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We will now move on to the chapter on energy release rate. In fact, many concepts in 

fracture mechanics can be comfortably understood by looking at the energy. Although 

we have seen in the earlier classes, the solution by Inglis, for the sake of continuity we 

will start with that. And what I will learn in an Inglis solution you have got? For an 

infinite plate with an elliptical hole, the maximum stress is given as sigma into 1 plus 2 a 

by b. 
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What you will have to look at is many aspects in fracture mechanics come from your 

problem of elliptical hole. You know when you take an ellipse you take the major axis as 

2 a, and you also label the crack length as 2 b. When I have a center crack, I will label it 

as 2 a, and the minor axis given as b and what Inglis allotted was when the elliptical hole 

reduces to a crack where b tends to 0, the stresses are very high. And another issue you 

have to look at is, I have an infinite plate subject to a uniaxial loading, you have to watch 



it carefully; in the case of a plate with a circular hole we have taken infinite plate with 

uniaxial loading, in the case of an elliptical hole also you have applied a uniaxial loading. 

When we develop the stress field we have to look at very carefully for the problem of a 

crack, are we looking at a uniaxial loading or a biaxial loading, which we would look 

when we take up the chapter on crack-tip stress and displacement fields? In this chapter, 

we would look at the energy approach and immediate consequence of Inglis solution is 

even for a small load the crack may grow and break the component into pieces. 
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This is labeled as Griffith's Dilemma, it is not only the dilemma of Griffith's, any one 
who looks at the solution of Inglis would only wonder how the solid remains a solid after 
looking at a solution. Our practical observation is you find solids contain crack and they 
remain. So, how is this possible? This is possible only when you have some other 
mechanisms that operate, which help solids to sustain solid forms, this is key to Griffith's 
analysis. 
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Similar to surface tension of a liquid, all surfaces of solids are associated with surface 

energies or free energies. See, this is a very important step. See, in those days Griffith 

was working on glass and surface energy in glass was very small. So, you are really 

looking at second order effects, unless you have a conceptual step forward, one would 

not have thought about the role of surface energy playing a role. Why do the surface 

energies come out? The surface energies develop because atoms close to a surface 

behave differently from an atom at the interior of the solid; see, in the interior of the 

solid the atom is surrounded by atoms on all the sides, so it remains in equilibrium. 
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So, what you find is the interior atom is attracted or repulsed by the neighboring atoms 

more or less uniformly in all the directions, but that is not the case when I have the atom 

on the surface. This leads to surface energies which is very similar to surface tension of a 

liquid, and I am going to give you a conceptual appreciation how this is possible? On the 

surface what happens? There are no surrounding atoms on one side, thus requires a 

different kind of equilibrium. 

In fact, atoms on the free surface and the ones below have to readjust to form an 

equilibrium thereby developing strain in the material close to the free surface. Such 

deformation requires energy and is known as surface energy. In fact, looking at the role 

of surface energy was a conceptual step put forward by Griffith and we will look at the 

values of surface energies for a variety of material. 
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I have a list of material here and I have the surface energy which is given as joules per 

meter square, and for copper it is 0.98, mild steel about 1.20, aluminum alloy it is 0.6, 

glass is 2.30, ice is 0.07, and diamond is 5.50. 

Griffith could not have worked on diamond because it is so expensive. So, he worked on 

glass and he find glass has the highest surface energy compared to other materials 

excluding diamond. And this table also gives another energy which is given as gamma P, 

which is the energy, required to cause plastic deformation near the cracked surface and 

what is it is value? It is very high for the case of mild steel gamma s is only 1.20 

whereas, gamma P is 125000 and for the case of aluminum alloy it is 4000. 

In fact, we would look up later in the chapter, how Irwin extended the analysis of 

Griffith which was applicable to brittle solids to ductile solids? With the simple 

extrapolation of Griffith’s approach by using gamma P, he could apply concepts of 

fracture mechanics for ductile solids. That is the reason why I am showing right away the 

value of gamma P, although in this chapter, in the major portion we would focus on 

brittle solids. 
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In this chapter, we will have to look up the energies. So, it is better to review the 

concepts on elastic strain energy, we will look this up for various simple cases and also 

reassure as on the methodology that we adopt. And some of these would help you to 

solve problems in this chapter and first let us take the case of a simple spring; it is a 

linear spring and watch the animation very carefully. And also, you have the graph 

which gives you P versus displacement. I will redo the animation, the points which I 

want to look at is, how P has been shown. It is very carefully shown that P varies 

gradually from 0 to the final value, this is very important. 

The deflection of the spring is delta when P is supplied gradually. So, the area under the 

curve is what is the energy that is stored within the spring, you all know about it because 

P is applied gradually, you find elastic strain energy U equal to 1 half of P into delta. 

suppose I have a constant load acting then the energy would be P into delta a 

corresponding displacement is delta. In many problems in solid machines, when you 

show a final load we implicitly assume that the final load was reach through a gradual 

process from 0 to the final value. This is very important, all these certainties we will 

have to keep in mind. 
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So, in the case of a spring also we have carefully put the animation in such a way that P 

varies from 0 gradually, and you know what is the strain energy stored? And we will 

extend this to a body subjected to normal stretch, a body subjected to shear stress, and a 

combination of all the stress components, etcetera. All these expressions will come in 

handy, when you want to solve problems in this chapter. 

So, what you have here is, a small element is taken and you are having only normal 

stress, because of that the element has elongated and you can find out the force which is 

acting on it, you can find out the corresponding displacement and it is fairly straight 

forward. So, what I have is, I have the incremental strain energies given as 1 half of 

sigma x dy by dz, this is the area on which the stress is acting. 
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So, this gives you the component of force and epsilon x dx give the corresponding 

displacement and if you look at carefully, the incremental strain energy is one half of 

sigma x epsilon x into dV , and you would develop a similar expression when you have 

shear stress acting on it. You have an incremental element infinities of an element, you 

have with dx dy dz and this is subjected to shear stress. Here, again you can find out 

what is the force which is acting and what is the corresponding displacement? The force 

is tau x y dx dz and the displacement is gamma x y dy and we also assume, you have the 

factor one half comes, because the stress magnitude is applied, gradually varies from 0 to 

the final magnitude tau x y gradually. 

Here, again you find the incremental strain energy stored in the element is one half of tau 

x y gamma x y dV. So, this is all you get for volume, per volume you are actually 

calculating it, and also we will look at for a unit volume. In this chapter, we would look 

at for unit thickness; we would also look at for finite thickness and so on. I have 

deliberately used those equations one after another, because you should know in which 

context we are talking about, and fracture mechanics is also uses a very funny symbol for 

thickness, it uses capital B as represented in the thickness of the specimen. 
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If you have to refer some of the older books which are undoubtedly classics, there you 

would find B as the thickness of the specimen. So, you would find our discussion, we 

would use the same symbolism to denote the thickness which will come a few slides 

later. Now, we have seen it for individual stress magnitudes, suppose I have combination 

of the stresses, then I can easily write the final expression as one half of sigma x epsilon 

x sigma y epsilon y sigma z epsilon z plus tau x y gamma x y plus tau y z gamma y z 

plus tau x z gamma x z dV. And If I want to find out the total energy stored in the 

system, you do the integration over the volume, here you find product of stress and 

strain, it is also desirable to look at these expressions in terms of stresses alone. 

So, if I have to do that, I have to use the stress strain relations and one of the dangerous 

people use is, when they use a tension test, strain is only a function of the axial stress. 

Because the other components of stresses are 0, but if you write it for a generic situation, 

strain will have component from other components of stresses also, the axial strain you 

have to be very careful in writing it. So, you write epsilon x as 1 by E of sigma x minus 

nu times sigma y plus sigma z, never forget include this, this is very important. This is 

one of the common mistakes students do, when they move from a tension test to a 

generic situation, they never come out of the tension test, in a tension test sigma y and 

sigma z are 0. 
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So, strain is related to stress by epsilon equal to sigma by e you cannot use that in a 

generic situation. So, the normal strains are related to normal stress in this fashion, shears 

strain there is no problem, gamma x y is related to tau x y, gamma y z is related to tau y 

z, gamma x z is related to tau x z. 

So, when I use these, I can get the strain energy in terms of stress components and that 

reads like this. So, if I want to get the total strain energy, I would integrate over the 

volume and within it, I have the terms like 1 by E sigma x squared plus sigma y squared 

plus sigma z squared minus 2 nu by E into sigma x sigma y sigma y sigma z plus sigma z 

sigma x plus 1 by G tau x y whole squared plus tau y z whole squared plus tau z x whole 

squared. And you know very well that E is the young’s modulus, G is the shear modulus 

and they are related by the Poisson’s ratio. 
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We will also now look at strain energy in terms of externally applied load, we will now 

look at for axially loaded member, this is what we look at now. These are basic 

expressions which would come in handy, when we want to look at how to apply the 

concept of energy release rate for fracture calculation, for simple geometries. 
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So, these preliminaries are required to do that, although you should have got this 

knowledge from your earlier course, we are reviewing them for continuity. And we will 

see for a axially loaded member, our interest is to get the final expression for strain 

energy in terms of the external load applied P, the area of cross section and young's 

modulus, this is what we are looking at. 

One way of writing is U equal to one half of P into delta, we have written sigma x is 

nothing but P by A, epsilon x is equal to P by A E, and d U becomes, we have already 

seen sigma x into epsilon x is the way that we have looked at. 
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So, if you look at in this fashion, you get this as one half of P squared by A squared E 

into d A into dx, that gives the volume, and this we usually do it for the slender member. 

When I do it for the complete energy, this d A becomes when I integrate over the 

volume, you will have d A becomes A into dx.  

So, you will get this as strain energy as one half of 0 to l P squared by A E into dx. So, 

when you are really looking at slender members, you want to find out energy on that 

member. So, the distance is accommodated in your dx parameter and this is a very 

famous expression, you will get similar expressions for bending as well as for torsion. 

Nevertheless, we will look at them, it is better that you have these equations in your 

notes and you should also look at one more aspect, what is focused here is, the form of 

this strain energy. When I have strain energy, it is like one half of sigma squared by E 

into unit volume, here the unit volume is taken, and so that is why you do not have 

anything. 

So, this is the form of the strain energy expression, because our final interest is to see, 

what is the kind of strain energy in the presence of a crack in a solid, this is what we 

want to arrive at. In fact, in this chapter we would go by dimensional analysis or a 

relaxation analogy, after we develop crack-tip stress and displacement fields, we will 

come back and derive them based on stress and displacements. In fact, we can avoid 

much of the mathematics by looking at a relaxation approach. 
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So, that is what we are going to do, so before we go into that, keep in your mind the form 

of the strain energy stored because of the loading applied to the component, when I have 

the crack also it will have a similar form. So, that is one way of verification, indeed we 

are in the right direction. Now, we take up what is the strain energy stored in a member 

subjected to torsion. We have already developed, when you have stresses and strains, 

simply a product one half of that into volume gives you the strain energy stored. 
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We will adopt the similar approach here, you have a torsion formula. So, you have the 

expression for shear stress as well as the shear strain, and you get the incremental energy 

as this, one half of tau theta z gamma theta z dV. And this could be replaced in terms of 

the torsional moment, apply and you also know the polar moment of inertia is given as 

integral r square d A. So, this will become I p after integration. So, you get the final 

expression as integral 0 to l M t squared divided by 2 G I P dz.  
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In fact, if you recall the lectures on Castigliano’s theorem to find out deflection, you 

would have developed these equations and also use them to find out the deflection. It is 

only recapitulation and this is desirable, now you have the expression for torsion, you 

will find a very similar expression for bending. Here again, you have the fracture 

formula, you have the expression for normal stress and normal strain, and it is easy to 

write the strain energy stored, and here we have M b which denotes the bending moment. 
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So, what you finally get is, strain energy stored in the member due to bending is integral 

0 to l M b squared 2 E I z into dx. We are really talking about slender members, when 

you say slender member, the cross sectional dimensions are much smaller than the 

length. In fact, a variety of practical problems could be modeled as slender members to 

make your life simple, so it is very important from that point of view. 
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Now, what we will look at is, what are the changes in the component when crack 

advances? Stiffness of the component decreases, very easy to visualize the moment you 



have a crack; obviously, the stiffness will change, there is no dispute in that. We will see 

the next statement, the next statement says, strain energy in the component decreases or 

increases, this statement needs to be qualified unless you take up an example, look at it. 

What happens when the crack advances? We would take up situations in a manner that, 

in one case strain energy increases, in another case strain energy decreases. 

So, it is possible, although you may not understand right now, we can take up an 

example and see. And another minor detail is the points of the component at which 

external loads are applied may or may not move. The moment you come to fracture 

mechanics literature, you always talk about fixed grips; that means, we have constant 

displacement applied to the specimen, this is one possibility, another possibility is 

constant load, why do we do that? It helps in our mathematical development, if you look 

at independently constant load and constant displacement, we would develop certain 

kind of understanding in your theoretical development. 

Later on, we will show whatever the energy available for crack formation, in constant 

displacement or constant loading is one and the same. And finally, we would also show a 

general loading can be thought of as smaller steps of constant load and constant 

displacement. This way, we will convince our self, spending time on constant 

displacement or constant load is good enough. So, we will develop certain concepts and 

simplify our equations by choosing one of the two, that is the reason why we look at it. 

On the one hand, it helps you to simplify the development of mathematics; on the other 

hand, it also provides the via media to calculate the energy release rate experimental, so 

it serves both the purposes. So, when you say strain energy in component decreases or 

increases that are actually dictated by are we having a fixed grip situation or a constant 

load situation? So, if I have a fixed grip, work done by the external force is 0, work is 

done only when the forces move, that is what happens in the case of a constant load. And 

in all this discussions, we have to keep in mind, energy is being consumed to create two 

new surfaces, this was the key observation of Griffith. 
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If you directly look at Inglis solution, you will only get alarm and it does not satisfy your 

actual observation. To bring in this understanding, Griffith was intelligent enough to 

appreciate that energy is being consumed to create two new surfaces. And we will take 

up one after another, what happens when I have a constant load. 

I have taken a simple example, I would like you to make a neat sketch of it and also plot 

this graph. What this sketch shows is, you have a double cantle ever beam specimen, you 

have a long crack, the crack link is given as a, and to make your visualization easier, it 

clearly shows through a cable system, you are hanging a load P. So, it is very clear that 

you are having a constant load applied to the component, and what you could do? You 

could go from 0 to P gradually, and you can record the value of P as well as the 

displacement. 
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So, you can get a graph like this, and this graph is obtained for the component having a 

crack of length a. Now, by some means, I have another component which is very similar, 

where in the crack length is not a, but it is incrementally increased to d a. So, I have a 

crack of a plus b, and suppose I want to plot the load versus displacement, how do you 

anticipate the graph to be? I have a longer crack now, so definitely stiffness comes down. 

So, the graph will be below the earlier one, the slope will be different, and this also can 

be recorded, and you have a graph which is for a plus d. Mind you, in this chapter, we 

want to find out what is the energy required for a crack to grow incrementally, and we 

are proceeding towards that. For that, we develop so much of background information, 

before we finally take up the energy balance equation. 

So, now I have taken two similar components: one, you have a crack of length a, another 

you have a crack of length a plus d a and this figures are also drawn very carefully. This 

load has come down, because the stiffness is lower. Now, what I will do is, I will keep 

on increasing the load in this gradually, so what will happen is, at a particular load, it so 

happens that the crack advances by the distance d a. 

We would look at it graphically and what our interest is, to find out what is the strain 

energy stored in the first case as far as the second case. Then we will find out and 

comment up on what happens to the strain energy, when the crack has advanced by d a, 



that is what our final aim is. So, what I will do now is, I will increase the load and 

observe the crack has started to advance when the load has increased to a value P1, and it 

has moved by a distance dv. Animation is very nicely done, it is as if I am doing an 

experiment, the animation is shown, so this will go and touch this graph. 

Now, I have sufficient data to analyze what is the final strain energy of the system and 

how the strain energy has changed because of an incremental extension of the crack? 

You have already seen for the case of a spring, you have seen the load deflection graph 

and area below the graph is the strain energy stored here again the loads are gradually 

applied. So, I can use the similar approach and when I want to find out the difference, I 

will find out the final strain energy minus initial strain energy, we will look at now. 

So, what is the change in strain energy is what we want to look at, the final strain energy 

is the one below this line and you have this triangular area, and that is given by half of 

P1 into v2. Mind you, we are looking at a case of constant loading, so in the case of a 

constant load, I have P1 remains constant, so the final strain energy is half of P 1 into v2. 

What is the initial strain energy? That is below this graph, below this line. It is below this 

line and you have this triangular area, mathematically it is half of P 1 into v 1. So, what 

is the change in strain energy? That is this small triangle, what you see here. 
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You should be able to identify this very carefully, and this is how experiment is also 

done. So, you can find out experimentally, what is the energy release rate and what you 

have here is, I get this as half of P 1 dv, and in this case strain energy eventually 

increases. It is very obvious, because you have this triangle; this triangle area is much 

larger than the initial triangle. So, by advancement of crack in a constant load situation, 

strain energy of the system increases, not only this, you have an external load and the 

external load has moved by a finite distance, it has moved by a finite distance dv and 

what is the work done in the process? He said half of w into dv or w into dv, there is a 

certain difference, all along we have been seeing the load is gradually applied. 

But what happens in this is slightly different, what you find is when the load P 1 is 

reached, suddenly the crack has jump to a plus delta a, but the lower has remains, and 

same it has had a displacement of dv, so the external work done is P 1 into dv. So, you 

will have to be very careful about that, this is the rectangular area. We should not make a 

mistake, everywhere we use half of P 1, you should not say that this is also half of P1; it 

is actually P1 into dv. And what we have learnt here is, under constant load when there is 

an advancement of crack from a to a plus d a, the strain energy of the system increases. 
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Now, we go and look at what happens in the case of a constant displacement. So, here 

again I take a problem, which was very similar to the earlier one, here it is put under 

fixed grips and when you get the P versus v, I will get a graph like this. Suppose, the 



crack is longer than that, I would have a graph which is below this, this is the load 

displacement graph for a plus d a. 

Now, what you observe is, the load is sufficient for the crack to grow from a to a plus d 

a, when this happens, what will happen? The load will eventually decrease when the 

crack has advanced, because it is under constant displacement, it is fixed grip, you have 

understand this. So, what you will have is, I will move down from this graph to this 

vertically, just observe the animation, the crack is going to a plus d a, when crack is 

going to a plus d a, I will have to move from this graph to this. And that is why this is put 

as dotted line, why this is put as dotted line is, if I take a specimen and then have this 

load as P, the moment I reach the load P, the crack would advance and I have to interrupt 

only from the next graph. 

Make a sketch of this also, here again we will find out what way the strain energy 

changes. So, we will look at what is the final strain energy, we look at the initial strain 

energy, and comment what happens to the strain energy in this case. And before that, you 

will have to make one important observation: as the crack advances, no external work is 

done on the system because the external load is not allowed to move. It is a very 

important observation, we are looking things in detail, so there is no external work done 

in this case. 

Obviously, you can look at the final triangle is this, initial triangle is much larger, so 

what you find is that the strain energy decreases in this case. First one is external work 

done is 0, strain energy changes, half of v 1 into P2 is the final one minus initial one, half 

of v 1 into P1 in this case, it is happening at a constant displacement. 
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So, v remains same for the final as well as initial cases and what is the difference in 

strain energy? That is nothing, but this strain, and you have to make a note that strain 

energy decreases and the change in strain energy is nothing, but half of v 1 into d P. See, 

in the first case where we saw constant load, there was a change in the displacement. In 

the second case, we were looking at constant displacement; there was a change in the 

load. In one case, strain energy increased because of crack advancement, in another case 

strain energy has decreased because of crack advancement. 
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So, this is a statement I made initially, at that time you do not have a background to 

appreciate whether such a thing can happen. Now, you have seen when you look at the 

situation under constant load and constant displacement, the strain energy changes or 

differ. And now, we will look at for a general loading, we are not fixing whether the load 

change is happening in a constant displacement or constant load. So, what you will find 

is, the difference is, in one case you have the complete triangle as that strain energy 

difference in another case, it is a truncated triangle like this. 

So, I will have an extra red portion like this and here only mathematics comes to your 

rescue in appreciating what kind of processors that we are looking at, and the animation 

is also very well done to give you this visual experience. For understanding, we show 

these incremental changes as large, for us to draw the diagram comfortably, in the limit 

what we want, delta P tends to 0 or delta v tends to 0 irrespective of whether constant 

load or displacement, the quantum of energy available for crack extension is the same 

from a mathematics point of view, what will happen? 

You will find dv is small, d P is tending to 0 and d a is also tending to 0, what will 

happen to this triangle? This triangle will keep on shrinking. So, from this observation it 

is possible to make a statement, the quantum of energy available for crack extension is 

the same for both constant load and constant displacement, have a look at it, the 

animation will give you that physical observation. 
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So, you could see, do you see the triangle at all in this case? You do not see the triangle 

at all in this case. So, you have to visualize it that way that is the only way you can 

satisfy yourself. And this animation is nicely done to give you that visual appreciation 

and that is what is summarized here. In practice, any general load displacement behavior 

can be thought of as discrete steps of constant load and displacement, that is what is 

shown here, may be I could magnify it and then show. 

So, what I have is, the load and displacement may vary in a generic fashion like this. 

This could be thought of as steps of constant load, constant displacement, constant load, 

and constant displacement so on and so forth. So, what we have seen in this exercise is, 

the quantum of energy available is same in both the cases of constant load and constant 

displacement. In one case, the strain energy increases by crack advancement and in 

another case, strain energy decreases by crack advancement. 

So, in this class, we started of with Inglis solution, just for continuity say, which 

reminded as stresses become very high when you have a crack and in order to explain 

physical observation, Griffith came out with the brilliant idea, that you need energy for 

the formation of new surfaces. It is a very key step that Griffith has taken and this is 

termed as a surface energy, but the surface energy was very small. If you do not 

conceptually look at the problem, you would normally take that as a second order effect 

and ignore it, this is what engineers will do. When you compare the plastic energy that is 

required, it is very high, several orders of magnitude than the surface energy. 

Griffith developed the theory based on brittle materials, so he was very intelligent to 

identify the role of surface energy and this was a very important conceptual step. So, the 

goal in this chapter is to find out, what is the kind of energy required for advancement of 

a crack. In order to do that, we have reviewed various expressions that we have learned 

in a general course and mechanics of solids to find out the elastic strain energy. 

Then we moved on to analyzing a crack body under constant load and constant 

displacement. In one case, we found strain energy increased, in another case, strain 

energy decreased. However, we were able to show when the incremental changes are 

small, the energy availability is same in both the cases. We will see further 

advancements in next class. 


