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Laminar External flow past flat plate
(Blasius Similarity Solution)

Good morning to you in the last  few  lectures  about  six  or  seven lectures  so  far  we were
focusing on deriving the  governing equations describing the flow  and heat transfer of course we
have done  that in a Cartesian coordinate framework  as well as the coordinate free framework
based  on  applying  the  Reynolds  transport   theorem  and  finally  so  we  were  looking   at
approximations to a two dimensional  incompressible flows to navier-stokes  equations one is
casting that into form  of stream function vorticity equations.  

Which we have derived and if you apply  that to a typical problem which is for a  external
boundary layer flow okay so for  that we can use some scaling arguments  do some order of
magnitude analysis and  then conclusively show that certain  terms can be dropped out provided
that   you  are  dealing  with  sufficiently  high   Reynolds  number  flows  okay  so  under  that
approximation we have derived what are  called as the boundary layer equations.
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Okay so let us summarize the boundary  layer equations which we derived in the  last class  okay
so let us write it in a dimensional  form not the non-dimensional form so  finally the continuity
equation stays as  it is okay so the boundary layer  equations what we are writing here is  for 2d
incompressible and what steady  state flows okay, so of course and  this is also we are assuming
there  laminar okay that is another important  assumption so something. I have to tell  you about
this when we derive the  navier-stokes equation. 

We do not really  derive one set of equation for laminar  flows and another for turbulent flows
navier-stokes equations are valid for  all kinds of flows okay so the problem  is in solving those
equations  numerically so most of the times if you  are applying the same set of equations  for
turbulent flow and turbulence has a  lot of features you have to resolve all  kinds of scales in
turbulence length and  time scales and therefore numerically it  may not be possible to do that
kind of  resolution so then what we do in order  to model the turbulent equations  turbulent flows.

We construct  what  are   called  as  Reynolds  averaged  navier   stokes  equations  okay  so  we
averaged the  equations that we have and we can do  different kinds of averaging of course  for
steady state it does not matter we  have ensemble average for unsteady  problems we can do time
averaging and  when we do this averaging we are trying  to get information only on the mean
properties of the flow such as mean  velocities mean pressures and mean  density we are not
interested in all the  microscopic turbulent fluctuations and  turbulent quantities okay so therefore
we are going to when we apply these kind  of equations to model turbulent flows. 

I  think  when  Professor  Koehler  comes.  I   think  he  will  discuss  how  we  averaged   the
corresponding  equations  and  then  we   get  the  nulls  averaged  navier  stoke's   structurally
everything will look  similar only apart from the laminar  stresses you will also end up with
turbulent stress term okay and the  problem is how do we close this  particular turbulent stress



okay so that  is all the different turbulence models  are about okay so they are there are  different
there are many books written  on turbulence modeling many so many the  hundreds and hundreds
of papers  published on that so this is a very  important issue most of the practical  flows are
turbulent okay asses the if  you solve the navier-stokes equations as  it is there is no problem.

But most of the times you cannot resolve  all the scales and therefore you have to  approximately
model what the what are  called as average quantities and that is  where the Rantz equations
come so  far   we have  not  discussed  those  things  I  am  just  looking  at  plain  navier-stokes
equations  and approximation  so you can   say safely  that  this  is  mostly  applied   to  laminar
solutions okay so when we  solve this the resulting solutions are  all for laminar flow okay for
turbulent  flow again the characteristics become a  little bit different and therefore we  have to
solve the rance equations and  the most of the times you do not have  analytical solutions okay
you have to  solve them numerically but few of you  extreme cases have analytical solutions.

Which we can do okay so this is the  continuity equation  this is your momentum only your X
momentum stays your Y momentum tells you  that your DP by dy is approximately zero  and
finally your energy equation okay so  what should be the disgust dissipation  term here  okay by
zero but what is the  CP  right I am dividing by  CP  everywhere so this is K / Ρ CP which  isϱ ϱ
Α μ by Ρ CP times D u dy (2) okay so this is the only  term which is staying there alright okay  so
these are the boundary layer  equations finally all of you agree and  you know why only this term
stays rate  okay so if not you please go back and  revise so now in order to solve these  equations
what do we do we need  definitely some boundary conditions  right these are partial differential
equations so can you tell me what are  the boundary conditions that we can we  can apply say we
take the case of our  flat plate the same yesterday. 

We have a momentum boundary layer  � thickness thermal boundary layer  � T and the wall is
maintained at a constant temperature and you have a flow  u ∞ to ∞ okay.
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You so now you have to tell me what are the boundary conditions which we can apply for first
the momentum and next the energy okay so at y =0.

(Refer Slide Time: 08:42)  

So how many boundary conditions we need in the X direction for example the momentum as far
as the velocity is concerned along the x direction how many boundary conditions 3y okay so if
you are too much bothered about okay. I am just  asking for velocity okay so 2 2 along  the X Y
so why do we need to and how  about in the why  2+2 what is this combination why 2 in X
Direction what is the order what is the  order of the PD in X Direction first  order what is the



order in y direction  second order okay so any so how many  boundary conditions does a PDE
need  equal to number of what is the order of  the PD rate. 

So therefore for along the  y-direction how many we need to give to  okay so 1 we are saying at y
= 0  u = 0 so this is what no slip  boundary condition ok so this is the  biggest contribution to
Branton okay who  has invented the boundary layer theory  we discovered that the fluid velocity
should be exactly identical to the solid  wall velocity okay now also when you  complete saying
no slip and there is no  vertical velocity or there is no  transportation through the wall okay the
vertical velocity also has to be 0 so  and what is the other boundary condition  along Y we can
give Y okay let us say Y  going to ∞ okay.  

So u are u ∞ ok and so therefore  you have two boundary conditions with  respect to U and now
what is the  remaining boundary condition we need to  give one in long X okay so we will say  at
X = 0 u should be U ∞  okay  so similarly for the temperature the  temperature also requires two
boundary  conditions along Y one boundary  condition along X okay so what is the  boundary
condition at y = 0 either this or if I apply a uniform heat flux instead of uniform wall temperature
if I same IQ all this constant so then it  should be -K DT / dy / =  0 = 0 Y which what  happens if
it is 0 Sadia biotic boundary  condition okay. 

So therefore this is the  condition at y equal to 0 how about at y  going to ∞ T = T  ∞ and X  = 0
at t should  be T ∞ okay, so this is these are  the required boundary conditions to  solve the
boundary layer equations  alright so now we will first see the  solution for the flat plate flow.

(Refer Slide Time: 12:31)
  

So this  is also called the Blasius solution .I think most of you are familiar with Blas  Blasius
solution okay so this is anyway  a flow problem you must have done in  your fluid mechanics as



well as in the  heat transfer anyway for the convective  heat transfer we have to revisit the  flow
problem before going to the heat   transfer so I  am going to go through the  solution ok in
probably in a slightly  different way from how it was done  before so for the flat plate case what
are the approximations we can make okay  still you should understand that this is  a construct a
complicated set of  equations even if you write it for  a boundary layer and of course. 

We can  transform this into a form which we can  solve ok and we are going to do that but
before we go to a complicated case where  we have a pressure gradient ok so now we  are going
to first apply that to a very  simple geometry the flat plate okay so  for this case what kind of
approximation  that you can make and you see some  approximation further to this  pressure
gradient is zero okay so  therefore since your free stream  velocity is constant okay so this term
can be knocked out that we have seen  yesterday and also right now we could  rηin the viscous
dissipation term and  solve okay. 

But that is a slightly  complicated way of solving it and we are  not going to do now if time
permits  towards the end of this course I will  take up this particular case okay so  what it means
even if you have an  adiabatic boundary suppose you put -  K DT dy y =0 is zero and you  have
this viscous dissipation you will  find a temperature profile okay so  this is this is something
which we will  be taking up when we have if you have  time okay otherwise for this particular
case when is the viscous dissipation  important as we said when you have the  ratio of your
record number by Reynolds  number. 

Which is kind of very high okay  so when that can be possible when your  flow speed is high
because the record  number is directly function of the flow  velocity or a Reynolds number is
very  small that is extremely viscous flows or  very high speed flows okay so in those  two cases
you have to consider the  viscous dissipation okay so in the other  cases the moderate velocity
regimes okay  you can safely neglect this term also  okay so the resulting equations now look
slightly much more simplified and this  is what we are going to solve for the  Blasius solution so
before going into  the solution just to give you a brief  history. 

How this  was  originally   proposed so  first  it  was  parental  who  pointed  out  in  1904 okay
Ludwick parental it was a very famous German physicist mathematician and  aerodynamics who
was actually  with the invention of boundary layer  concept of boundary layer and 1904 he says
that  the   boundary  layer  equations  for  flat  plate  okay  can  be  transformed  into  a  ordinary
differential equation okay so in those  days they did not have very sophisticated  computers and
therefore whenever anybody  was looking at set of PDS that look like  no they could not solve it
because  numerical methods were not that popular there is no computer at that time okay  so they
could not find a direct closed  form solution to the PD. 

But parental  propose that if we can convert the PDE  to a OD  okay so then OD is always
solvable even  numerically you can do it by hand also okay so therefore he proposed that the
boundary  layer  equations  can be  transformed to  an ordinary differential   equation  and this



transformation is  through what is called similarity variable so this is the it is a great  concept that
he introduces that all the  time we do not have to go for a  numerical solution if you are clever
enough to see some kind of  relationship   between the flow velocity  non  dimensional  flow
velocity and the  property and the for example the  coordinate that it is dependent on. 

If  you cast them in a correct form that you  can transform the PD directly into a OD  okay so this
is called as a similarity  solution and in fact it was a student  blushes okay in 1908 who did it
actually  he who did this similarity solution for  the flat plate which we are going to do  so what
we are going to do next is we  are going to identically trace what  blush is exactly did it exactly
in the  way that he solved it okay, so this he  got the solution for the flat plate  velocity profiles
okay so he was a student and later on I  think it was Pons thousand Pons Heusen in  the year
1921 who extended the Blasius  solution for velocity profile to solve  the energy equation okay
so it took  almost a decade to solve the energy  equation. 

From the original Blasius  solution and then in 1930 was Faulkner  and scan there were two
people Faulkner  and scan who actually extended the  similarity method of solving the PDE s
two flows with pressure gradient also  okay, so far we are neglecting this  particular term here
but  they have  extended for a  generalized  set  of  flows  you know flows including pressure
gradient without pressure gradient so  all of them they constructed a  similarity solution which
we are also  going to see okay, so these are general  family of problems okay , so therefore you
can see that it had a  considerably long history and in fact. 

In  the first in this course when we are  talking about external flows we will be  doing all of this
okay  starting from the Blasius solution till  Faulkner and scan and probably an  extension of this
two different boundary conditions okay so all these are  basically closed form solutions which
you  can  do  but  of  course  the  resulting  OD  cannot  be  solved  analytically  blushes  himself
struggled with that we will be using some elegant numerical techniques  to do that okay so now
we will  start   with the Blasius  solution  okay now what  blushes  dot  now if  you look at  the
velocity profiles okay so you can draw  the velocity profile something like this  here if you go a
little bit downstream. 

So if I were to calculate the gradient  of velocity at the wall D u / dy okay  so what will happen to
this gradient as  I go downstream will it increase or will  it decrease it will decrease right ah
decrease why what is that it is always  zero always at the wall it is zero but  why the gradient
should decrease we are  the boundary layer thickness keeps on  increasing and you have more
flow which  isn't raining from outside okay so  therefore the profile becomes more  gradual and
gradual as you go down  initially you have a very sharp gradient  at X =0 the gradient will  be
infinite okay so you do not have any  profile. 

Which is developed okay slowly  your profile develops and it becomes  more gradual and it has
to satisfy  continuity also write down strip so  therefore what he has observed if you  can find a
variable okay so a  non-dimensional form of the velocity  which we can say u by u ∞ because



we can see the order of magnitude of U  is of the order of u ∞ right so  if we say u by u ∞ this
should be  some function of some variables  now you  can see the variables  which you are
dependent on it is it is a function of  two variables one is your X and the  other is your Y okay
now when you look  at when you look at .�  

You can also  see � as a function of X clearly the  boundary layer thickness is a function  of X so
therefore now also we saw that Y  scales with � variable Y sub YY is  of the order of magnitude
of � so  therefore if we combine these two  variables as a non dimensional group so  he says that
if we can write this as  some function of Y over � which  in-turn  � as a function of X  okay so
this is a non dimensional group  and if we can find this function so this  should directly explain
the dependence  of Y on this single variable rather than  on variables Y and X right so if you say
Y by � is some variable Η. 

Which we call a similarity variable okay so now  you are u by u ∞ is just a  function of Η
directly and once you  use the similarity variable you note how  do not have to solve this in terms
of x  and y you can just directly solve in  terms of Η okay that will help you in  reducing the PDE
to an OD so that  was  this  basic  observation  okay now how he  obtained the basically  the
relationship  between Η Y and � so now we should  know how � is a function of X okay  one
directly you can use simple scaling  arguments like what base undoes look at  the inertia and this
terms balance and  then you can directly get the  functionality of � okay the other  long way that
I am going to do is  helpful because any way we do not have to  derive the same set of equations
again  okay so and let us what I am going to do. 

Now so what I am going to do is I am starting with the X momentum equations and I am going
to integrate it along Y from the wall surface all the way till the boundary layer thickness � okay.
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So if you integrate it out so directly  you reach to this particular form and  what I am going to do
now is a little  bit jugglery here to eliminate in terms  of V and construct that in terms of U so
how do I do that I want to confirm the  continuity okay so your continuity says  that you are d u
by DX +- DV / dy okay so I can write for V  I can integrate this and I can say this  is - integral 0
to  � D u / DX  into so integrated 0 to  � over dy  and now we can so this is your kinematic
viscosity so we can substitute for so I  can substitute into that okay ,so what I  am going to do a
little bit more I am  going to integrate by parts this  particular term I can write it as d by dy u v
dy  integral 0 to � write- 0 to  � u DV / dy /dy right what is that  I think this is right ok  which
one okay. 

So I am integrating by  parts okay if I do that this I can  directly write it as UV between the
limits zero and � okay so this will  give me of course at zero you are vr0a  � u is equal to u ∞ so I
can  say that this is u ∞ times V at  � okay  so - this particular term here and  of course from
continuity I know dv/  dy can be written in terms of d u by DX  okay so therefore this can be
further  written - u ∞ so V or  � is this right here this is my V at  � right so I have integrated it
from  0 to � and at 0 V is anyway 0 so V  at � will be this I can substitute  for V of � from here so
this will be - u ∞ times 0 to � D u DX  dy okay again DV by dy as- D u by D X  so this will be +
integral 0 to �  u D u by DX dy okay. 

So this is how my  second term so now you can see I have  eliminated V completely I have
written   everything in  terms of U ok is  that   clear   which part  integration  by part  okay so
basically I have integrated by part here  okay and then the first part if you  integrate it you will
end up with  between the limits zero and � at  zero the velocities are 0 but � U is  nothing but u ∞
multiplied by V  at  � okay now from the continuity  equation when you integrate it between 0
and � your V of � can be  expressed like this I am just  substituting for this directly here and  DV
by dy is nothing but - D u by DX  okay .

So I am just using continuity to plug  in ok so this is the resulting equation  so if I substitute for
this  term and  then write  the  complete  equation  so you  have  to  tell  me how the  resulting
equation should look like  okay so already you have UD u / DX there  is another UD u by DX
okay.
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So that will be  2 times integral 0 to � u D u by DX  dy and then you have - u ∞ 0  to � D u by
DX dy that should be  equal to u ∂ u / ∂ Y at now this  has to be integrated from 0 to so this  is
the limits I am applying okay this is  nothing but ok you can call this put  this as equation
number one and please  store it in your mind somewhere that we  have derived this equation
because I am  NOT going to do it again when we do the  integral method ok so this is nothing
but the momentum integral equation  so that is slightly cast in another form  you can say this is D
u square by 2 D X  and 2 2 cancels so you can write D u 2 da dy - u ∞ so they  slightly cast in a
different form but  anyway that is basically coming from  this particular equation this is your
momentum integral your momentum integral  is written in only in terms of you. 

Your  entire equation is in terms of view  there is no becoming them okay and of  course you are
you know your momentum  integral rate what is your momentum  integral data how is it denoted
u by u  ∞ integral 1 - u by u  ∞ dy 0 2 this is this is the  definition of momentum integral ok or
people call it as momentum thickness  sometimes okay so we can you can you can  do this as a
nice exercise you can  combine these two terms bring it to this  form and then write in terms of D
then  by DX okay so that is another way of  writing casting this equation okay so  anyway so that
we are not interested in  solving for the momentum integral right.  

Now what we are going to do we have  already assumed that my u by u ∞  is a function of my G
which is function  of Y by � this is nothing but my  similarity variable Η okay so I am  going to
plug in this particular  solution form of solution which blushes  is assumed into this particular
momentum  integral so I am going to do all this is  finally how to solve for �  okay so first if you
calculate your D u  by DX from here how will you calculate u  by DX  so that is basically you ∞
times  okay so you should go back and revise  all your differentiation rules okay G  ′ and then - y
by � square  into D � by DX okay. 



So how you got  it you can you can say that this is some  function of Η right and so your D u by
DX is nothing but u ∞ times D G  by DX okay  so this is nothing but DG u ∞ x  DG / D Η x D Η
by DX and now DG  by D Η is nothing but your G ′  okay and D Η by DX so this Η is  nothing
but Y / � okay so then you  get - u / Y /� 2x D  � / DX okay so you please go back  and revise
your differentiation rules  okay so once you get this now the next  term that we need here what is
the other  term d u / dy okay so what will be  d u by dy here d u / dy is much easier  u ∞ into G ′
G ′ by  / �  okay so but � is a function of X you  do not have to differentiate it okay so  now you
substitute for this D u DX in D  u dy okay and you can group all the  terms together which I am
not going to  do step by step I will only show the  equation after it is grouped okay.
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So if you substitute into one and you group all the terms. I am just going to write  the final form
you get something like a  - B into � D � by DX / u ∞ times C now  this a B and C are constants
where a = 0 to 1 G ′ Y/ �x  D Y by � so what I am doing is this  integral dy wherever I have I am
writing  this as dy / � x � okay so  therefore the integral limits become 0  to 1 okay so you can
check that you know  is a nice exercise you can does not take  too much of time you know you
are just  rewriting everything in terms of Y by  � grouping the terms together and B  is to 2 times
0 to 1 G G ′ Y / � xD Y / � and you are see  can you now guess and tell me what C  should be this
you should be able to  tell  zero to one. 

Why it is already is already  integrated and the limits have to be  applied what is D u by dy u ∞ G
bar by � okay so actually when you  put that all of this u ∞ can be  cancelled off so you have μ
times G bar  now G ′ G ′ between the limits  � - � zero divided by you  have another � and that �
also  will cancel off so finally C will come  out to be G ′ of 1 - G ′ of  0 okay so this because you
are  transforming all your Y with respect to  Y by � okay so wherever you are  applying limit �



that becomes 1 all  right so this is your OD can you tell me  what is the solution for this how do
we  solve this OD  separation okay. 

So what will be the  solution for � okay so I can write  this as D � 2/ 2/ DX = C / a - B in two so I
can  separate it as you said u by u ∞ x DX alright so if I integrate it  from X = 0 to some position
X  okay, so I can use a dummy variable here  and I can say I can integrate from 0 X  equal to 0 to
some position where you are  interested to calculate the boundary  layer thickness okay so this
will give  my � = 2 times √of 2 C by a - B √ x of UX /u ∞ okay so  therefore you can see clearly
that we  have arrived at a relationship between  � and X ok so your � therefore  is a function of X
through this  particular relationship and therefore if  you if you say your Y by � η is  equal to Y
by � so that will become  Y times √ of u ∞ by u X. 

Therefore this is my similarity variable  okay this is my similarity variable  which goes like this
so this similarity  variable now you can see is constructed  as a function of both x and y ok so
now  if I do this way what it means my u by u  ∞ is going to be a function of  only Η anymore so
not on x and y  respectively alright and this is the  similarity variable now the same result  you
can get by very just one step  process scaling process which you can do  it yourself ok  and now
what I am going to do is  introduce the similarity transformation  now still I have not converted
the PD  into OD and still I do not know whether  the similarity variable is correct  this is just
what blushes is assumed so  what is the check that this variable is  correct. 

So when we substitute that  variable into the PDE that it should get  converted into an OD that is
the proof  that you have a similarity solution  otherwise the similarity variable that  you guessed
is wrong correct okay so let  us go and check that so I am going to  see now I have to introduce a
function  so such that I can make the continuity  equation redundant I do not want to  solve this
so  what  kind  of  function   should  I  introduce  stream function  okay   so  stream function  all
naturally  satisfies the continuity okay so  therefore I will introduce a stream  function such that.
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You are u =DC by dy and V = - / DX. Okay now if I take this particular  and integrate it along Y
so I get 0 to Y  u dy and already I know my U by u  ∞ is nothing but G of Η or G of  Y by � so I
can just substitute in  terms of � here this is 0 to Y okay u  D Y by � which is d Η x �  right or I
can just say dy / D Η into  okay so I can directly transform  it this way ok so dy / D Η  you know
so now we have constructed a  relationship for Η which is your Y  √ of u ∞ by nu X okay  so you
can calculate what dy / D Η is  what is dy / D Η √UX by okay so that I can  substitute into this
and I can write  this in terms of G okay so this will be  0 to Η so why I am transforming to Η
and U = u ∞. 

Which I can  take out into G of Η x D Η into  you have √ X by u  ∞ so this is nothing but your  √
of u ∞ UX times 0 to  Η G of b η D Η ok so this is your  side and now I am going to introduce
another function ok function which is  says that this integral is nothing but  this is nothing but a
function of Η so  you can use dummy variables here and you  are integrating from 0 to Η so the
resulting function which is a function  of Η M is a donut denoting it by f of  Η so therefore your
φ =  √ of U ∞ X F of Η  okay, so this is the relationship between  the stream function which I am
going to  introduce and your similarity variable  Η okay. 

I  hope all  of you got it  is   just  a very simple substitution  and  writing in terms of bη any
questions  on this  okay so now we have done this so just  couple of more minutes and I am
going to  write down the velocities and  derivatives everything in terms of the  similarity variable
Η okay any  questions is it clear okay so all I am  doing is I am transforming from Y to Η  okay
so I already know the relationship  between Η and Y so I substitute for dy  by D Η and I already
know use a  function of Η this way so I substitute  and finally get the relationship between  an
bη.
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So now first U and  U∞ already we know it  is a function of G of Η okay and your  G of Η is
nothing but if you look at  this particular definition it is nothing  but DF by D Η right because
integral  of G of η is nothing but a feet ah  okay so therefore G of Η has to be  what DF by D Η
that is right now  similarly my V velocity is nothing but  - DC by DX so now you have to tell  me
so you have psy as a function of Η  so this we have to differentiate with  respect to X okay so
you have to do this  and tell me anything will be that will  stop today  okay so if I group these
terms together  so finally I should be getting V by u  ∞ this should be equal to 1 by 2  √ of μ by u
∞ X x  so this term right here I can write this  as Η x DF / D Η okay  - F okay so you can check
for  yourself this particular it is a little  bit of jugglery so you can cast this in  terms of Η and you
can check whether  this particular form comes out okay so  this is you have to play a little bit
around there okay. 

So with that we will  stop here tomorrow we will plug so why  we are doing all this fear first
getting   an expression for similarity  you this  is   your stream function as a function of  the
similarity variable and then in your  boundary layer equations you have your  velocities your
derivatives all of them  have to be now cast in terms of the  similarity variable and how we are
doing  that because we know velocity is a  function of psy and psy is a function of  similarity
variable okay so we have to  use that put them in the PD and finally.  

You will be ending up with a nice ordinary differential equation okay so I  suggest all of you
whenever we do these  kind of derivation especially in the  beginning where you are not used to
so  many differentials you please go back  and pay some my no spend some half 45 minutes
checking all these equations  and I think slowly you will get  accustomed to this and after that
you  will become faster okay.

Laminar External flow past flat plate
(Blasius Similarity Solution)



End of Lecture 12

Next: Numerical solution to the Blasius equation and
Similarity solution to heat transfer
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