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Numerical solutions to the Blasius equation and 
Similarity solutions to heat transfer

Good morning all of you. Yeah so, in the last class we had derived the Blasius  similarity solution
I hope all of you  can recollect how we derived it based on  the similarity variables we reduced
the  PDE to an OD  and also we have seen the way blushes  did the solution I think some of you
are  not there but to summarize you can I  will just tell you we were blushes use  the series
expansion technique where we  assume the series to be a power  series and he substituted that
into the  Blasius equation applied the boundary  conditions and this series expansion was  valid
for small values of η.

Okay so, if  your η was very large the other  boundary condition says that η going  to  ∞ your f
prime should be 1 so  we cannot apply that to the convergent  series therefore he had to come out
with  another series which is actually   convergent for large values of Η okay  so that is an
asymptotic expansion he  did and then he matched the coefficients  of these two series subject to
these  boundary conditions three boundary  conditions.
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And therefore he finally calculated the slope at the wall that is f double Prime at 0. So once he
got the slope you all the coefficients in that series were a function of that slope and he calculated
the F basically. Okay so that that is how Flash is done it and we have discussed that in the last
class so any questions on that. I hope you know it is the standard mathematics nothing more than
that  so today. What  we will  see is  what  is  more  practical  nowadays it  is  to  use numerical
methods to solve any ordinary  differential equation at the time and  blushes did it he did not
have any access  to these computers or whatever even by  hand he could not think of solving this
so therefore he resorted to this  no analytical expansion techniques.

So I am going to talk about a very important numerical method to solve the higher order ordinary
differential equation and please take note of this method. Because, I will not be repeating this
again and the rest of the similarity solutions. You will be solving this yourself you know you will
be writing a program to solve the ODS by this method. Okay so therefore you play a piece please
pay close attention to what I am going to describe.  Here so the technique that we are going to
solve used to solve the OD will be called the shooting technique.

 Okay so I have any one of you had a numerical methods course where the shooting technique
was explained so you know the shooting method okay so how anybody else.  Okay so I think
then I will pretty  much  go through the thing again if you find  something different then you can
also  bring in your ideas okay so basically  this is the OD which is a third order  nonlinear OD so
therefore you cannot  find a closed form analytical solution  subject to these boundary conditions
so  what the shooting method does it is very  simple you have to first reduce nth  order audio to n
first order Rudy is okay  so in this case you have a third order  ode body so reduce it to three
first order Rudy is so you can just say  if one equation will be directly F prime  should be = to



some variable G  prime should be = to η and finally  you can cause this equation in terms of  η  F
and G okay so these are the three OD’s.

 Which satisfy this particular blushes  equation and they are all three  first-order bodies okay so
once you  reduce that to three first order for  first order ode ease of this form now  the next thing
is how do we solve this  first order Rudy.  Okay numerically what you have to do you have to
discretize the governing equations on the physical domain now this is one-dimensional therefore
you have to discretize into points. Okay and you have to integrate these OD over these points
you start from some location save it typically at  η =0. And from there you keep marching in
space till whatever your extent of the domain is.

Okay so typically you want to have a domain large enough know the large domain here means
the η should be not   ∞ practically but something which is quite large which satisfies the other
boundary condition where your F prime =1. So we will we have already  seen from the blaster
solution that your  boundary layer thickness extends to some value of  η which is close to five
point five eight okay beyond that you  find that your F prime is almost 1 it  does not change
therefore anything above  five six should be good enough.

 Okay so  far safer said you can take value of Η  up to ten okay so now next what you have  to do
so you can use either you know if  you want to go for higher order accurate  you can use runge-
kutta but just to make  it simple you can use a very first order  Euler method okay so you can just
discretize the ordinary differential  equation based on the Euler method okay  so what it says is
any derivative like  DF by D η can be written as FI-1 byFI-1 D η. Okay so that is a  simple first
order upwind differencing  okay so that you do that and you can now  express your f of i okay
now this is  based on the current point so that  depends on the value of the previous  point okay
plus of course all  the things   on the right  hand side are  based on  previous points  okay so
therefore you  start this loop from 2 to n okay where 1 I gives you the boundary condition okay
you know the value at the boundary right  that is the boundary condition.

Okay and  you start this marching from I = 2 that is from the second point till the  last point okay
now for this you need  boundary conditions for F G and η all at  I =  1 okay so you are I =   1
corresponds to η = to 0  okay so you need all the three values  our data =0to start this  marching
process and you have to solve  this together you know first for the  second point you solve all the
three  move to the third point to use that  values so on and so forth but the  problem is if you look
at the boundary  conditions we have these two boundary  conditions F of 1 = to 0 G of 1  = to 0
but we do not have the  boundary condition for  η of 1 right  so rather we have a boundary
condition  for G but for large values of G we know  that at large values of η G goes to  1 so what
essentially you have to do  here this is why this called a shooting  technique.

So you shoot a guess basically  okay so you guess the value of η at 1  and you just substitute and
then you do  the marching process go all the way till  η = to 10 and then you find out  whether G



at n so where n is  corresponding to each I pull to 10 that  is the last value of the point ok so you
have to choose n number of points such  that the end point corresponds to η  = to 10 or so at the
end point so  the value of G should be = to 1 so  if this satisfies that means your guess  for η of 1
is correct right so this is  why it is called a shooting method so  you just do it by guess guesswork
so you  keep shooting values of η 1 and make  sure that as and when you get the  solution finally
at the end point the  other boundary condition.

Which is  the third boundary condition is  automatically satisfied if your guess  for η is correct
then this should give  this satisfy this particular boundary  condition if not you have to keep on
doing this again and again till you land  up the correct value of H which  satisfies that boundary
condition ok so  G of n = to 1 nothing means F  prime of n  _  1 should be = to 0  or  so or the
other better smarter way of  doing it rather than just simply  throwing wild guesses okay which is
not  probably going to lead to a converged  value anywhere in the next 100 or 200  guesses the
more better way of  approaching the correct value will be  using Newtons  method.

Okay so Newton rap son technique is a  very powerful technique for solving any  non-linear
algebraic  equation  okay that   is  also numerically  so what  it  says if   you want to  solve this
particular  algebraic equation okay this is the  condition that you have to satisfy and  you have to
find the roots of  η h1 okay  such that this particular equation is  satisfied okay so what does
Newton rap son method say so you can  choose a guess value such that you know  the guess
value is coming out of this  particular equation which is h1 of K -  this is the f of X by F prime of
X okay  so if you choose your guesses based on  this rather than wild guess it is more  likely to
converge to the correct  solution which satisfies this equation  okay so it is based on the slope
method  you know it is a modified secant method.

 I  think I am not going to into η but  you can always quickly derive that we  are assuming a
linear line and you are  getting the slope of it and therefore  you are getting a better guess of the
route okay so now if you rewrite this  now the thing is how do we know the  slope of f Prime
with respect to η okay  so f prime this is at F Prime at N and  the point four different guesses of η
at  the first point so how do you know the  slope so initially you do not know the  slope okay so
what we have to do is you  apply simple finite differencing scheme  to calculate the derivative.
okay so to  do that what we will do is we will apply  finite differencing scheme between two  are
two kind of two guesses so guess K   _  1 and K so between these two  guesses.

We will use the finite  difference again and so we actually  expand this numerically the same way
we  expanded  this term right here no simple appoint  differencing okay so here k-means guess
okay so the first time you just give a  wild guess  okay the second time also you give a  wild
guess  so now you have  two wild  guesses  and two solutions  from the  third   time you can
calculate the right value  based on the second wild guess  and the first wild guess okay so you
need two wild guesses because you need  this particular.



DF by D  η therefore you  are first giving two wild guesses and  taking the difference in the
values of F  of n for the two wild guesses  corresponding to those wild guesses okay  and from
the third wild guess you  do not it is not wild anymore so you use  this and then you calculate the
more  appropriate guess value so like that you  keep using the previous guess values and  until
you are satisfying the condition  that F prime of n  _  one = to  zero okay or you would not
achieve exactly  zero numerically it should be a very  small number something like 10 power   _
5 so once this condition is  satisfied that then your guess is good  enough you can stop there and
you can  say that you are iterations have  converged.

Okay so now you have an  iteration here this is an iterative loop  where you keep changing the
guess okay  each time you change the guess you have  to march the solution in space correct  so
for each guess you have to do this so  if you are doing hundred guesses for  each guess each of
the hundred  cases you have to march in space and  check if your condition is satisfied for
convergence okay once it is converged  then you can now you have the solutions  completely
right numerically you have f  so this is for F this is for F  Prime this is for f double-prime so you
have all the solutions at all the points  which you can plot and you will be  surprised to find you
will be exactly  matching with the blushes solution okay  whatever he did it analytically so this
is a very good numerical technique and  we will have a few more bodies in this  course which
you will be using the same  method is identical whether it does not matter how many orders that
you are  looking at you have to reduce that to n  first order roadies and you will be  using the
same technique so I suggest  strongly to understand this and you will  be coding it yourself okay
so you can  probably use any program programming  language of your choice.

Fortran or C++  or mat lab B and you can implement this  once the algorithm is done you can
plug  in your new ODS and then you can get the  solutions okay  so any questions I hope I try to
make it as clear as possible so if you  have some doubts you please ask me right  now because I
am not going to talk about  the shooting method again is it clear  okay so assuming that now you
have the  solutions to F as a function of Η so  now we will go ahead and  we will now calculate
the other derived  quantities okay the first quantity that  we are interested so this since this we
are doing this for a flat plate we are  interested in calculating the local  shear stress okay that is
tau wall as a  function of X so the shear stress at the  wall varying local.
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Okay so how do we get it you do you yeah with respect to what Y okay very good so if you go
back to the similarity solution what is the expression for D u by DY that we derived okay in
terms of stream function stream function was a function of Η so we had derived an expression
for D u by DY what?  0.332 that is that is not that is not  the slope that is the curvature that is  the
value of F double Prime  yeah you are right but that was what we  derived with respect to Η okay
I am  asking you to convert this in terms of  no why  so you have to do the transformation  okay
from Η to y again okay so you can  say that this is new  can you tell D U by D Y in terms of F
and Η  ok so I think we have already done this  derivation I do not want to go through  the steps
please look into your earlier  class notes and tell me the final  expression ok you  ∞ I think it
was √ of by nu X okay and of  course you know D u by D Η we can  write this as DS D square F
by BΗ square okay and this is at Η  =0. Okay I hope all of you  have this we have derived it okay
so now  as he said we have got this value either  numerically or from the Blazes solution  that a
DT =0the curvature is  0.33 - okay so therefore your tau wall  is from this you can also  non
dimensional the shear stress  through what is called.
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As a skin  friction coefficient and which can also  vary locally so this is written as tau wall by
half Rho u  ∞ square okay  if you plug in all the values you will  be ending up with a nice
expression like  this as a function of Reynolds number  okay and you can also now go ahead and
calculate the drag force once you know  the local shear stress you can calculate  the drag force
which is the total force  acting on the plate so how do we  calculate the drag force okay so you
are  right you have to integrate it locally  over the surface area okay here of  course we are
assuming it's unit width  in the third direction so this is tau DX  0 to L so this will give me the
total  drag force on the plate so if I  substitute this will be 0.33 to  which gives me the value point
six  four if I assume width of B this is the  within the third direction  perpendicular to the board
okay so this  gives me the expression for a drag force.
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Okay I can also rather than looking at  the local variation of the skin friction  coefficient I can
calculate kind of an  average over the entire plate okay  sometimes people report in terms of the
average skin friction coefficient so I  would like to average it over the entire  plate I will call this
as C F based on X  is = to L okay and over bar  indicates average here so how do I have say one
by L integral 0 to  L C of X DX. Okay so this is how I  average the skin friction coefficient  over
the entire plate if you do the  averaging you will find out that you  will get this nice expression
okay right  now your Reynolds number is defined  based on X is = to L so Arielle here  will be u
∞ L by u  okay so I am sure that most of you have  done this in the fluid mechanics but  probably
you did not know how exactly.

Those numbers were coming now you are  already given an expression for shear  stress and from
there you were doing it  I think now you would be better  understand should be  μch better okay
so  that is exactly the curvature term  which blushes has determined you know so  in both the
way in both the ways in the  way that blush has tried to do it by  power series expansion and the
way that  we are doing it by the shooting  technique in both the ways the struggle  is to find the
curvature okay so here  also we do not know the value of η at 1  so η is nothing but the curvature
basically right and blushes.

Also did not  know that okay so we had to invent an  asymptotic expansion and then match the
solutions and finally find this  curvature and we are also doing by means  of guesswork we are
calculating the  curvature so the curvature is the key  once you get the curvature everything  just
simply is solved ok so now the next  what we will move on to the thermal  boundary layer I think
we have spent  enough time on the fluid mechanics part  so we will look at the solution to the
heat transfer problem.
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Okay so blushes did the flat plate  solution for only the fluid  hydrodynamics and stop there
okay  it  was  pole  hasten  who continued   they  extended  the  solution  for   similarity  solution
towards heat  transfer so this is this is also called  as poles and solutions okay so in the  case of
heat transfer you well very well  know that earlier we had considered only  the fluid flow and
this was the velocity  profile so now you are maintaining this  surface at a constant temperature
okay  so you can also do a case with the  constant heat flux I am not going to do  it now but there
is also similarity  solution possible for that case I will  leave that as an exercise to you so what
Pole  Hassan  did  was  he  took the  wall   temperature  to  be  uniform okay and  then   he  was
interested in calculating the  solution for the temperature profiles.
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You okay so now if you apply the boundary layer equations.
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That  we derived  okay  so   can  you tell  me  the  dumps  in  the   boundary  layer  equation  for
temperature  I am asking the governing equation for  the energy yeah so u DT by DX okay  is =
to + UY  μ by Rho CP into D  u by DY the whole square okay this is  your boundary layer
approximation for  energy equation correct so if you make  an approximation that we are looking
at  only low speed flows you know and  moderate Reynolds numbers okay so you  can say that



safely the viscous  dissipation term can be neglected in  comparison it will not be exactly zero
but can be neglected with respect to the  order of magnitude of the other terms  okay so therefore
it gets  μch more  simplified okay now what we are going to  do is so what are the boundary
conditions for this at y = 0 T  =  T wall right and y = Y  going to  ∞ and at X is = to  zero so now
I am going to define a  non-dimensional temperature  Θ  okay I  want to define in such a way that
a  non-dimensional temperature is exactly  identical to the velocity profile so how  do i how do i
define so I want to  convert this profile into something like  a velocity profile how do i define my
Θ   t  _  T  ∞ if I do t  _  T   ∞ at y =0 is it going  to be 0 t  _  T wall by what okay t   ∞  _  T one
so that at y =  to zero  my T = to T wall or  Θ  = to 0  at Y going to  ∞ my T goes to T   ∞ my  Θ
goes to 1 okay so if  you plot the  Θ  you will you will get  exactly profile like this right ok why
do I want to do this way if you happen  to compare now you write your equation  in terms of  Θ
this is d  Θ  by DX  ok suppose I compare this with the  momentum equation that I had written
and  I assume that Pr=  1.
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Exactly that is my alpha = to  Μ  okay and I just replaced my  Θ  with u  by u  ∞ ok so what do
you find  this is exactly identical to the  momentum equation ok so except for u by  u  ∞ you
have in terms of  Θ   okay so it is exactly identical to the  momentum equation therefore for this
case where a number = to 1 so the  solution for  Θ  as a function of say  x and y should be exactly
identical to u  by u  ∞ rate as a function of  okay so this is a very important  conclusion you know
for a flat plate  case in the momentum equation you do not  have any pressure gradient and if you
non dimensional the energy so the  non-dimensional forms of the momentum  and the energy
equation are exactly  identical when you Pr=  to 1 ok now when Paul Hassan looked at  it he
knew directly he had the solution  for Pr= to 1 ok the  profile that you have already derived  for
velocity is the same internal number  = to 1 however he also guessed that  for Pr number not = to



1 we can  still find some kind of a similarity  solution ok so what he did as usual so  now he has
guessed that  Θ  is a  function of Η ok similar to the way  that my u by u  ∞ is a function of  some
G of b η ok the same analogy  applied and the same similarity variable  also he used ok where
my η is y by   Δ which is y √ of u   ∞ by nu X which we have derived  in the last class ok  you
use the same similarity variable and  you assume.

That if there could be a  similarity solution for  Θ  which is a  function of Η so the proof of this is
that if you substitute for  Θ  as a  function of b η into this it should  reduce to an OD perfectly ok
if it does  then there is definitely a similarity  solution okay so now he calculated all the  other
terms which are required you  already know U and V okay so D  Θ  by DX  will be ἦ by D η  and
similarly so this will be what can  you work out and tell me your  eat as a function of X here so
you have  D  Θ  by  Θ  as a function of η  okay so I am replacing everything with  because  Θ  is
a function of η only  okay  so this will be D η D  Θ  by D η  and D η by D X so this is y √ of into
X power differential of x  power  _.
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Half okay that is  _  half  so you have X power  _  3 by 2 which I  can again write it like this like
this  okay and this already is my η okay  this can be written as  _  η by 2 X  into D  Θ  by D η so
D  Θ  this  one is straight forward D η by D Y is  directly this so this is nothing but u   ∞ by nu X
into DT  Θ  by okay  so now it you can also find the second  derivative d square  Θ  by D η
square or DY square here so that will be  u  ∞ by  μ X into d square  Θ   by D okay  so all this
can be substituted let us  call this as equation number one so you  already know expressions for
U and V  okay similarity expressions which we had  derived before if you substitute all of  this
into one so I am not going to once  again do the substitution and making a  nice form of the this



thing but finally  you get a neat expression which is  actually an OD perfectly all the other  terms
get cancelled off so you get only  a function of Η everywhere so there  are no terms in terms of x
and y coming  out  so therefore pole Hassan’s guess that  η  Θ  should be a function of Η  was
absolutely correct okay so this is  the similarity solution.
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That you can get  for temperature now the boundary  conditions for this once again at Η  = 0
your  Θ  should be 0 right  and Η going to  ∞  Θ  should  be = to 1 so Η going to  ∞  means two
things  whether your y going to  ∞ or X  going to 0 so in both cases your  Θ   has to become 1
okay so therefore so  now we know everything is getting  familiar ok you have a nice OD which
is  second-order is it linear or non-linear  why  linear why your f is a function of  η.

So it is not completely non linear it  is not linear also it is a quasi linear  okay your F is still a
function of Η  right it is not of course you do not  have a  Θ  term here but it is still a  function of
Η so this is a quasi  linear OD. okay so therefore you cannot  still find an analytical solution to
this so you have to once again go for a  numerical approach okay of course you  know this
equation is easier to solve  even numerically by integrating it  rather than the shooting method
that we  had used okay so I will I will give you  that method first before we find the  solution by
shooting method so I can  cast right this is the solution  method one.
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Okay although it looks like  an analytical method finally we end up  with a expression which has
to be done  numerically okay so I can write this in  my convention which I am more familiar
with I am writing as  Θ  double Prime  and this is  Θ  prime just like I used  F double Prime and
F Prime  so this is  Θ  double prime by  Θ   prime should be = to  _  half PR  into okay I am just
rewriting the  similarity equation from the Blazes  equation I also know that if I rewrite  the
Blazes equation I can say half of F  is = to  _  F triple prime by F  double Prime.

Correct so if I rewrite the Blazes  solution I can write like this now you  can see I can substitute
for  _  half  into F in terms of F triple prime so I  can link I can link these two equations  I can
write this as Foretimes  F triple prime by okay so correct so if I  can now integrate it twice  I
directed the solution for  Θ  ok if  I if I now integrate once with respect  to η so integrating once
so this will  be what Ln of  Θ  Prime okay there  should be = to ln of F prime to the  power P R
so PR into this I can put it  as f prime F double prime to the power P  R plus some constant
which I will use  Ln of c1 therefore my  Θ  prime  should be C 1 F double prime power P R
okay this I will call that number 3.
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Okay so if I integrate once I get this  solution where this constant is not  known if I will integrate
it again okay  in fact I can do that here if I  integrate it once more I will get  Θ   is a function of b
η and PR what should  be on the right hand side so I integrate  it from 0 to some value of η C 1 F
double prime power PR ok D η + some  C2 okay so this is my final solution for   Θ  okay so I
integrate once I  integrate it twice  alright so this is f double prime here  you know you do not see
so now I have to  find the two constants C 1 and C 2 how  do I determine the two constants
boundary conditions okay so  Θ  = to 0 = to 0 okay so if I apply  this here to equation number 4
so what  will I get  edit a =  0 if I integrate from 0  to 0 this is what 0 okay so therefore my  C C2
has to be and the other boundary  condition η R going to  ∞  Θ   should be = 1.
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Okay so my η  going to  ∞ so this is 1 = to  0 to  ∞ okay so I take c1 which is  a constant outside
this is your f  double-prime PR okay into D η therefore your C 1 is nothing but 1 by 0  to  ∞ F
double prime to the power.
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Okay so this gives my final expression  for  Θ  as a function of Η and PR so  that is c1 which I
have calculated  now so in the numerator I have 0 2  η F  double prime to the power PR D η
divided by 0 to  ∞ F double prime  to the power okay everybody is convinced  okay if you have



problems in integrating  you have to go back and revise how do  you do the integration I cannot
now  spend half a class teaching that okay so  finally you get the solution now  although this
looks like an analytical  solution finally if what you are getting? 
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Is not a continuous function right now  what you got from the Blazes solution  okay numerically
was four discrete  points therefore now F is available only  for discrete points so what you can do
you can either do a curve fitting kind  of a thing make a continuous function  out of it and
integrate it here okay so  even the integration has to be done  numerically okay you can use
Mathematical  or whatever Mathematical is a very good  software where you can do symbolic
manipulations now you can directly say  that give this equation and f as a  function of Η and it
will integrate  and give you the value of  Θ  as a  function.

Of  okay  or  you  can  also   write  another  program  where  you  can   evaluate  this  integrals
numerically you  can either use a simple rectangular rule or trapezoidal rule  okay so these are
very basic numerical  integration procedures which you can  apply at those discrete points and
you  can determine these integrals and  therefore for any value of prantle number you substitute
that you do this  integration numerically for the  numerator and denominator and you get  the
solution for  Θ.  okay so that is  that is I mean that is up to you left up  to you or the other way
what is the  other way of finding the solution okay  so this is the equation that you  know so now
I have given you one method  where you it looks like an analytical  solution but finally you end
up doing a  numerical integration here okay so what  could be the possible method two  shooting



method okay so which now I hope  you have already become so familiar that  you would like to
use only this method  so now you reduce the body into two  first order ODS so for example you
can say your  Θ  prime = to X this  is one body and based on that you can  say X prime = to  _
PR by 2 F  into X so these are the two first-order  ODS okay you have reduced this in two  so
this let me call this as equation  number 5 okay so and you have the  boundary conditions for  Θ
at η  =0right so  Θ  at zero  =0.

But you do not have the  boundary condition for X at zero right  but you know that  Θ  going to
∞ should be =1  okay now this is the same kind of  problem that you did for the Blazes  case you
did not know the boundary  condition for η at 0 the same way here  you know you do not know
for X okay so  you do the same shooting technique you  guess the value of x at 0 you discretize
it and March you check whether your   Θ  at large value of η = to 1  okay so you keep doing this
hydrate  of  l  Y till  it  finally  matches   that  boundary  condition  okay  so  the  same  shooting
technique can be applied for  this okay the only thing is for this  solution you need F at that point
so  first you have to solve the Blazes  equation.

And use that value of f into  this because before solving the energy  equation you need to know
the flow field  correct so you have to integrate the  code where you are solving for f with  this
code you get the value of F and put  it into this and then you again apply  the same Newtons
technique with the  shooting method and get the solution for   Θ  okay so I will just one more
thing  with which I will stop today if you look  at this particular solution which we  have derived
by method one okay for a  particular case where.
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Prantle number is  =1 okay what happens so this Θ so I can directly integrate it out  now I can do
analytical integration if  rental number =1 okay so 0 to  η F double prime will be F prime  correct
divided by this is again F prime  between the limits 0 1  ∞ so I can  say F Prime at  ∞  _  F Prime



at  0 so f Prime at  ∞ what is the  value 1 and this 0 so this is  essentially F Prime now what is F
Prime. Okay so therefore for the particular case for Pr=1.

(Refer Slide Time: 45:04)

Your  Θ  is exactly = to in fact  if you go ahead and complete the solution for different values of
prantle  number you can do this numerically as a  nice exercise and plot 1  _   Θ   which is t  _  T
∞ by T wall  _  T  ∞ as a function of  η  okay you will find curves like this so  this is all for
increasing values of this could be prantle  number 0.6 then this could be 1 3  something like
thousand and so on okay  so it will start from so at η going to  0 so I have plotted 1  _   Θ  so T
should be = to T wall therefore it  goes to 1 and η for large values of  η T should approach to  ∞
and 1   _   Θ  goes to 0 okay so this is  how qualitatively you can sketch the  similarity profiles
for  Θ  ok and you  can find that for the exact value of PR  1 both the velocity profile.

(Refer Slide Time: 46:29)



And temperature profiles are identical alright so we will stop here today and tomorrow we will
continue on calculating the heat transfer coefficient from the temperature profiles. 

Numerical solution to the Blasius equation and
Similarity solution to heat transfer

End of lecture 13

Next: Pohlhausen similarity solution and
Flows including pressure gradient

(Falkner-Skan)
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