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Good morning all of you so we have  completed nearly about 10 classes so far  I hope most of

you are following are what is happening in all these  10 classes and being the first tutorial  is due

on 14th of this month and I will  also most likely early next week upload  the second tutorial on

similarity  solutions ok so most likely will  complete the similarity solutions in the  next couple

of classes and start the  integral analysis or external flows okay,  so we have quite a few to π cs to

cover  so I have to move a little bit fast and  I hope your earlier knowledge of fluid  mechanics

will help you in covering all  the things that we would not be discussing  here ok.

So let us continue with the Falkner skan similarity solutions that we had derived yesterday for

these are for flows with.
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Pressure gradient  you  and the final similarity differential  equation appears in this particular

form  and these are the boundary conditions  and once again you have to use the  shooting

method to solve the OD in  numerically I have also given you the  three first-order Ode’s to

which it can  be reduced and the same boundary  conditions like that of the Blazes  equation.

So once you solve this for okay  so one more thing is that so these are  some of the velocity

profiles if you  solve the OD by the shooting technique  and this is how the velocity profiles

look and these are the similarity  profiles so I am plotting Η on the y  axis and F prime which is

nothing but  the non-dimensional velocity on the x  axis and I can substitute different  values of

M into this and for each value  of M I can solve the OD by shooting  method.

And I can plot the profiles for  example M = zero this is the flat  plate case you get a profile

something  like this exactly similar to the Blazes  profile and for positive values of M  greater

than zero some say like 0.33  something like this so one it is  something like this so if you look at

M  = 1 this is the stagnation point  flow rate and this is your flat plate  alright okay.



So therefore if you look at  your values of M which are basically  increasing okay so the profiles

are in  this particular fashion and for the  values of β  the red jangle I mean let  me once again

draw the representation so  that you can understand  okay so can you tell me how the M and β

related or β π  is your  wedge angle β  by 2 - β  okay so  for negative values of β  that is I  was

giving an example when you roll this  in the anti-clockwise direction so that  they both coincide

and that is the m  =  0 case and if you roll it  further roll this particular surface  further down it

becomes negative okay.

For the negative values typically if you  make it more and more negative you will  get adverse

pressure  gradient  flows   right  now in  the  example  that  we have   seen  yesterday  and for  a

particular  value for M which is exactly - point  0 9 1 you will see the flow is  separating okay so

at this particular  location the boundary layer theory will  not be valid anymore so there is no

point in going further less than -  point 0 9 1 so this is the limit of M  where you can up to which

you can go  negative and the value of M up to which  you can also go on the other side for

typically we are more interested up till  the stagnation flow so we can go up to m  = 1 okay.

So what is happening to  the velocity gradients so typically if  you want to calculate say D u by

D θ   as you keep increasing your M what is  happening to the U by D θ  huh smaller hmm  so

typically if you if you are saying  okay so I say this is this is my  θ range okay if you compare

0.32 so this  is my change here  okay this if I if I look at F for this  value so in which case your

gradient is  higher whether  is  it for 0.32 or whether it is four so he in this  case your θ value are

this is  your D θ here for this value of D F  Prime and this is your D θ here okay  in which case

the D θ will be more hmm.

For this case so therefore in which case  the gradient will be higher for this  case okay so as you

keep increasing your  M okay the velocity gradients become  more and more steeper okay so

therefore  so this is to do with the particular  kind of flow that you are looking at so  typically

what you can do I will give  you some problems where you can  substitute the corresponding

configuration according to the value of  M and you can get these profiles and you  can try to see

how the variation in the  slope appears to you.

Okay so this is all with respect to the solution we are more interested in the derived quantities

like the skin friction coefficient for the flow as far as the flow is concerned.
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 So we can calculate the skin friction  coefficient locally so this is nothing  but u D U  by DY

okay now if you substitute everything in  terms of the similarity variables so  you will be getting

an expression which is  like this in terms of F and θ okay so  this depends on the curvature at the

wall this I know you all know but the  case of flat plate the value of this is  0.332  so this leads to

the familiar  expression CF is 0.66 word by 2 of last number okay .

So now all  we need to know is for a given  configuration what is this curvature at  the wall once

we  know  that  we  can   calculate  the  skin  friction  coefficient   locally  for  that  particular

configuration so once you solve the  equations by the shooting method for  different values of M

we can have a  nice   tabulation  where we can  grab relate  the   curvature  terms  for  different

configurations  so the value of β  this is the  value of M and this is D square F / D  θ 2 θ = 0 and

this  is the particular configuration or case  that it corresponds to  okay.

So β  equal to 1.6 okay  so 1.6 times π  so you will  find that there is  something like this  okay or

maybe you can say it becomes  like this you have a flow which is like  this right it is much more

than one so  it is  much more than your rectangle  is more than π all right so in this  particular

case you can you can have  flows like this and the corresponding  value of M will be = 5  if you

substitute into this expression okay if  you compute the slope the curvature at  the surface this

will be 2.6344  exactly in fact you can  do it in fact I will give you an  exercise where you can do

it and compare  with these values okay should be getting  the same values.



And now the case of β   equal to 1 M equal to 1 and 1 point 2 3  to 6 what is this case stagnation

flow  all right so β  is 0.5 M is 1  over 3  and the corresponding value is 0.75746  β = 0 m = 0

what will  be the value 0.332  this is the  flat plate and  0.14  the  corresponding value of M blue

0.0654  and the corresponding  value is 0.16372  ok  and finally 0.1988 okay  corresponding

value  of  M can you guess  what  is  the corresponding value  of  M  -0.091 okay that  is  this

particular case  that we have so what do you think will   be the curvature for this, this  is a

separated flow okay.

At the point of  separation what is the slope what will  be DU by DY for separated flow so if  you

have a if you have a flow suppose  you have a gradient like this and here  you plot they have

profile like these  okay now at the point of separation the  profile becomes like this and after that

in fact  so this is DP by DX greater than 0 okay this is separation point this is  separated flow so

you can visualize the  flow coming like this and at this point  dηching and then you have a nice

big  separation bubble here okay.

So what, what  how do you check that flow has separated  or it is  about two separate huh what is

that not curvature first you go to the  first derivative before you go to the  second derivative now

DU  by DY for  the separate four condition what is the  condition for separated flow  DU  by DY

at Y =  0 , this  is the case okay once it is separated  what is the condition there it  should be

negative okay therefore what  will happen to curvature when it is at  the separation state 0 right

so this has  to be 0 and this is a separation case  separated flow all right so I think this  is giving

you final summary.

And special case where we can apply this stagnation flow if you look at flow past  a circular

cylinder.
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 Okay so this  is  your radii  R and this  is you are approaching free stream velocity  which is

constant  and then the free stream now when it  travels over the surface it becomes a  function of

your local coordinate X and  where X is defined in this particular  fashion okay that is the sector

location  sector distance starting from this point  where it is 0 okay.

(Refer Slide Time:14:23)

So  if you look at the case of flow past a  circular cylinder from the potential  flow theory you

can actually calculate  how the U ∞ is very locally okay  so the profile is given I think you must

have studied this in your incompressible  flow course so u ∞ by you any  guess how it varies if

you go along the  periphery or the circumference of the  particular cylinder how does the local



free stream vary what , what is the  value of velocity here it has to be 0  and where does it reach

maximum where  your  θ  = π /2 okay  and X is = R θ   basically so X / R should be equal to  π /2

at that location it becomes the  maximum okay so it should be a  sinusoidal variation okay only

you have  sine 0 is 0 sine π / 2 is 1.

So if you  say u ∞ x by u ∞ it has to  be a sine variation and what should be  the variable X /R all

right maybe I can  use capital R because this is your radii  of the cylinder and what should what

factor should come here at X by R = π / 2 this will become 1 does u big  u ∞ become u ∞ there it

should be 2 because it becomes exactly  twice the because it has to accelerate  again from here

once it accelerate it  has to go more than the free stream  velocity there ok.

So this is your  in viscid velocity profile for a circular  cylinder now if you are looking at  region

values of X which are which are  very small that means close to the  stagnation region okay  so

then you can approximate this  sign X / R simple  X/R  for small  values of X okay so for small

values of  X / R that is close to the stagnation  you can write your u ∞ by  constant free stream

velocity is 2 X /R   okay.

So therefore if you look compare  this with your Falkner  skan  form of  velocity profile which is

like something  like u ∞ of X is C X power M so  what can you deduce what should be value  of

M what should be the value of C if  you compare these two C is =  2 U ∞ by R okay  and what is

the value of  M 1 okay  so therefore this profile will be  something like  okay so what kind of

flow does it mean  stagnation point flow okay so when you  are looking at region close to the

stagnation even for a curved surface  like cylinder okay you can approximate  the flow pattern to

be similar to the  stagnation point flow for which we have  already calculated the profiles and the

curvature at the wall okay.

So this is a  very important thing so it does not limit  the Falkner Skan solution does not mean  it

is only applied to a wedge  configuration like this it can even  apply to any stagnation flow even

for a  bluff body like this not it does not need  to have a sharp corner okay provided you  are

looking at only region close to the  stagnation region so if you simply use C  equal to 2 ∞ by R

so this is  nothing but the stagnation flow okay the  same solution will hold for the cylinder  also

as well  you  okay.



So this is a very important useful  correlation because to calculate for  example the heat transfer

in the  stagnation region of a cylinder we can  solve the energy equation from the  Falkner Skan

solution and you can apply  that to get the local nusselt number  profiles for the cylinder okay so

for small values of X your sine θ   can be replaced as θ  right okay so  therefore now we will

move on to the  heat transfer problem so the boundary  layer energy equation when you write it

down for the flows with pressure  gradient or without pressure gradient  they are both the same

okay.
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So without the viscous dissipation term  this is your energy equation where your  θ  is defined

how  T - TW by T ∞ - TW so I  want my temperature profile to look  identical to the velocity

profile  alright and the boundary conditions at y  equal to 0 your θ  should be it  should be zero

okay if I if I had  defined my θ  this way okay it has to  be similar to the velocity profile right

that Y going to ∞ θ  should be  one okay.

Now what  I  can do from the  definition  of the similarity  variable   that  I  use also from the

definition of  stream function which is a function of  the similarity variable I can plug in  for u

we convert all x and y in terms of  Η okay the same way that we did for  the blush is energy you

can you can  apply that here because it is no  different and except that when you write  the

similarity variable Η here this is  a function of U ∞ of x by nu X  rather than simply u ∞ in

brushes  so when you differentiate this with  respect to X you have to be careful now  you have



to account for the variation of  this so you can substitute CX power M  okay and then you can

differentiate it  okay.

 so for example I will if you say  that this is Y √ of CX power M  by nu X so this can be written

as Y  √ of C by mu into X power M  - 1 by 2 okay therefore if you say  you are D Η by DX so

this will be Y  √ of C by nu into M - 1 by  2 into X power what  for differentiate what should I

get  exponent M - 3 by 2 so I can write  that as M - 1 by 2 - 1 okay so  once again why C by nu X

power so this  entire thing is what Η so this will be  M - 1 by 2 into Η by X ok so you  should

take care when you are  differentiating and transforming the  variables now that your free stream

velocity is a function of X ok  so appropriately you do all the  substitution and transform this in

terms  of the similarity variable and  everything in terms of F and you will  get the  similarity

equation for  energy the 2 θ  by Η 2  okay.

So this is your energy equation  okay for the case of M equal to zero  this reduces to the flat plate

energy  equation similarity solution so on  additionally here you have M plus 1 by 2  because of

the factor of M which comes  in  the free stream velocity okay we  substitute all of that you will

definitely be able to reduce this and  the boundary conditions as θ  going  to 0 θ  equal to 0 it R

going to  ∞ θ  equal to 1 alright  okay so once you know the flow you know  the value of F you

plug it in for a  corresponding value of M you can solve  this once again by shooting method

okay  the same way that we have been doing and  you can get the profiles for θ  as a  function of

Η alright.

So the same  procedure repeats here now what I am  going to give is just the way we  tabulated

the curvature at the wall for  the velocity profiles I am going to give  you once you substitute and

get the  values you can get the slope at slope of  the temperature at the wall for  different values

of M okay for different  configurations how does it look because  this is required to calculate the

nusselt number nusselt number depends  off upon this temperature slope at the  wall okay so if

you do the tabulation.
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 So  D θ  by D Η at Η equal to zero  okay so M Prandtl number now you should  realize the

temperature profiles are now  function of your velocity profile your  prandtl number and your M

okay so far a  given value of M for a given value of M  you know the velocity profile put that

function the value of M and also the  Prandtl number which you want to  calculate so both of all

the three how  to be simultaneously fixed of course if  you fix your M you fix your F also okay

and also you have to decide which plan  tail number you are calculating.

So you  can tabulate this for different values  of mantle number  so for M is – 0.0753 okay I am

just giving  you some value of M here for which if  you have Prandtl number of 0.7 this  value

becomes 0.242 okay I am just  tabulating all the values here  okay so anybody remember now

value of M  = 0 , flat  plate what  should be the value at prandtl number  0.7 probably a must-

have yeah I think  you can calculate and tell me.

What  should be the value of D θ  by D Η  for prandtl  number 0.7 okay so for  Prandtl number of

1 what should be the  value 0.332 why  yeah  because for the case where your parental  number =

1  I mean the velocity and the temperature  profile should be identical so the  curvature D cube d

square F by D Η  square should be exactly equal to D  θ  by D so this should be 0.33 2 so  this

value should be 0.332  into  Prandtl number  power 1 / 3 okay so what  should be the value.

So it will be  something  like 0.292 will be  reduced so then this is  0.307 and  0.585 this is 0.730

so on so if you go to m equal to one  the stagnation flow 0.496,  0.523 okay  so this has some

kind of values I am  just giving you this because tomorrow  when I ask you to compute using the



shooting method you should be able to  match with these tabulated values all  right so why we

are  calculating  the   slope  okay  so  because  we  finally  are   interested  in  the  heat  transfer

coefficient and nusselt number.
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So therefore you can define your local  heat transfer coefficient the same way  the wall heat flux

divided by T wall -  T ∞ okay if you substitute for  - K DT / DY at Y =  0 and  write in terms of

D θ /  D Η you  should get a t1 - T ∞ into  so  you can write your DT / DY as D θ   / D Η at Η = 0

into D Η /  DY okay which is nothing but √  of U ∞ by mu X divided by T wall  - T ∞ okay  so

finally if you define your nusselt  number local nusselt number as HX by K  so that will result in

D θ  by DT at  Η equal to 0 into so you have X here  so √ of u ∞ X by nu  which is nothing but

your if you if you  divide it if you divide multiply H into  X by K so what happens to this

particular term Reynolds number 2 of Reynolds number okay.

This is the  same as what we did for the flat plate  okay there is nothing new here only thing  you

should now know for which  configuration the value of D θ  by D  Η you have to pick  put   it

there and  then you will get the nusselt number  profile for that particular value of M  okay and

also now it is a function of  Prandtl number so you may have to fit a  curve as a function of

Prandtl  number   and  you  should  bring  the  prandtl  number   dependence  okay  now for  the

stagnation  point flow if you are interested in  values of Prandtl number about 1 okay.
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That is  something in this particular region  right here okay you can in fact fit a  curve to the

values of D θ  by D Η  in this prandtl number regime close to  one and you will get a nice curve

fit of  this particular form which is 0.57  times Prandtl number to the power point  4 and you can

you just check it can  you substitute prandtl number as 0.8 and  check whether you are getting

something  close to 0.523 okay so , so this is  this is the kind of fit that you can do  for m = 1

around prandtl number  close to 1 okay .

So  you  are  not  saying  here  parent  a   number  is  exactly  1   it  has  some   prandtl  number

dependence but I mean the  dependence is relatively kind of similar  you know you have about

0.5 to 0.57  variation here okay so therefore if you  substitute for that so your D θ  by D  η is a

function of prandtl number now  this becomes 0.57 into REX power half  prandtl  number to the

power 0.4 so this is  the case for m = 1  prandtl  number close to one okay so this is the  local

variation that you find for the  stagnation point flow case of course you  are you know the

variation with respect  to Crandall number for m equal to zero.

Pole houses already did that you did the  curve fit for different values of  Crandall number small

planted numbers  intermediate and large and you can use  those values okay does it does it make

sense okay so that this is a reasonably  good fit okay for prandtl number close  to one okay now

so we this is one example to show you for the  stagnation for example stagnation flow  how we

can define the local variation in  nusselt number okay so all this can be  also equally verified by

you can  calculate the values of the slope  compare that for different values of M  and Prandtl



number with the tabulated  values and you can yourself correlate  with these values right here

okay so now  one more thing as we said if you look at  the flow past a cylinder okay.

The  flow that we are looking at right here  so apart from u ∞ suppose you  heat this particular

surface so you are  maintaining this t wall equal to  constant okay so this is a flow apart  from the

flow you also have a  temperature profile okay  now this u ∞ is a function of X  here are still it is

having some  temperature T ∞ we have a  velocity boundary layer you have a  thermal boundary

layer which is  simultaneously growing so if you are  interested in the stagnation region for  the

cylinder what is the variation in  the nusselt number okay so now as we has  we already shown

you can describe that  by the stagnation flow m equal to 1 the  same correlation will apply for

this  region as well okay now X is defined in  this particular manner okay where this  is your R

this is your origin okay.
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You  so now it is it is not so convenient to  operate in terms of local X for a  cylinder and sphere

what is the more  convenient characteristic length instead  of X diameter okay so usually when

you  talk about cylinder flow past circular  cylinder the characteristic length that  is chosen is the

radius or diameter of  the cylinder okay so therefore we can  transform your local X into terms of

a R  similarly in the reynolds number also  and we can define a reynolds number  based on the

characteristic length.



Which is the radius of the cylinder okay so if  you do the transformation so you already  know so

how do you do this  transformation you already know that  your re X is defined based on U ∞  X

into X by nu so this is the definition  of your local Reynolds number right now  so where you are

defining based on your  local velocity yeah.

 That so that is how  we have to transform we will see how we  will transform it okay so now

you can  replace this as you can write this as 2  U ∞ you can you can you can write  your U ∞ in

terms of u ∞  of x in terms of 2 U ∞ X by R so  this is your local velocity profile  related to the

free stream velocity  profile for the stagnation region okay  so you can substitute for u ∞ in

terms of the constant free stream  velocity X and R okay if you do that  this will be X / R into X /

mu okay so  now what i can do is i can multiply and  divide by r so i can say that this is  R  and

there will be an X2 by R2okay so therefore this is how my  local Reynolds number is related to

now  I can define I can define this as my  Reynolds number based on the radius of  the cylinder

okay which is nothing but u  ∞ R by mu.

This is now this is the  constant free stream velocity okay and  the characteristic dimension is the

radius  so now I have transformed from  the local  velocity  and the local   coordinate  I  have

transformed that to  constant velocity and a fixed coordinate  so the fixed dimension here is our

okay  and you have a factor X2 /  R2  therefore if you substitute you  can you can find that your

current nu X  is also HX by K right if you substitute  for re X from there you can finally  write nu

in terms of the radius which is  nothing but HR by K so you have a 22 which comes out and

multiplies with 0.57 that becomes 0.8 1  and this will be RE  R to the power half  and your

prandtl number to the power  point 4  okay.

So this is what you finally get in  terms of fixed dimensions are and so  this is the expression for

the  cylinder   when  you  look  at  the  stagnation  flow   okay  so  in  terms  of  the  cylindrical

dimensions okay so you can simply  transform from your local coordinate to  the cylinder is

fixed dimensions which  is basically the radius okay  the same way you can also do that for

sphere  okay for  the  case  of  three   dimensional  wedge flows okay now  whatever  we were

discussing so far are  our two two-dimensional which flows the  same two-dimensional which

flows can be  transformed using what is called as a  manger less transformation okay  thank you

if we happen to go through the  boundary layer theory by listing okay.



So  he talks about three-dimensional  boundary layer so there one way of  deriving the similarity

solution for  three-dimensional which flows is to take  the two-dimensional which flow solution

apply what a particular kind of  transformation called mangle less  transformation and you will

get the  similarity solution for 3-dimensional  which flows and for that particular case  where m

equal to 1 for 3-dimensional  which flows that is the stagnation  region stagnation flow for 3-

dimensional  which flows and that will be similar to  the stagnation region flow for sphere in  3d

okay like we have equivalent to a  2d which flow stagnation region we can  correlate that to

stagnation region of a  cylinder.

Same way the three dimensional  ax symmetric which flow stagnation flow  can be correlated to

the stagnation  region of a sphere okay so you can also  have a similar relationship for nusselt

number for a sphere from the applying  the magnetization  anyway manglers transformation is

beyond the scope of this class so I am  just giving you an idea that you can  also do that for three

dimensional which  flows okay so I think with that we have  more or less covered the flows with

the  pressure gradient terms any question  so far whatever we have done  yes.

 So this  just only says the nusselt number in the  stagnation region that is that  is only for that

okay so it is not  really you are not really going varying  the X because you are a variation in the

X  is actually confined to a small region  near the stagnation point so you just  say that what is

the stagnation point  nusselt number for example okay so based  on the free stream reynolds

number and  for a particular value of prandtl number  you directly get the nusselt number in  the

stagnation region of a cylinder okay  you do not once again look at the local  variation of the

nusselt number and  things like that because the stagnation  region is a very small region correct

so  the next class on Tuesday what we will  do for the same which problem okay.
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 Now  the which problem that we have taken we  can add one slightly one complicated  boundary

condition which is so far we  have assumed that your no slip exists in  the wall which is correct

but it is  quite possible you can have some small  vertical velocities at the wall correct  so this is

your local coordinate X  and Y so therefore you can have your V  velocity and you velocity at the

wall  anyway your u velocity is equal to 0  because that it cannot slip tangentially.  

But it is quite possible that you are  blowing or you can suck you know this is  called flows with

transpiration  okay so  this  is a typical flow with  transpiration so in that case you can  have a

small value of vertical velocity  at the wall it will not be that much but  it will be small enough so

typical  applications are if you are looking at  boundary layer separation control  okay .

So typically you can blow some  small velocity okay in order to control  the separation point or if

you have a  massive separation you can  suck the separation bubble by means of  flow suction

and therefore you can avoid  separation so typically in like air  foils now you can do this kind of

flows  to control the drag and no stalling of  the airfoil and so on okay so these are these are

extension of the  same Falkner Skan solution the same  solution or same equation the similarity

equation what we derived will exist and  you hold true for this case also only  the boundary

condition will now change  okay.

So far we have said at y equal to 0  V = 0 but now we will be V has a  small component so that

has to be  included and we can use that as a more  generalized solution okay so if you do  this

solution this will be the most  general solution for whatever we have  seen till now okay that



includes all  kinds of configurations also different  kinds of boundary conditions for  limiting

case where V equal to 0 it  becomes the solution that we had derived  till now so okay we look at

this  particular case in the next class and we  that will complete the similarity  solutions okay.

Falkner skan solutions for heat transfer
End of Lecture 15

Next: Similarity solution for flow and
Heat transfer with transpiration at walls
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