the only boundary condition  which is now slightly different is this  and this
is also not so different  earlier this was 0 okay so for the case  where m = 0 okay so this for  this
particular case vs will can vary  only as X power - half okay so in  that limiting case you can you
can get F  of 0 as 0 okay you can probably just  check so when m = 0 vs varies as  X power - half
okay.

So yeah and if you don't have any  transpiration velocity of course this  will be zero so therefore
if  your  vs  is   = zero so this  gives  your  F of   zero  as  exactly  zero otherwise this  is   your
corresponding  expression  so  you   know what  is  the  blowing  ratio  depending   on  that  you
calculate the constant value  of f (0) okay  so the same procedure that you use to  solve the other
similarity equation the  shooting method exactly the same way you  do it okay only thing is now
you have a  value of f of zero which is some  constant value instead of zero okay so  that is the
only difference okay if you  want if you want me to write down the  summarize the shooting
method equations  probably I will do that again.

 So  now you say your F ′ =  some G G ′ = H and therefore  what will be the corresponding
equation  this will be H ′ is = -  of M + 1 by 2 into F x h +  - M into 1 - what is DF by D  Η  G G
2 = okay so this is  your this is your set of Odie's  first-order Odie's that you have reduced  from
the given third order Odie  and the  corresponding boundary condition so you  are earlier it was F
of 0 = 0.

Now  F of 0 is = - 2 by M + 1  into blowing ratio okay so this entire  thing let me use the notation
V R it  could be some constant value by either  positive or negative okay so therefore  for a given
value of M this is some  constant what is the other boundary  condition G of 0 will be 0 because
V of  0 is f ′ okay so the other boundary  condition is what G at large value of   Η say  Η going to
10  = 10  for example this will be = 1 okay  so you don't know the value of H so once  again you



can guess the value of H of 0  okay such that finally this condition is  satisfied right so you know
the value of  F of 0 G of 0. 

You do not know value of H  of 0 so you guess h of 0 I  iteratively I  have given you the
algorithm Newton's algorithm such that  you  better and better guesses for H so that  it satisfies
this particular equation  ultimately okay so the same exactly  whatever the Newton's procedure
and  shooting technique that you use to solve  it is perfectly applicable only that  your F of zero
is not zero anymore it's  just a constant value that is all and for  if you write a program it does not
matter for the program only you have to  give some constant value there okay so  you do not
have great effort.

 In so this  is the most generic solution so you have  this Falkner Scan solution you have  generic
boundary conditions  for the  case variant blowing ratio is 0 this  becomes no transpiration case
and for  different values of M you get different  configurations ok so let me just  summarize and
write down the  corresponding values of the curvature at  the wall that is f ″ that is  basically
nothing but H of 0 for  different values of blowing ratio ok for  a flat plate case .Since I have so
many  parameters now have to fix some of the  parameters.
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I am saying for m = 0  that is for flat plate  okay now this is a flow problem so I do  not have to
fix any other number  like prantle number or anything like  that so for this particular case I have
to check what is my F ″ of  zero for different values of blowing  ratio which is nothing but vs by
u  ∞ re X power half okay if I  tabulate it  in fact I have given you one problem in  the tutorial
second tutorial to do this  I have asked you to vary the blowing  ratios to different values and



check  what is the corresponding value of F  ″ at 0 because why do you  need F ″ 0 because this
is  directly related to the skin friction  coefficient or wall shear stress okay.  

Similarly you are the η ′ of 0 is  directly related to a heat transfer  coefficient so these are finally
what  you require in order to calculate your  heat transfer coefficient and skin  friction okay for
the value of - 2.5  so these - values actually indicate  suction right the negative velocities  and
zero indicates that okay now you  tell me what should be the value for  blowing ratio of 0.332
which we  have already derived from lays solution  so for 0.25 zero then you have  0.5  and 0.85
okay this is like  two point five nine.

So you can see the  curvature increases with suction and  actually decreases with blowing point
nine four five point five two three  point one six five zero point zero three  six and finally it
becomes zero okay so  what do you think is happening here it  becomes zero for a blowing ratio
of 0.585 sub flow is separating there  okay at the separation your d u by dy is  exactly zero where
f ″ is  also exactly zero there okay so once it  separates there is no point in going be  beyond a
blowing ratio of 0.5 eight five  that is why it is limited to that value  so boundary layer theory is
not applied  applicable to that okay.

So this is  all blowing and the above one section in  fact the curvature you can see increases
because you are trying to if  you even  have a separation if  you suck it  the  separation gets
minimized and you will  have a more of a boundary layer flow  okay so we will now quickly go
to the  heat transfer problem what do you think  will happen to the heat transfer  similarity
solution  how about  the similarity  equation for  heat  transfer will  it  change from what  we
derived for Falkner Scan solution  okay. 

.Let me also write the fact  that the skin friction coefficient is  nothing but twice of f ″ 0/ √of
number okay so  for the case of M = 0 this  becomes 0.664 by √of Reynolds  number ratio
derived for the flat rate  case .
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So coming to the heat transfer  problem okay was this covered under  incompressible flows
transpiration how  about the heat transfer advanced   heat transfer  and mass turns okay whereas
to  derive the similarity solution  PTL solutions  yeah integral solutions are anyway what  we are
going to do from maybe tomorrow  onwards okay we will try to complete the  similarity solution
in the next one or  two classes coming to the heat transfer  so what should be the equation for
similarity equation for heat transfer  exactly identical to what we derived  right no change and
boundary  conditions   also  know  do  not  change  to  assume  that   you  have  a  constant  wall
Temperature  .Okay and you ∞ to ∞ and once it comes here this becomes view ∞ of X and still T
∞ okay.
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You  so whatever equation that we derived  last time for Falkner Scan the same  thing remains
and the boundary condition  also the same okay so the only thing  this solution changes because
the value  of f changes now okay and that is used  to calculate the non-dimensional  temperature
okay asses the equations and  boundary conditions  are the same but  the  solution will  be a
different solution.

So  therefore you are more interested in the  Nusselt number if you are looking at  Nusselt
number this is d the η by D  Η  at  Η = 0 into re X power half  this is what we derived finally so
this  is how the Nusselt number is related to  the non-dimensional temperature gradient  okay so
all we are interested is the η  ′ at 0.
 
So  let  us  tabulate  okay  for  some more  I  think  this  is  coming  from you from one  of  your
textbooks. So  prantle number = 0.7 and also M  = 0 so for this case you're  blowing ratio versus
your D then η by D   Η th η = 0 so 0 this is only  for blowing not for section 0.375 0.5 so  once
again just like your velocity  gradient keeps reducing your temperature  gradient also has to keep
reducing okay  so 0.292  0.166  0.107 0.0517 okay so this with this  information you can plug in
for the say  Prantle  number of 0.7 for a blowing  ratio of this you can plug.

In this value  and that is the relationship of Nusselt  number with respect to Reynolds number  all
right so the same thing applies the  only thing you have to use the value of  blowing ratio
calculate different values  of F and therefore solve the equation  again by shooting method and
from that   you  get  your  non-dimensional  temperature   gradient  at  the  wall  okay  the  same
procedure  whatever  you  did  earlier  same   shoot  shooting  technique  applies  okay  so   any
questions so far okay so one  more last topic we will we will see for  similarity solution before
we move on to  integral methods. 

So this is for so far  in the energy equation we have not  accounted the viscous dissipation
effects we have neglected them safely  because we said we are looking for  low-speed flows what
if the viscous  dissipation effects are also considered  do we find a similarity solution for  that
case yes okay even for this Falkner  Scan solution if you include the viscous  dissipation effects
into the energy  equation we do indeed find a similarity  solution okay so let us not do it for  the
general case let us do it for a flat  plate case and I just want to tell you  that that the same thing
can be done for  the case of Falkner Scan solutions also. 

Because it is only the energy equation  which is affected okay the flow remains  the same alright
so let us move on to  that topic where we consider viscous  dissipation effects any questions on
this  so far   because we are  not  considering  variable   properties  okay we are  assuming that
constant property assumption is still  valid if your property is a function of  temperature then yes
then you do not  have similarity solution in that case  okay in all these cases we are assuming
that the temperature the flow field they  are decoupled therefore you first solve  for the flow and
that is used into the  temperature equation alright.



So it is a constant property assumption okay so of course you know most of the flow flows
where you have strong heat transfer at  high temperatures and strong temperature  gradients you
will have considerable  variation okay so that that is the  assumption that we are using in all of
this .So let us look at some of the  assumptions before.
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We  the thermal boundary layer flow over a  flat plate and although I am doing this  for flat plate
the same thing is applied  to even wedge flows okay so when  I say high-speed here. I am just
indicating that the ratio of Eckert   number by the Reynolds  number is very  important  and
therefore the viscous  dissipation has to be considered so to  write down the boundary layer
equations  in the case of flat plate anyway I am not going to consider the pressure  gradient okay
so these are your complete equations for  flat plate or you do not consider  pressure gradient term
now we have also  included the viscous dissipation if you  non dimensionalized this you will get
this as the ratio of Eckert  number by  Reynolds number.

 Where how is your record  number defined do you remember u  ∞ square by CP say T wall - T
∞ okay so now this is subject to  the boundary conditions that at y equal  to 0 your U and V are 0
and for  temperature you can say you can either  have a constant wall temperature or you  can
also have an adiabatic temperature  adiabatic wall I mean you are not  allowing any heat transfer
to  take place   at  the  wall  but  internally  the   temperature  will  vary because  of  the  viscous
dissipation you are  understanding the fact.

So your risk is  dissipation is an internal generation of  heat okay you do not need to transfer
heat externally with an internal gender  because your kinetic energy is converted  into this which
is  dissipated  into  heat   at  the  viscous  level  at  the  molecular   level  so  that  is  changing the
temperature locally okay because this  gradient of course varies inside so  therefore there is a



local  variation  of   temperature  so  even  if  you  maintain  an   adiabatic  wall  you  can  get  a
temperature  profile if you have is this dissipation.  

So  therefore  for  high  speed  flows  and   considerable  effects  can  be  observed   where  your
temperature will vary from  the free stream temperature because of  viscous dissipation itself
okay so you  can also have heat transfer case even if  you do not have any heat transfer  through
the wall okay so therefore you  can also maintain a boundary condition  that you are DT by dy 0.

In either of  these cases you can solve for heat  transfer okay so similarly at  why going to ∞ you
are u =  u ∞ and your t becomes to  ∞ and same thing at X is =  zero okay so these are your
governing  equations now you can use the same  boundary layer similarity expressions  and
substitute for UV all the gradients  I am not going to do that okay so if you  substitute that you
will get a final  similarity expression which is something  like .

 So if you if you substitute and you clean up all the unnecessary terms this is the final similarity
expression solution equation.
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For temperature  because the flow still is the same as  the flat plate blushes solution okay so  only
the energy equation will be  changing a little bit so on that change  will be a term which comes
on the  right-hand side because of the viscous  dissipation you have now this additional  term
which comes into the similarity  equation right now why do I write this  in terms of dimensional
temperatures why  am I not directly non dimension ling  here.

This  is  because  now  you  have  in   fact  two  temperatures  with  which  you  can   non
dimensionalized okay so you can have  your free stream temperature T ∞  and you have what is
called as the  adiabatic wall temperature okay so this  is the wall temperature if you maintain  an



adiabatic boundary condition at the  wall as I said you can have a heat  transfer due to internal
generation due  to internal viscous dissipation and that  will result in a wall temperature which
corresponds to the case of no external  heat transfer okay. 

And that is defined  as the adiabatic wall temperature okay  so if you don't have any heat transfer
instead of using a you know instead of  using something like a free stream  temperature you can
also use the  adiabatic wall temperature so therefore  you have too many temperatures here and
we don't know which one we have to use  to scale or non-dimensionalized the  temperatures
therefore we will split  this problem into two sub problems one  in which we have T = T wall for
which we have already derived .

The  similarity equation the pole Hassan’s  equation okay the other problem  where you have
only adiabatic boundary  condition okay  so finally if you look at the energy  equation since this
is  quasi linear  and  also the boundary conditions  are  linear   we can say safely say that  the
solution  can be also split into two solutions and  we can combine them in some linear  fashion
okay so one solution will  be for  Paulo ocean solution the other where you  have adiabatic
temperature including the  viscous dissipation adiabatic condition  with the viscous so these two
solutions   can  be  then  linearly  combined  and  we  can   construct  the  final  solution  to  this
particular problem.

Okay so just to give you an idea how the temperature profile looks before we wrap up.If you plot
your  temperature in the x-axis and so  somewhere so at Y going to ∞ your  temperature will be
your free stream  temperature okay so that somewhere at Y  going to ∞ that will be the free
stream value and from there if you  maintain as I said the problem number  one is self solving
this without the  viscous dissipation with constant wall  temperature that is the pole house and
solution.

 How will you get your  temperature profile it will be like this  right this is the variation for case
one  or problem one this is nothing but your  polymers in solution okay now if you do  case B
that is you apply a adiabatic  condition at the wall but you include  the viscous dissipation term
how does  your temperature profile will look is  something like this okay and the  temperature
value that you see here is  the highest that is nothing but your  adiabatic wall temperature and the
condition that the flux has to be zero  make sure that this becomes normal  right at the boundary
okay.

Now if you  have a combined case the case that we  are looking here has both the solutions
which you can linearly combine okay you  have a constant wall temperature but you  also have a
viscous dissipation so then  it has to force if you forcibly returned  to this wall temperature which
is a  boundary condition but it will go  through a process something like this  like this okay so
this is your case B  okay this is your adiabatic wall  including stress dissipation now what I  have
drawn here okay this line this  profile is for case a + case B which  is actually the solution let us
say to  equation number one with the boundary  condition that you can have either a  constant



wall temperature or the idea  batting temperature so finally because  of the viscous dissipation
you force the  temperature at the wall to T wall.

 But  the viscous dissipation effect will  deviate the profile from the polar sand  profile okay so as
I said that is the  clue to solving this problem which we  will do tomorrow we will split the
solution into two parts case a will be  the polymers in which we already did  case P will be the
adiabatic case with  the viscous dissipation which we will do  and for each of this there is a way
of  to non-dimensionalized the η okay so in  this case we non dimensionalized with T  ∞ t - T ∞
by T wall  - T ∞ in the other case we  cannot use T wall.

 Because there is no wall temperature boundary condition there so we have to use a different
temperature scale which we will redefine okay and finally we will express the  final solution in
terms of the linear  combination of those two solutions okay  so we will stop here today.

Similarity solution for flow and
heat transfer with transpiration at walls

End of Lecture 16
Next: Thermal boundary layer in high speed flows 
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