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Boundary layer approximation

Good morning again out  of  you so today  we will  continue  on the  derivation  of   the  non-
dimensional form of the  navier-stokes equations particularly we  are interested because as we
said as I  said before the course deals mostly with  two dimensional incompressible flows so
therefore if you I think in the last class I just gave you the non  dimensional variables which we
are  putting into the dimensional  navier-stokes equations.
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And if you plug in I leave that as a nice exercise you  can plug it into the steady state two
dimensional incompressible dimensional  navier-stokes and finally you end up  getting this set of
non dimensional  steady state incompressible navier  stokes equation for two dimensions so  now
this is how your non dimensional  numbers come out okay so all these are  capital letters which
means they are non  dimensional okay UVXY capital P okay so and the way that we are non



dimensionalizing is shown here this was  discussed last class I think all of you  can probably
reach to this particular  point.
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You  now  the  following  non  dimensional  numbers  are  propping  out  of  this  particular  non-
dimensional set of equations okay. So we will discuss the non dimensional numbers.
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Which are coming  out of this okay so for deriving the  non-dimensional form you can consider a
flat plate boundary layer equation such  as what is shown here you are assuming a  free stream
velocity which is uniform  which is not varying along the x axis X  direction and you have also
temperature  boundary condition which is applied to  the flat  plate so this  will  induce no a
thermal  boundary layer  developing along  with the momentum boundary layer  okay so  the
thermal  boundary  layer  thickness  is   Δ D  function  of  X  your  momentum   boundary  layer
thickness is Δ which  is also a function of X so this is how  the velocity and temperature profiles
at  any location will appear okay.  

(Refer Slide Time: 02:50) 

You  so for this is a typical case where you  want to finally reduce your  navier-stokes equation to
what  are   called  as  boundary  layer  equations  okay   so  the  boundary  layer  flow  is  a
approximation to the complete full  solution of the navier stokes equation  okay before we do
that approximation let  us look at the non dimensional numbers  in word okay so first is your
Reynolds  number which is your Ρ  ∞ u   ∞ L by  μ where L is your  characteristic length here we
can use  the characteristic length as the for  example length of the plate okay so this  denotes the
ratio of your inertial force  to viscous force so if you look at the  non-dimensional form of the
momentum  equation so how can you use the Reynolds  number.
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To classify the flows for example so if your Reynolds number very small. Then this term this
predominant  is  dominant  over  the  other   term  so  you  can  neglect  for  example  the   inertia
compared to the  diffusion terms right here okay so under  the limit of small Reynolds numbers
you  can have a viscous diffusion dominant  flow okay at very high Reynolds numbers  you can
neglect the diffusion terms  compared to the inertial terms okay now  of course you know you
want  to operate   in  a  regime where you are not  too  extreme you know you are not going
towards very small Reynolds number or  very high Reynolds numbers.
 
So in  those practical situations so you have  both these terms which are dominant  however the
Reynolds number will also be  helpful in classifying the flow regime  okay so if depending on
the Reynolds  number you can classify for external  flows for example laminar versus  turbulent
okay if you take the example of a flat  plate okay so as you start from the  leading edge right here
initially it  could be a laminar boundary layer and  after some certain extent okay your  instability
start appearing and you have  a critical Reynolds number beyond which  your instabilities will
grow and the  flow becomes turbulent and that is  classified based on the local Reynolds  number
okay so typically your local  Reynolds number that is the critical  value based upon. 

Which  you  classify   whether  the  flow is  laminar  or  turbulent   in  the  case  of  flat  flow  is
approximately  10 to  the power 5 okay so  this  is  a  good example  how you are using  the
Reynolds number as a means of  classifying the flows of course you know  you can also make
approximations to  these terms based on the Reynolds number  very small Reynolds number you
can  neglect the inertial terms extremely  high Reynolds numbers you can neglect  the diffusion
terms so that is one  utility of Reynolds number now let us  move to the other non-dimensional
number okay so what is the other number  that is appearing here Prandtl number  okay so your
Prandtl number here is  basically your  μ CP by K. 



Which is  nothing but if you write in terms of  diffusivities momentum diffusivity by  thermal
diffusivity so you can divide  and  multiply by Ρ so this  μ by Ρ is  your new and K by Ρ CP by K
so will  give you 1 over α  basically so this  is your momentum diffusivity so what are  the
units of diffusivity meter square  per second okay  so now the parental number is a  very useful
parameter especially  when you have flows with heat transfer  okay so Brandon number appears
in the  energy equation along with the Reynolds  number so if you are looking at this  kind of is
this  figure right here so  prantle number decides how far what is  the rate of growth of the
velocity  boundary layer with respect. 

To the  thermal boundary layer okay  so in this case it shows that your  velocity boundary layer is
growing at much higher rate than the thermal  boundary layer okay so your parental  number
greater  than  one  signifies  that   your  momentum  diffusivity  or  momentum  boundary  layer
thickness which is  related to the diffusivity has to be  greater than your thermal boundary layer
thickness okay and of course vice versa  if you are looking at smaller parental numbers your
momentum boundary layer  thickness should be less than the  thermal boundary layer thickness
okay so  with that you can you can look at some  approximations that you can make when  you
are solving the incompressible  boundary layer equations. 

Wherever  you   have  a  very  small  prantle  number   approximation  for  example  when  your
momentum boundary layer  thickness  is    much smaller  okay so you have  to  make  certain
approximations which will  simplify your flow so these are again  some kind of classifications
where you  can identify how the boundary layer  thickness velocity boundary layer  thickness
grows with respect to the  thermal boundary layer thickness and  typically for gases you will
have about  Prandtl  number close to one okay  typically  for liquids you will  have  parental
numbers  much greater than one  okay so gases have a Prandtl number  approximately one and if
you are looking  at liquid metals okay so they fall under  the category where your Prandtl number
is  much lower than one okay. 

So this is  the other non-dimensional  number appearing in the energy equation  now when you
go to Flo's suppose you  have a body force here okay which we  have not included now okay you
can have  basically buoyancy which is driving the  inertia okay so that is the natural  convection
so even though you don't have  a force convection you don't have a  velocity which you supply
by means of an  external blower or pump you can have the  natural convection happening due to
the  buoyancy forces and that if you include  now instead of the Reynolds number  defined for
force  convection  you  can   define  another  non-dimensional  number   for  the  case  of  natural
convection okay.
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So that is let us call the grashof  number  okay so strictly speaking I have not  included here but
if you include the  external buoyancy and non dimensionalize  it  you get a number which is
nothing but  G /R2 the ratio grashof number  two Reynolds number square that is also  called as
Richardson number so your  grashof number is  now since you  are defining your Reynolds
number as  inertia force to viscous force when you  have buoyancy driven flows you don't  have
inertia dominance but buoyancy  dominance therefore this should be  buoyancy force buoyancy
force by viscous  force okay. 

So your by Anzhi force the  net force the net buoyancy force which  is acting so it is basically
your force  acting downwards due to the weight of  the fluid the gravity minus the force  which is
acting upwards to it to by on  so that is the net force okay so that is  Ρ -Ρ  ∞ you can say into
acceleration due to gravity so if you  replace the busyness if you replace the  density difference
apply the boussinesq approximation and  replace it with temperature difference  so you can write
it as G β into t  minus  to  ∞ so this is your force per  unit volume so if you want to convert it  as
force so that will be in x l 3 divided by the viscous force which is nu  square okay so this is the
exact way that you calculate your rash of number  once you know the temperature difference
and your coefficient of so this is your  1 by Ρ D Ρ by DT. 

Okay so now we will  move on to the other non dimensional  numbers one which you are the last
one  which is appearing in that particular  non-dimensional form is your Eckert  number okay
this is actually defined as  the ratio of your kinetic energy of the  fluid the exact expression that
comes  out will be u  ∞ square by CP into  T - T  ∞ so this is  nothing but you can say the
numerator is  the kinetic energy of the fluid and the  denominator is your thermal energy so  what
it means is if you have a high  Eckhart number okay so a portion of your  kinetic energy actually
gets converted  into the thermal energy okay. 



So this is  especially true if you have high speed  flows okay or if you also have very high
viscosity  dominated  flows there  you have  a  lot  of  viscous dissipation  effects   coming into
picture and a portion of the  kinetic energies converted into thermal  energy so even though if
you if you  maintain this wall as adiabatic okay so  due to this viscous dissipation effects  you
can have a temperature profile okay  so the temperature profile can set in a  sense  because of the
occurred number which is  coming into the viscous dissipation term all right so this is these are
some of  the non dimensional numbers we will go  ahead and define one or two more which  are
important for heat transfer although  they are not appearing in the governing  equations. 

We will use them very  routinely so one is your nusselt number  yeah I think this should be so we
characterize the heat transfer rate by  means of a non-dimensional number okay  so which is
which is usually used in  convection and that is called the  nusselt number the nusselt number
you  can define based on the heat transfer  coefficient which is dimensional   multiplied by the
length divided by the  thermal conductivity and where your heat  transfer coefficient is defined as
minus  K DT right so this is your heat flux at  the wall divided by in this case T - T  ∞ okay  now
if you use the non-dimensional  temperature based on. 

This definition  right here can you tell me what will be  the nestled number in terms of the  non-
dimensional  temperature  gradient  you   can  plug  in  further  non-dimensional  form  into  the
dimensional  form and then you  can finally  calculate  your myself  number  in terms of non-
dimensional temperature  gradient so nice exercise I think you  can try out will give you a couple
of  minutes yes so what should be the  expression okay into L by K. 

Now I want to  calculate the Nestle number can thermal  conductivity cancels and you can also
write in terms of non-dimensional why ll  cancels so that will be minus Capital y  at capital y
equal to okay so this is  the advantage of casting in  non-dimensional form your expression  gets
much simpler alright so now you  understand why we define a certain  number in this particular
way  if  you   have  a  dimensional  form of  heat  transfer   coefficient  which  is  related  to  the
temperature  gradient  your  nusselt  number   is  exactly  nothing  but  your   non-dimensional
temperature gradient  okay and if you look at the physical  significance of nusselt number you
can  also write your nusselt number you can   multiply the numerator and denominator  by T wall
minus T  ∞ and you can  write this as K into T wall minus T   ∞ by L okay so this is nothing  but
what is the numerator here this  is your convective heat flux by  conduction heat flux. 

So  what  does  this   represent  the  non-dimensional  number   tells  you  what  is  the  actual
contribution  of  advection  okay  over   conduction   okay  conduction  as  I  said  you  know
convection has contribution from  conduction as well as from advection  okay so if this number
is greater than 1  okay so if it is equal to 1 then there  is no contribution of advection okay so  the
heat transported from the wall to  some distance  okay let us say some L okay in fact I  should
not maybe use L here let me use  some H okay just to give you a  non-dimensional physical
representation  of this non-dimensional number. 



So it  tells you if you have a fluid element  vertical distance of H from the flat  plate okay so you
are calculating what  is the contribution of both advection  and conduction over conduction okay
if  that value is equal to one so it means  that all of this is happening only by  conduction okay
and if it is greater  than one you know that there is  advection which is helping in the  transport of
heat okay so therefore you  are looking at when you are looking at  convection you are looking at
nusselt   numbers greater than one where you are  where you know that  higher the value of
nusselt number better is the heat  transfer rate augmentation due to  convection alright. 

So  these  are  some  of  the  non dimensional  numbers  of  course   we have  also come across
Bayesian number  the last class when we were looking at  the entropy generation okay so do you
remember how we define the Bayesian  number  in fact I have also given one  problem in your
assignment to calculate  the irreversibility is due to viscous  dissipation and yeah ok so this is
your   you  can  say  your  entropy  generation  due   to  conduction  heat  transfer  by  entropy
generation due to conduction +  viscous dissipation ok so you can  substitute the appropriate
terms and you  will you will arrive at what we have  derived in the last class so essentially  it tells
you characterizes quantifies okay.  

The entropy generation are contributed  by conduction over the total entropy  generated okay so
this  is  a very useful  number ok so far entropy generation  people have been talking about
qualitatively  but  now  you  can  calculate   the  actual  values  from  conduction  from  viscous
dissipation that is the friction  of the fluid which is generating entropy  and you can actually
calculate  the  contribution  of  each and then you can   take  the ratio  and that  gives  you the
Bayesian number so these are some of the  non dimensional numbers I think more or  less if you
know these non dimensional  numbers this will keep coming through  the rest of the course okay.

So I think  most of the non dimensional numbers are  covered you know you know you won't
need  anything apart from these numbers okay can  you think of any other non dimensional
numbers in heat transfer convective heat  related to convective heat transfer for  example okay so
the Stanton number again  it is an extension of the way that you  are defining nusselt number
okay it's  simply ratio of nusselt number to the  peclet number okay sometimes the  Reynolds
number times Toronto number is  also referred to as the peclet number  alright so this is nothing
but your Ρ  u  ∞ Ρ  ∞ u  ∞ L  by what α  okay. 

So this is also  referred to as the peclet number  alright so most of the times you have  this pair
coming in to many of your  expressions so therefore they have  combined that and it's denoted as
a  peclet  number so any other  non  dimensional  numbers relay numbers okay  so the relay
number again is basically  nothing but your rash of number times  your Prandtl number  okay so
these are the basic non  dimensional numbers you can of course  group them together and again
give a  give a different name to that okay so  far as far a single phase convective  heat transfer is
concerned these are the  ones you know if you go to  multi phase  heat transfer say boiling or so



on  and then you will  have other  non  dimensional  numbers  you know bond number  your
towards number of a capillary  number okay and Weber number. 

So on  and so for depending on the forces that  you encounter okay so any questions  on this
Richardson number is again as I said it  you feel group your grashof number by re  square and
you group them together  as   another  non-dimensional  number that  is   called  as  Richardson
number okay  Chael disappeared this is oh so this is  HL by K so KK should cancel them I think
it's straightforward right okay  KK cancels if you already hear from H if  you divide it by KKK
directly cancel okay so now what we will do next is to  we will use the non-dimensional form
from here we will go one step forward as  I said we will approximate the  navier-stokes equations
to  much simpler  set of equations. 

Which we can for which  we can find analytical  solution okay so  that  we will  do for this
particular  boundary layer problem okay so we will  look at what we call as boundary  layer
approximation to the navier-stokes  equations okay.
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So the reference figure which we will be using is still the same whatever. I have drawn here.
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You  we will be taking any boundary layer flow  for simplistic reason you can assume  that the
free  stream velocity  does  not   vary  with  the  axial  location  but  it   could  also  vary  still  the
boundary layer  approximations are valid okay so you  have a momentum boundary layer you
have  a thermal boundary layer both  simultaneously occurring due to a heat  transfer. 

Which is taking place we will  start with the non-dimensional form of  2d incompressible steady
state  navier-stokes equation and from here we  will apply the scaling analysis okay so  when you
want  to  reduce this  full   equation you want  to neglect  some terms  so for that  we have to
understand the  order of magnitude  of each of these  terms you know so there has to be a
particular way that you are doing it so  this is done by the order of magnitude  analysis so the
order of magnitude can  be decided only if you scale the  equations okay, so you should know to
what extent the dimensions can go for example okay and what extends the  velocity can go so
once you know that  once you know the scale so that gives  you the order of magnitude of each
term  from which you can neglect some terms  for this particular problem. 

Okay so the  order of magnitude is basically decided  through scaling so let us introduce some
order of magnitude of certain quantities  here so before that we will introduce  what is called as a
non-dimensional   boundary layer thickness for velocity   let  us call  this  Δ over bar which is
nothing but your Δ by L and  obviously for the boundary layer flows  this quantity should be
what very small  okay so this is where the scaling starts  okay so very first approximation that
you introduced in the scaling is when  you scale your boundary layer to the  length of the plate
obviously this is  very small quantity  okay. 

So we will use this as the starting  point and we will find the order of  magnitude of other terms
also when you  look at the new velocity that is the  non-dimensional U velocity what should  be
the approximate order of the  magnitude that should be approximately  but very small so what is
the  maximum  value  till  it  which  it  can  go one rate   so the  order  of  magnitude  should  be



approximately that okay you look at the maximum value and you know what is the  order of
magnitude of that particular  quantity okay now we do not know whether  we could be neglected
whether we is of  the order of one or whether we could be  neglected so that we will have to
decide  okay so we will first write down the  okay. 

So your u goes to the order of one  what about your X order of one  okay now I am going to scale
my Y  non-dimensional e so what I am going to  do in the boundary layer I am looking at  X
which is varying from zero to all the  way till the length L and as far as the  y coordinate is
concerned  I  am  mostly   concerned  within  the  confines  of  the   boundary  layer  okay  the
assumption here  is that the boundary layer is the region  of interest because the viscous effects
are very important here outside the  boundary layer you can treat this as an  in viscid potential
flow all right so you  do not have to solve the full  navier-stokes equation so therefore I  will
confine my domain to the extent of  the boundary layer so my in that case my  Y extent should be
of the order of Δ s this should be of the order of Δ bar which is of course  much lesser than  one
all right.  

Okay so I will start with the terms one  by one now you can tell me what will  be the order of
magnitude of D u DX so U  is of the order of magnitude of 1 X is  of the order of magnitude of 1
okay so  this will be from the order of magnitude  1  now how about D  2 u by DX  2   that is
nothing but d by DX of d u by DX  so already this is of order of magnitude  1 divided by 1 so
this should also be  order of magnitude 1 okay  so similarly we will do that in all the  direction so
you have d u dy so use of  the order of 91 Y is of the order of  magnitude of Δ okay therefore this
will be order of magnitude of 1 over Δ okay.  

Similarly your d 2u by dy 2 will be order of magnitude of 1 by Δ  2  .so now we will have to
decide what is  the order of magnitude of the V velocity   okay  so that  we cannot directly
hypothesis so  we have to use the continuity equation.
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Okay so we can say my DV by dy okay is  of the order of magnitude of D u by DX  correct so
this should be exactly minus  of this right so I know my DV by DX is  of the order of magnitude
of one and my  V is of the order of magnitude Δ  that therefore yeah this is you right so  therefore
we should be of the order of  magnitude okay so when I use Δ here  it is the non-dimensional Δ

so you  can put an over bar because all these  are non-dimensional variables ∂ u ∂  u by ∂ y yes
we will come into  that okay we will come so first we just  write down and then we will later say
which order of magnitude is higher which  of the terms are probably more important  than the
other terms so therefore we  know so you are DV by DX now should be  what should be the
order of  magnitude  and your d square V by DX square again  Δ so d square V by dy square Δ
by Δ Square 1 by okay so you have  all the derivatives okay so we will just  substitute into the
equations one by one  and you know the order of magnitude okay.  

So let us start with the continuity here  so this will be of the order of  magnitude one by one right
this is of  the order of magnitude what is the order  of magnitude of V Δ by Δ so both  are of heart
of 9q1 okay so of course  because we have only two terms and the  two terms should balance
each other  right so they are both of the same order  of magnitude so coming to this term use  u
into D u by DX so use of the order of  one by one now here this is of the order  of Δ by Δ we do
not  know the   order  of  magnitude  of  this  okay  but  you  can  quickly  see  that  the  order  of
magnitude of these two are same which is  of the order of magnitude one therefore  in order to
balance this should be of  the order of magnitude. 

Okay now coming  to this d square u by DX square this is  of the order of magnitude 1 upon 1 +
this is 1 upon Δ square ok now  therefore if you compare these two terms  since your Δ is very
small  naturally this term has to be  much more  significant than this term right so you  can say
that you can neglect this term  directly okay so therefore if you  neglect that term so what should
be the  order of magnitude of Reynolds number  such that all the terms have  the same order of



magnitude Δ square  one over Δ square okay so therefore  from here your Reynolds number
should be  of the order of magnitude one over Δ  what square or Δ so what does it  mean so now
this puts a constraint on  the Reynolds number. 

So my Δ is  much  lesser than one so therefore my Reynolds  number should be so only for this
particular case this approximation is  valid so whenever I look at boundary  layer flows I am
looking at very high  Reynolds numbers okay so now coming to  this second the Y momentum
equation so  what is the order of this Δ by  one and this Δ square by Δ okay  so now so this you
can see how the order  Δ and Δ therefore this should be  of the order Δ coming to these two
terms you have this is Δ by one +  you have Δ by Δ 2 so this  is one over Δ this is Δ okay so
which is a more dominant term one over  Δ. 

So which we can this neg lit and  we already know the Reynolds number  should be of the order
of 1 over Δ  square if you put that you will find  that now all the terms are of the order  of Δ okay
so all the terms in the Y  momentum equation are very small already  your Δ is very small right
so  therefore  you can  safely  say that  you  can  neglect  all  the  terms  without  making much
difference all right if you are  operating at high Reynolds number all  the Y momentum terms are
extremely  small   of  small  order  of  magnitude  therefore   what  comes out  of  this  but   color
analysis the order of magnitude  analysis is that two number one.
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You are  d  2 u by dy  2 is  much greater  than what right this is the first coming  from the X
momentum equation that is the  first term that you neglected second  what it also means your
Reynolds number  should be quite high okay greater than  one and number three okay all terms.
In V momentum are negligible so what is the  particular implication of this  particular statement
is that you can  safely say that my DP by dy is of the  order Δ so therefore the gradient is  very



small along the Y direction okay or  in other words my pressure is  approximately constant along
Y okay so  this is a outcome of this particular  this as 2 times d u by DX the  whole square + DV
by  μ Y (2) + DV by DX + d u by dy I  can divide it by half I can  multiply by  half the statement
number three so this has  actually saved a lot of my computational  effort okay so what it is going
to do  is that I can safely say if I take any X  location for example. 

So this states that  the pressure here has to be the same  pressure here same here same here okay
so what this means I can calculate the  pressure at this point based on in viscid  flow analysis and
I can use the same  pressure even inside the boundary layer  okay so if you apply the navier-
stokes  equation to outside the boundary layer  what will be the what will be the  navier-stokes
equation when you apply to  the bar so if you look at the momentum  equation do you have any
V momentum  equation outside no so we are assuming  the flow is in the X direction so now  the
X momentum equation you have only  the u velocity V velocity is not there.  

So this  term is  zero okay and how about  your discuss effects  okay so it  is   negligible  and
therefore you have only  two terms one is your inertia term Ρ u   ∞ T u  ∞ by DX of course  your
U is nothing but u  ∞ outside  okay ,so that should be equal to minus DP  by DX  Oh square see
all of this are nothing  but your viscous effects okay so if your  risk effects are negligible outside
in  the free stream so therefore you can  safely neglect all of this all right  so now based on this
we can calculate do  P  ∞ yeah because in this case it  does not matter P  ∞ and your P  here they
are going to be the same so  you do not want a differentiate your free  stream pressure from the
pressure inside  of the boundary layer okay. 

So if you say that you do not have any pressure gradient or in the other words you do not have
any velocity variation that is for flat plate flows that we are looking. 
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Now you can safely say my DP by DX this is  what  zero because my velocity  free  stream
velocity is not going to vary  okay so for cases where your free stream  velocity varies so if your
free stream  velocity is a function of X you can have  two kinds of flows one if you have  adverse
pressure gradient so in this  case your DP by DX should be the  pressure should keep increasing
okay so  this should be greater than zero  therefore your velocity will keep  decreasing okay. 

So that is the outcome  you can have favorable pressure gradient  where your DP by DX should
be less than  zero so that means your velocity keeps  increasing okay so you can have either  of
this depending on the kind of flow  externally that you are looking at if  you  ∞ is equal to a
constant okay  then  this is the best approximation it is  going to knock off the pressure term
completely otherwise you have to  consider either of these cases so  therefore so that is the
approximation  to the momentum equations coming to the  energy equations okay so what will
be  the order of magnitude of θ what do  you think is the order of magnitude of  θ one right you
are scaling it  between your wall temperature and the  free stream temperature so it has to be  of
the order of 901 so therefore they  should be of the order of magnitude one  by one and how
about your V here this  should be Δ θ is already of the  order of magnitude one so V is of the
order of Δ by now when we are  considering the temperature gradient okay. 

Which boundary layer we have to  look at thermal boundary layer so for  temperature gradients
in the thermal  boundary layer our Y scales with Δ T  that so therefore we have to use this as  the
scaling parameter okay so we will  say that this goes as Δ T bar all  right  so coming to this term
right here so  this is of the order of 1 by this is of  the order of 1 + 1 by Δ T 2 okay I do not have
space I am just  squeezing in and coming to this term  right here the order of magnitude of V  star
this is nothing but you are I can  write whole square so this is my  viscous dissipation terms and
viscous  dissipation terms now if you look at it  this is of the order of 1 divided by 1  this is of the
order of Δ divided by  Δ this is of the order Δ by 1  and this is 1 1 by Δ. 

So all this the whole square basic  right they are all inside so now which  are the terms that we
can neglect  okay so first  coming to these two terms  between these two terms which is the
smaller term this is of the order of 1  over Δ square okay so this is going  to be larger than okay
so this can be  neglected  coming to the viscous dissipation term  here so this is of the order of 1
this  is of the order of 1 okay now this is of  the order of Δ square this is of the  order of 1 over Δ
square so only so  this is the most significant term so all  of the terms can be safely neglected so
finally if you write for temperature you  end up with the following equation.

(Refer Slide Time: 45:29) 



Which  is UB θ by DX + V D θ by D Y  will be equal to 1 by re PR into square  + you are
required by Reynolds number  times your 2 so 2 by 2 cancels there you  have what is the only
term that is  important d u by dy (2) okay so  now what should be the order of re PR  okay re PR
so this is of the order of  magnitude of 1 over Δ T Square right  so for all the terms to balance re

pier  should be of the order of magnitude 1  over d ∇. T2 correct understood so already you know

our ease of the order of 1 over  ∇ 2 therefore PR should be the order of ∇. By Δ-t the whole
square or in other words your Δ T by Δ should be on the order of Prandtl number power minus
half okay. 

So this is a very  important conclusion so this is the  relationship between the ratio of your
thermal  boundary layer  thickness  to   momentum boundary layer thickness with  the Prandtl
number okay and what should  be the order of magnitude of Eckert  number by Reynolds number
so if you look  at this term this is again one over  Δ T 2 right this should be what  just one small
thing when you are  looking at velocity gradient you look at  the momentum boundary layer
thickness  right when you look at the temperature  gradients you look at the thermal  boundary so
this should be of the order  of Δ 2 knot Δ T2 okay.

So now Eckert number by Reynolds number  what should be the order for all the  terms to be
equal is it Δ 2  Δ 2 everyone agree okay so we  already know Reynolds number is one over  Δ 2

therefore the order of  Eckert  number should be one okay so this   finally will  give you the
boundary layer  equations which I am going to summarize  and stop here so after all  these
approximations  this  is  the final  terms  set  of terms that  you are going to  retain so your X
momentum  of course for  a  flat  plate  you can also  have you won't  have this  term but  for
favorable and adverse pressure gradient  so you can have dpdx and your energy  equation okay
so this are called the  boundary layer equations okay. 



So any  questions I think I had been a little  fast in the end but I think you can fill  up the I think
we did almost you have to  just  go and revise okay how we have  introduced the order  of
magnitude and we  have skipped all the terms the important  conclusion now you have a direct
relationship between the ratio of your  thermal and the momentum boundary layer  thickness to
the Prandtl number and of  course you have the order of magnitude  of Reynolds number and the
occurred  numbers all right  this point okay so this is coming  directly from the Y momentum
equation  right. 

So this is this is correct so what  directly tells you is that your P  should be invariant along Y
okay so  therefore if you calculate your pressure  somewhere outside the boundary layer  using
the Euler equations okay the same  pressure will be valid even inside the  boundary layer  okay
so we will stop here.

Boundary layer approximation
End of Lecture 11

Next: Laminar External flow past flat plate

(Blasius Similarity Solution)
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