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In the last class we had started discussing the solution of Newman and Raju, we were not 

able to completely cover it, for the sake of continuity we will quickly look at what we 

have discussed in the last class. And I had mention Raju and Newman in 1979 under 

took a detailed, comprehensive three dimensional finite element analysis, and based on 

that result, in 1981 they had come out with an empirical relation consisting of double-

series polynomials.  
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And the relationship looks something like this, this you have determined in the last class. 

And sigma t refers to the tensile stress, and sigma b refers to the bending stress, and we 

have also looked at how to calculate Q. 

This is given for a by c less than equal to 1 also given for a by c greater than equal to 1, 

and if you do this, with this kind of an expression the maximum error is about 0.13 

percent for all values of a by c. 
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Then, we moved on to look at what are these functions F. This has component of M 1, M 

2, M 3. 
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And these were also defined, all these equations were determined in the last class. We 

have also looked at the functions F theta, G, as well as F w. Then, we moved on to look 

at what is the function H? And you have to note, that using engineering judgment 

Newman and Raju express the function H as in this form, H equal to H 1 plus H 2 minus 

H 1, sin power p theta, and p is defined as 0.2 plus a by c, plus 0.6 into a by B. H 1 is 



defined as 1 minus 0.34 a by B, minus 0.11 a by c, multiplied by a by B, and H 2 is given 

as 1 plus G 1 multiplied by a by B plus G 2 a by B whole square, to this extent, I think 

we have seen it in the last class and we have to know the functions G 1 and G 2, these 

are defined next. 
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The function G 1 is given as minus 1.22, minus 0.12 multiplied by a by c, then the 

function G 2 is given as 0.55 minus 1.05 multiplied by a by c whole power 3 by 4 plus 

0.47 a by c whole power 3 by 2. You know this completes the definition of the 

components consisting of the empirical relation, and you should note that he had done a 

three dimensional final read element analysis, based on that at fit a empirical relationship 

and the relationship is as follows. 
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K 1 equal to sigma t plus H sigma b multiplied by root of pi a divided by Q, and a 

function which is dictated by a by B ratio, a by c ratio, c by W ratio and also the position 

theta. And what you'll have to note is, Newman and Raju have reported that the empirical 

relation is within 5 percent of the finite element calculation for the full range of a by B, 

and a by c, from 0 to 1, and 2 c by W less than 0.5, we will also have to note down the 

width of the specimen, that also playing a role, And you have to note, despite their 

empirical origin these equations have gained wide acceptance, and are employed for 

various fracture-related calculations whenever surface flaws are encountered. 

So, as far as surface flaws are concerned you can always go and look at the empirical 

relations of Newman and Raju, and use it for your calculations that level of confidence in 

the fracture community has placed on the axis. So, we have seen surface cracks are very 

important from practical point of view, and we have looked at 3 different methodologies. 

One was the very simplistic approach by Irwin then, there was improvement of a front 

free-surface correction factor. Then, there was also correction factor, because of plastic 

zone length and you had graphs of flaw shape parameter. Then we had also looked at 

direct analysis of surface cracks, where people have provided separate graphs for tension 

as well as bending, and finally, we have looked at the empirical relations of Newman and 

Raju. 
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Now, another important aspect that we will have to discuss in relation to stress intensity 

factor and the role, you should also look at what way we will select fracture toughness 

for radius problems. 

Suppose, I have a through the thickness crack, and for the purpose of discussion; the 

crack is shown as a very sharp corner, and you have the crack front straight, with the 

simplest problem to take. And let us look at what way the material responds, because of 

high localized stresses near the crack-tip region. 

So, you have very high levels of stresses, this your elastic solution provides, in view of 

these very high localized stresses, what happens? There is no contraction in this zone, in 

this zone the material wants to contract, and we will have to see to what extent in this, 

contract contraction is possible. And ahead of this zone there is little contraction, and 

what happens in this zone? 

So, what I would do is, I would repeat the animation and you can recapture the various 

sequence of ideas that we have represented. 

So, I have the plate with a crack pull, you see a very high level of stresses then, because 

of a consequence of the stresses the material wants to contract, and you consider a 

cylinder of material in this zone. And we will also have to qualify this result for plates of 

various thicknesses. 



What happens in a very thin plate? And what happens in a thick plate? These are two 

extremes that we will look at. 

What you can always notice is, when you have a stress concentration zone normally you 

come across a uniactive field changing into biaxial field but, in the case of crack 

problems for thick plates you have to also consider one more aspect, we have already 

seen, when you consider the crack-tip is very sharp sigma x equal to sigma y, if the crack 

is blunt, at the crack-tip you will have sigma x as 0, for the purpose of discussion we, let 

us consider crack-tip is sharp. 

So, you have sigma x equal to sigma y, and if the plate is sufficiently take, you will also 

have stresses developed in the thickness direction of the plate, and that is given as nu 

times sigma x plus sigma y. And if you look at the strain, strain will be 0, if you look at 

the stress between nu times sigma x plus sigma y and, because of very high localized 

stresses you will have essentially plastic deformation at the crack-tip. 

So, when we have plastic deformation at the crack-tip, it is prudent to take the Poisson 

ratio as 0.5. So, in a sense, in thick plates you have triaxial state of stress near the crack 

and that zone is indicated here. 

So, in the case of crack problems near the vicinity of the stress concentration, you could 

have under suitable circumstances a triaxial state of stress. And that is what is depicted 

for a thick plate and for a thin plate. And you can make a neat sketch of this so, in a thick 

plate leaving the surfaces, the zone interior to that will be in a triaxial state of stress. And 

you find there is negligible contraction in the case of a thick plate. 

So, in such problems from fracture instability point of view, what you will have to do? 

You will have to calculate stress intensity factor when you have a crack in a thick plate, 

from fracture instability point of view, you will have to know what value of fracture 

toughness that you will have to take, though, we will have a separate chapter on fracture 

toughness testing, certain concepts related to that we may have to discuss even in earlier 

chapters. 

So, in such a problem where you have a thick plate, you have to use the plane strain 

fracture toughness. And I have already mentioned, the plane strain fracture toughness is 



lower than the plane stress fracture toughness. So, the combination of stress intensity 

factor value, and the selection of fracture toughness ultimately dictates the fracture 

instability phenomenon. 

On the other hand in the case of a thin plate you have a free contraction, and what is 

recommended is, you have to use plane stress fracture toughness for your fracture 

instability calculations. After having looked at through the thicknesses cracks, we will 

have to go and look at how you are going to handle these surface cracks? 
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What happens in the case of a surface and corner cracks? We all know that, it has a 

curved crack front and a stress intensity factor varies along the curved crack front, and if 

you consider a cylinder of material close to the curved crack front the inner zone is 

experiencing a triaxial state of stress. 

You know this is depicted by a shaded region so, whenever you have a triaxiality 

constrain the recommendation is, you have to use plane strain fracture toughness for your 

instability calculations, and when you have to do the use of plane strain fracture 

toughness, you have to recognize that surface flaws are always dangerous, because you 

are always comparing the stress intensity factor of a surface flaw for a through the 

thicknesses edge crack but, for an edge crack in a reasonably thin plate you may use the 



plane stress fracture toughness but, if you have a surface crack, then you have to use a 

plane strain fracture toughness. 

So, because of that you have to keep in mind, the surface cracks are always dangerous. 

See, now we have look that stress intensity factor for a variety of problems, and it is 

better that, we also find out a sort of a thumb rule in react into different crack situations. 
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So, we will go and review those results. And we have started the discussion with equally 

spaced cracks in an infinite strip, and we had discussed that from this, you get the center 

crack specimen, from this solution you are also able to get the single edge notch 

specimen, and also a double edger notched specimen or crack specimen. 
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And when you have a center crack, we are looked at in an infinite plate it is K 1 equal to 

sigma root pi a, for a finite plate you will have a function of a by W, it may be a by W or 

2 a by W, depending on how the result is reported. 

The moment you go to an edge crack, we have noted from our discussion, edge cracks 

have a higher stress intensity factor than a center crack. We had a factor of 1.12, for an 

infinite plate it will be like this, for a finite plate you will have a function related to a by 

W or 2 a by W, depending on how the result is reported. On the other hand, when I have 

an embedded circular flaw, what we noted that stress intensity factor remain constant on 

the crack front, and in comparison to a center crack in an infinite plate the stress intensity 

factor is lower, it is 0.64 times sigma root pi a. 
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After the circular flaw, we had moved on to an elliptical flaw and only in an elliptical 

flaw we noted that, the stress intensity factor can change from point to point on the crack 

front. And that definition is given here, you have a sigma root by a divided by I 2, and 

you have a function related to theta, and we have also noted when you specify theta, how 

to locate the point on the ellipse. 
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If I have theta like this, you drop a normal and this hits this, ellipse at this point so, for 

this point the stress intensity factor is given. From an embedded elliptical flaw we moved 



on to a surface crack, and here we had extrapolated what all the understanding of that 

elliptical flaw, and also for an edge crack and the simplest solution was simply change 

the solution by 1.12 times sigma. Later, on we improved upon a definition of crack 

length modified for plastic correction, and then we had also looked at empirical relation 

of Newman and Raju. 

But basically you have to recognize, compare to an embedded elliptical flaw a surface 

flaw is little more dangerous. And then we moved on to a corner crack, and for the 

corner crack we recognize you have a free surface on this side, as well as another free 

surface and we realize that, you will have K 1 is much higher for this and you have this 

as simplified to 1.2 times sigma root pi a. 

So, this discussion in a sense brings out a relative appreciation of how you should react 

to cracks of various types; whether they are through the thickness crack, or interior to the 

object, or on the surface, or it is an embedded crack, you have a rough approach on how 

to look at the influence of the stress intensity factor on the overall structural behavior. 

(Refer Slide Time: 18:39) 

 

Now, what we will do is, we will move on to modeling of plastic zone near the vicinity 

of the crack-tip. And we will have to look at what is the motivation for all this? You 

know, essentially we have discuss fracture mechanics in the context of brittle materials, 

that is how Griffith started, later on it was extended by Irwin and Orowan for handling 



ductile materials, and when you go and look at that what you will have to learn is, we 

also want to look at materials that fracture with limited plastic deformation, at applied 

stress levels less than those producing net section yielding. 

This is how we have started the extension of fracture mechanism, brittle materials to 

ductile materials, and you have to recognize initially fracture mechanics was focused on 

linear elastic material behavior. And we had sufficient success in this, the theory is 

matched with experimental observation so, with the success of linear elastic fracture 

mechanics people also thought, for materials for which such an approximation would be 

invalid also became of interest so, that is the motivation. 

See, you cannot keep away from your understanding of what happens at the crack-tip, 

because of un-elastic deformation, some kind of modeling is always needed, because you 

have to graduate from brittle materials to high strength alloys, from high strength alloys 

to even intermediate alloys which exhibit reasonable levels of plasticity. 

So, here what you will look at is, what are the tricks that, they develop within the domain 

of linear elastic fracture mechanics? To extent this analysis to certain kind of a ductile 

materials, later on if there is extensive plastic deformation, you have to bring in the 

concepts of elastoplastic fracture mechanics. What we will now recognize is, what is the 

motivation for finding out all these aspects? 
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So, the motivation is extension of linear elastic fracture mechanics. And as I mention 

with the success of LEFM, materials for which such as approximation would be invalid 

also became of interest. And there is on the another observation, this also has prompted 

people to go in that direction. See the structural component itself would likely to obey 

LEFM but, the small scale laboratory experiments needed to provide the fracture 

properties, would not behave in such a fashion. 

So, this is another angle to it, people want to find out the relevant fracture parameters to 

characterize the particular material in service. 

So, this is another dimension why people were looking for newer ways of handling the 

plastic zone near the crack-tip. What we will have to note is materials that are 

sufficiently ductile and tough, that the extent of plastic yielding accompanying the crack 

growth would be comparable to the specimen dimensions. 
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So, this is the goal, if you have this kind of a situation, how will you go and do it? And 

what was initially done was, that was the work of Irwin Kies and Smith in 1958, to 

broaden the applicability of the linear elastic approach, and proposed a plasticity-

enhanced stress intensity factor in which the crack lengths were slightly enlarged 

suitably. 



See, you have to look at this was the kind of work in 1958, when fracture mechanics was 

in the initial stages, where significant contributions and new ideas have been proposed 

by the group lead by Irwin. And they had come out with a very simple modification, 

what they have said is; you have to get up plasticity-enhanced stress intensity factor, in 

this what they had done is; we have already look at in the contest of a surface crack 

instead of taking the crack length as a, they have taken a small extension of crack length 

which is dictated by the plastic deformation near the crack-tip. 

This was one kind of an approach, another kind of approach was promoted by Wells and 

Cottrell, they have done it independently in 1961. They advanced an alternative concept 

in the hope that, it would apply even beyond general yielding conditions. We would take 

this, when we discuss j integral and another measure for elastoplastic fracture mechanics 

is the COD approach. We will just see that, these two approaches were there to 

understand the plastic deformation near the crack-tip. And from the result of Irwin wells 

evaluated the crack opening displacement and here it is used in a different context. 

We would have a pictorial representation now, we will also spend some time a little 

while later, from the point of view of Irwin you imagine the crack is to be longer than the 

actual crack. The actual crack is only this much so, at the tip the would be opening, 

which is labeled as COD. 

So, people had coin new parameters, particularly from the point of view of particularly 

from the point of view of taking the laboratory results, useful for analyzing actual 

structural components. 

So, in this chapter you will confine our attention to, what was the discussion done by 

Irwin? What is the approximate shape of plastic zone? And also what is the model given 

by ductile in finding out extent of plastic deformation ahead of the crack-tip? And before 

we proceed into that, it is worthwhile to recall, how plane stress and plane strain 

terminologies are used in fracture mechanics? 
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If you look at in applied mechanics these have very precise meanings, we know what is 

the plane stress, we have looked at the stress tensor as well as strain tensor. The moment 

you come to fracture mechanics these are applied in somewhat looser ways, you have to 

recognize that and keep that in your mind. 

In the contest of applied mechanics, plane stress rigorously means that the principal 

stress acting in the direction normal to the plane of interest is negligibly small. In 

fracture what do you call as plane stress, it is referred for thin components with in-plane 

loading, and we also do one more thing, we say the surface layer of thicker components 

behave in a plane stress fashion. 

You know this is something unusual, this is so convenient for us to develop certain 

concepts in fracture mechanics. 
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So, we have adapted a slight variation in the definition of, what is plane stress and plane 

strain in the context of fracture mechanics. So, you have to recognize that, there is a 

difference. And you will also have to note, for a state of plane stress to occur the stress 

gradients in the direction of normal to the plane must also be negligibly small. 

This condition is not completely satisfied even in thin plates, it is only approximately 

satisfied for a thin plate. See, because of plastic deformation you have the neighboring 

elastic region will refuse to deform to that extent. So, you will have sort of a tension 

compression type of situation in the plastic zone as well as the elastic zone. 

So, you will have gradient of stresses developed in the thickness direction so, in the 

contest of fracture mechanics though we say thin plates subjected to in-plane loading can 

be equated to a plane stress situation, from the definition of applied mechanics the 

definition is strictly not corrected, it is only approximately satisfied in a thin plate. 

Certainly it does not satisfy the conditions in the surface of a thicker body. You have 

gradients existing into thickness direction that is quite alright, because we are handling a 

very complex problem situation, we have to carry forward. 
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So, we need to make certain approximations that make our life simpler. And before we 

get into the discussion of plastic zone, we have already seen the range of linear elastic 

fracture mechanics and elastoplastic fracture mechanics, based on the plastic zone. 
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And you have to recognize the plastic zone is very highly localized only when you 

magnify you are able to see, and this is the situation that exist in high strength materials 

in plane strain. And in the case of high strength material in plane stress, you have little 

more plastic zone but, compare to the plate dimensions and also the crack length the size 



of the plastic zone is very small. So, only for these class of problems we will make 

suitable approximations and find out certain modifications to our way of calculating 

stress intensity factor. 
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So that, LEFM could be applied to a broader class of high strength ductile alloys, the 

moment you have a very high plastic zone you have to going for elastoplastic analysis, 

and if the plastic zone is much larger compare to the crack and other specimen 

dimensions you will have to going for analysis based on plastic collapse. 
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This we have already seen, this is just reviewed for the sake of in which domain we are 

going to leave, we are not even going to look at such large plastic zone, you are going to 

look at very small plastic zone, that is why we have characterize this as small scale 

yielding, whatever the discussion that we do it is applicable only when this aspect is 

satisfied. 

Usually the plasticity effects are assumed to be negligible in the highly stressed crack-tip 

vicinity. This is the reasonable assumption for thick sections with small scale yielding, 

and we will also take up in detail. What is small scale yielding? After looking at Irwin’s 

correction, for the time being you can consider, in small scale yielding the singular stress 

field determine by the stress intensity factor is assumed to prevail outside the zone of 

plasticity. 

This is the reasonably a good assumption, we are making an assumption to make our life 

simpler, as long as this assumption is valid certain improvements in our stress intensity 

factor calculation can accommodate this class of materials, that is the way you have to 

look at it. And what is reminded here is the fracture mechanics based engineering design 

looks at brittle failure of structures, structure has a whole fails in a brittle fashion but, 

what happens at the crack-tip? Certain amount of plasticity effects also dictate what 

happens, and how this is handle? That is the way we have to look at it. 
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And how to evaluate the plastic zone, it is a very difficult aspect, it is difficult to give a 

proper description of plastic zone shape and size. We will look at simplistic models and 

the determination of shape has a connotation, because you would be able to quickly 

compare, what happens in aplane strain situation and a plane stress situation. And in all 

the models to simplify the analysis usually the material is assumed to be elastic-perfectly 

plastic. In reality many materials exhibit strain hardly, we are not considering that for a 

simplistic analysis, we simply say the material is elastic-perfectly plastic. And what 

happens, because of the plastic zone at the crack-tip, the stiffness of the component 

decreases that is the compliance increases. 

So, only to accommodate this kind of an observation Irwin said, that the crack is to be 

mathematically modeled to be longer than the actual length. So, the question is how to 

find out the extension of appropriate crack length? This could be done in many days, we 

would look at a very simple model and then improve our calculations. 
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So, one of the quickest methods but, definitely a very crude approach is to find the extent 

of plastic zone along the crack axis by simply finding the point at which one of the yield 

criteria is satisfied. 

We will not do any elaborate elastoplastic calculation, at the beginning of the course I 

had given you a review of solid mechanics, there you had look that, when the stresses are 



equal, when the two principal stresses are equal at the crack-tip for a plane stress 

situation as well as the plane strain situation for which you have Poisson ratio as 1 by 3, I 

have asked to calculate, what are the levels of stress given by the yield theories? 

So, if you perform a simple tension test you are doing a uniaxial test and you have the 

stress develop is sigma y s, But if I have multi-axial situation the individual stress 

magnitudes will be much higher than the yield strength, this you had actually look that as 

part of a review of solid mechanics, and I am going to use that result right away. And if I 

use this kind of an approach of simply finding out the point at which on set of yield 

criteria satisfied, which is very crude. Nevertheless, this helps us to compare the relative 

plastic zone size in plane stress and plane strain. And I had mentioned earlier for rest of 

the course we will worry only about the singular stress field, and you know this singular 

stress field for mode one crack, and if I have to go and find out the plastic zone the first 

step is you have to determine the principal stresses. 
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Now, you have the stress field, you know how to find out the principal stress from this, I 

would like you to work it out and then calculate the expression for principal stresses near 

the crack-tip for the mode one situation. You have the expressions for the stress field and 

it easy to calculate the principal stresses. 



So, we will now look at the expression for the principal of stresses, sigma 1 is given as K 

1 by root of 2 pi r, cos theta by 2 multiplied by 1 plus sin theta by 2. And sigma 2 is K 1 

by root of 2 pi r, cos theta by 2 multiplied by 1 minus sin theta by 2, and in the case of a 

plane stress situation sigma 3 is 0, in the case of plane strain situation, which is seen in 

thick plates, I have sigma 3 given as 2 nu K 1 divided by root of 2 pi r cos theta by 2. 

When theta equal to 0 you can find out when nu equal to 0.5, it will be same as your 

sigma 1 sigma 2, what you have here. And this explains the triaxial situation near the 

crack-tip, we had seen it pictorially earlier now we are looking at a mathematically so, 

the moment you have a crack you have to recognize that triaxial situation is possible. 

This is something very significant, we have a plate with a hole you essentially say you 

have a biaxial stress field, a uniaxial stress field changes to biaxial stress field. The 

moment you have a crack it can become a triaxial situation. 
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Suppose, the crack-tip is blunt instead of happening at the crack-tip the triaxial situation 

will take place slightly ahead of the crack-tip - that is the way you have to look at it. And 

what is the material model that we have used? Elastic-perfectly plastic, and the yield 

criteria are two you know this, just for review we are just looking at a the von Mises 

criterion utilizes all the three principal stresses. 



The condition is sigma 1 minus sigma 2 whole square, plus sigma 2 minus sigma 3 

whole square, plus sigma 3 minus sigma 1 whole square, greater than or equal to 2 sigma 

y s square. 

This is the yield strength, and you want this to be within sigma y s, if it is greater than 

that yielding would occur. And when you go to Tresca criterion you have to recognize it 

is not sigma 1 minus sigma 2, it is written as sigma max minus sigma minimum divided 

by 2, and this becomes important in fracture mechanics problem, because at the crack-tip 

if you consider the crack-tip is sharp, sigma x equal to sigma y you are getting it, not 

only this, both of them are the same sign, when both of them are the same sign the other 

minimum stress is zero so, the zero plays a very important role. 

So, when you are applying Tresca yield criteria to plane stress situation fracture problem 

you have to calculate the maximum shear stress carefully. 
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So, once you know the values of sigma 1, sigma 2, and sigma 3, either by using this 

criteria or this criteria you can always find out, what is the plastic zone size. And this is 

just to give a pictorial representation, what do we mean by elastic-perfectly plastic? You 

do not consider any strain hardening of the material, because this is simple for us to do 

the calculation. 
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Now, what is plotted is you have a crack and I have the values of stresses put here sigma 

y, and if you go by your plane strain situation, when you use the yield criteria ,what you 

find is, the sigma y can take a very high value of 3 times sigma y s, when you have 

Poisson ratio is 1 by 3. See, in a simple tension test when the stresses reach sigma y s, 

yielding takes place. We have seen in the case of a crack problem you have a triaxial 

loading situation. 

In a triaxial loading situation particularly, when you consider plane strain situation the 

individual stress magnitudes can be very high. It can be as high as three times the values 

of the yield strength, and you also define there is a length, you are looking at what 

happens along the crack axis, simply mark this point as a length. 

This is erroneous, we would improve upon it later first we have said, we would simply 

find out the yield strength value, based on that find out what is the length, based on this 

find out what happens as a function of theta, that would give the plastic zone shape 

which is very approximate, because we are not considering redistribution of load. We are 

simply plugging in mathematically whichever the points which reaches the yield strength 

value - that is not going to happen physically. 
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But definitely it gives an approximate shape of the plastic zone near the crack-tip, and 

the value of r p, turns out to be 1 by 18 pi multiplied by K 1 by sigma y s whole square, 

and this is particularly for the value of Poisson ratio equal to 1 by 3. And the moment 

you come to a plane stress situation, I had mention that sigma y equal to sigma x, and the 

other stress is what? Other stress sigma 3 is 0. 

So, that tells you the maximum stress that you will have to look at is only sigma y s. And 

if you plot in this graph and locate the point where it reaches the sigma y s, it is here. So, 

in the case of a plane stress situation the plastic zone length ahead of the crack is very 

long, and this is given as 1 by 2 pi multiplied by K 1 by sigma y s whole square so, a 

very simplistic analysis has shown the relative importance of plastic zone in the case of a 

plane stress as well as plane strain. 
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The plastic zone is very large in the case of plane stress; it is very small in the case of 

plane strain. See, these discussions are needed even to decide, what is the appropriate 

thickness to conduct fracture toughness testing. Definitely, this is the very simplistic 

model, but the advantage of a simplistic model is we can also go and estimate, what is 

the shape of the plastic zone. Let us look at that and even to start with the title is given as 

approximate. 

So, whatever the methodology that we have adopted to get the length of the plastic zone 

along the crack axis, extended to get the shape of the zone. And when you want to get 

the shape of the zone, make it as a polar plot. We have the expressions for sigma 1 and 

sigma 2 in terms of theta. So, we will express the value of r p, in the range minus pi to pi 

as a function of theta. And draw the polar plot that will help us to relatively compare the 

plastic zones for plane stress and plane strain. 

This is the purpose, see if you have to really obtain the plastic zone, either you should go 

to an experimental approach, metal edges have done it, we will also see in the context of 

ductile model, they have arrived at shape of the plastic zone experimentally. Otherwise, 

you will have to go to a finite element calculation, exhaustive elastoplastic analysis you 

perform, and you do this for every kind of specimen, because all this things are depends 

on the kind of specimen as well as the loading, what we are now trying to look at is, a 

sort of an approximate understanding on relative shapes of these in plane stress and plane 



strain, you have to keep the focus in mind. So, it gives only a first order approximation 

of the shape, because the methodology does not attempt to redistribute the load. 
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So, this is the key aspect. And for the case of plane stress, I had already drew your 

attention and that is drawn in the case of Mohr circle, you have the zero stress, this is to 

be taken into account. And you have the value of r p, as the function of theta is given like 

this and these expressions would change for the different yield criterion. 

If I use von Mises, I get r p as 1 by 4 pi multiplied by K 1 by sigma y s whole square, 

multiplied by 1 plus 3 by 2 sin square theta plus cos theta. See, even for our well-

developed mechanics of solids, different yield criteria provide different results. 

So, in fracture mechanics we are dealing very complex situations so, you have to accept 

multiple solutions, you have to pick out which one is suitable for it, because in 

mechanism solids what we understand certain materials obey Tresca yield criteria. So, 

for those materials apply Tresca yield criteria, certain materials are obey von Mises yield 

criteria, this is an accepted practice and what we are now trying to look at is, how do the 

plastic zone shape differs with respect to plane stress as well as plane strain, and also 

with respect to the invocation of yield criteria by von Mises or yield criteria by Tresca? 

And for Tresca this turns out to be 1 by 2 pi K 1 by sigma y s whole square multiplied by 

cos theta by 2, 1 plus sin theta by 2 whole square, I am not reading the brackets you put 



the brackets as for the equation. Since you have these expressions, it is possible for you 

to do the polar plot. So, what I would appreciate is you make an attempt, you go to your 

rooms, you have the expression, you calculate for few values of theta, how does the 

shape look like? And the next class we will see, and what I would also appreciate is we 

have develop this for mode one situation, get similar expressions for mode two as well as 

mode 3 and try to come with polar plots of approximate shape of plastic zone. 

So, in this class what we have discuss was, we have look at the final expressions given 

by Newman and Raju on the empirical relation of surface cracks, then we look at how 

triaxiality happens near the crack-tip. And what way we use that terminologies plane 

stress and plane strain in the context of fracture mechanics, what is the difference 

between the applied mechanics definition and a looser definition in the case of fracture 

mechanics. 

Then we also looked at an inside into stress intensity factors for various situations, 

though the stress intensity factor for a surface crack is compare to through the thickness 

crack, I pointed out, because of triaxiality from fracture instability point of view you will 

have to use plane strain fracture toughness for surface cracks so, you have to keep it at 

the back of your mind, that surface cracks are always dangerous. 

Then we moved on to the motivation for determining plastic zone a kind of the crack-tip, 

the essential idea is to extent fracture mechanics to larger class of material and people 

have looked at simpler modifications, and to that extent we have gone and looked at one 

of the very simple model to find out the extension of plastic zone along the crack axis, 

and we have also obtain the relationship as the function of theta and I have asked to plot 

this and come for the next class. 

Thank you. 


