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In the last few classes, we had looked at exhaustively, the development of multi-

parameter stress field and displacement field equations. Particularly, when you want to 

process the experimental data, the multi-parameter stress field, as well as displacement 

field comes in handy. And, I said, most of the fracture theories still focus on the 

importance of the singular term; only some of the recent theories, really look at the 

second term. So from that point of view, for the rest of the course, we would focus only 

on the singular solution; and the focus becomes important to find out the stress intensity 

factor for a variety of geometry. 
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And what we had seen in the last class? We had looked at the problem of a load at crack 

surface, you have a concentrated load, which is trying to open the crack faces. 



And for this case, fortunately, there was a stress function available. And once you have 

the stress function, it is possible for you to find out the stress intensity factor by using 

this expression. And what is the advantage, if I have an analytical approach? I am able to 

get an expression for the value of stress intensity factor. 

So, without doing much computation, by looking at that expression, we could comment 

what the expression tells you; and what is the striking feature we saw? We got the stress 

intensity factor, K 1 as P by root of pi a; and what you find immediately is the crack 

length is below the value of load P. So, what you find is, as the crack length increases, 

the stress intensity factor decreases; it is a very important observation, if I did not have 

an analytical expression, if I able to solve only be numerical analysis, then I will have to 

get the result for various crack lengths, then fit a sort of an empirical relation, then 

observe what is the nature. 

So, in any problem if you have an analytical approach and you have analytical 

expression, it is a most convenient form of relation that you can handle. And what you 

will also notice is, you know, I have a solution for this case, you could find out and use 

this for many other problems which are similar. 

(Refer Slide Time: 03:09) 

 

And in the last class, we had also taken up another case, where I have a symmetrically 

loaded crack faces; you have two forces at distances plus s and minus s from the center 



of the crack; and we got the stress function in this fashion; and as far as stress function 

goes, somebody gives you the stress function, and these stress functions are defined with 

crack center as the origin. And now, you have a methodology, once the stress function is 

known, shift the origin to the crack tip, then apply the limits. In fact I had asked you to 

do this as an exercise, I am not quite sure how many enough you have really solved it, 

and anyway we will have a look at the expressions. 
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So, this is the stress function that we had started with. 
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And the next step is, you have to shift the origin to the crack tip by the expression z 

becomes z naught plus a, those who have done this in the rooms, please verify the 

expressions. 

So, when I substitute for z equal to z naught plus a, I get Z1 as 2P multiplied by z naught 

plus a root of a squared minus s squared divided by pi multiplied by z naught plus a 

whole squared minus s squared multiplied by square root of z naught plus a whole 

squared minus a squared. This is fairly simple to simplify, and the next set of expressions 

you write this in an expanded fashion, and you also simplify this; when you simplify this 

this reduces to z naught squared plus 2 a z naught. And now you can apply the limits; if 

you get zero by zero then you got to L-hospital rule and then proceed in finding out the 

limits; once you have express Z1 in this fashion, it is possible to apply the limits. 
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So, the next step is, you have to apply the limits and we know from the definition of 

stress intensity factor, K 1 is given as limit z naught tends to 0 root of two pi z naught 

multiplied by the stress function expressed in terms of Z naught. So, when I rewrite this 

expression, this is also further simplified, so I have 2Z naught and root of 2Z naught, 

these two get canceled and when I put z naught equal to 0, you will be able to get a final 

expression for the stress intensity factor K 1. And that expression turns out to be 2 Pa 

root of a squared minus s squared divided by root of pi multiplied by a squared minus s 



squared into root of a, which could be further simplified as K 1 equal to 2P root of pi a 

divided by pi root of a squared minus s squared. 

So, what you find from this exercise is, once you have a stress function from the 

definition it is possible for you to get an analytical expression for stress intensity factor; 

it is a fairly straight forward exercise. Is there a way to verify that this expression is 

correct? Because we have one problem, we have seen already, you have the concentrated 

load at the center and for that case you make s equal to zero. And now you have two 

times the applied load, so divided by two; so you will finally get K 1 equal to P by root 

of pi a. So, this is an indirect check that we are proceeding in the right direction. 
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And you now you have the third case, where I do not have a symmetric load, I have an 

asymmetric wedge load; and you can see the animation, the crack faces are open; and the 

load is applied at a distance s from the origin; make a neat sketch of this. And I have 

label the crack tip as A and B; there is a purpose behind it, see when I have an 

unsymmetric load, what do you anticipate? See in all the problems we have seen so far, 

at the crack tip we have evaluated the stress intensity factor; if I have a center crack, we 

have always seen a through thickness crack, the stress intensity factor in both the tips 

were same. We had seen a case where you had uniformly applied load at remote loading; 

then we had looked at the bi-axial loading situation; then we had symmetric loading on 

the crack faces in all those cases what we saw? When you have a center crack, both the 



crack tips had the same stress intensity factor; which will not be the case when I have a 

unsymmetric load like this. I have loading at a distance s from the center; so obviously, 

the crack tip A will experience a higher stress intensity factor, and crack tip B will 

experience a lower stress intensity factor. In fact, even this stress function was provided 

by Westergaard in his original paper. And you have the stress function given as P 

divided by pi into z minus s multiplied by a squared minus s squared divided by z 

squared minus a squared whole power half. So, once the stress function is given, it is 

now child’s play for you; shift the origin to the crack tip, and then apply the definition of 

a SIF; If necessary, go for a L-hospital rule and get the limits, finally get the expression 

for stress intensity factor; in fact, I am not going to do that, I am going to provide you 

only the final expressions; and I have already mentioned, that you will have different 

expressions for the stress intensity factor at tip A and stress intensity factor at tip B. For 

tip A, it is P divided by root of pi a multiplied by a plus s divided by a minus s whole 

power half; and for tip B, which is given as K 1 B, you get this as P divided by root of pi 

a a minus s divided by a plus s whole power half. 

Is there a way to check this result? You have a provision, suppose you make s equal to 

zero both the expressions reduce to what we saw for the concentrated load at the center. 

So, this shows that the crack problem is reasonably understood, and we are able to play 

with different types of loading and find out the appropriate stress intensity factor. And 

you know if you look at the development of any of these approaches.  
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Once they obtain a stress function, they keep tweaking it, and then bring in certain 

modifications; and likewise, you know, you could use this for solving a variety of 

problems. Next, we will take up a problem of a crack which is loaded with a special type 

of loading. 

(Refer Slide Time: 12:07) 

 

You can observe that I have a crack which is loaded with the triangular loading, and the 

loading is symmetrical, you must observe all that, and the maximum value of this is p 

naught, that is the pressure that is acting; and you have the axis label, please make a 

sketch of this, because this is needed for our further discussion. 

So, I have distance as s label and you have to find out the force that is acting; so, you 

will have to look at what happens over incremental distance ds; and once you have this 

value of p naught at the center from the triangular loading, it is possible for you to write 

what would be the value of the pressure at any distance. And now, you know, you will 

have to identify which would be the starting point for me to get a solution for this 

problem. Because we have looked at a concentrated load acting at the center of the crack; 

then we saw two symmetric loads acting on the faces of the crack; then we saw an 

asymmetric load, and if you look at the loading here, the loading is symmetric. So, it 

would be prudent for me to use the solution that we have got, where you have symmetric 

loading on the crack faces; there it was a concentrated load, now it is a distributed load, it 

is a very simple exercise, you have to recast the type of expressions. So, based on this 



diagram, it is possible for you to write that expression. The overall problem is given, in 

this I have a distance of crack as a and it is possible for you to write dP equal to a minus 

s divided by a multiplied by p naught. 
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This would be the pressure at any point, you are having at a distance a minus s; and by 

looking at the expression which we had for the symmetric load, I could write this; we are 

writing dK 1. I have this load as 2 into a minus s divided by a into pi p naught square 

root of pi a divided by a squared minus s squared ds. 



Just flip your pages back and then see what we had written as the expression for K 1 for 

symmetric loading, the same expression I am using it, and replacing it in terms of dP; 

and we say, what all the value we get, we get that as dK 1. See once you come to a 

course in fracture mechanics, you know, you will also have do all this mathematics; for 

all of this, you know, you need to recall the table of integrals. I have the expression for 

dK 1 and if I have to find out what is K 1, I have to integrate it over the crack length; 
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I have to do it from 0 to a 2 into a minus s divided by a pi p naught root of pi a divided 

by a squared minus s squared into ds. 
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Can you just make an attempt to simplify, at least get what is the integral that we will 

have to evaluate; you may not possibly remember the expressions from the table of 

integrals, that I would help you. And this is a very interesting problem, the problem I 

have taken is quite interesting, I have taken with a purpose. 

Here you are having a pressure varying as a triangular loading; I could also have another 

interesting situation, where the pressure p naught is constant over the entire length of the 

crack; I could also get the solution for K 1, even for that case, from this situation.  

Right now, what I want you to do is, when I have this expression for K 1 simplify it and 

then see what is the integral that you will have to evaluate; only if I know the value of 

that integral, I would be able to find out what is the value of K 1. 

So, I would like you to look at that as one exercise; another exercise is, I am not having a 

triangular variation of the pressure, but I have constant pressure; that is also an important 

problem. See, if you had looked at, when we wanted to find out energy release rate based 

on displacement of crack faces, we had a discussion that the crack is opened by a 

pressure which is equal to sigma; and we said some expression for the value of K. 

And we would see, what is the kind of expression for K we would get it; so, both the 

expressions are important. And what you will find is, in each of these cases the integral 

will be different. See in books, what you will find is, they will just give this, and finally 



give the expression for k; many times, you know, if you read like that, assimilation of 

ideas will not be there. Because the only thing what you know, what you have been 

trained is, doing some little bit of mathematics, which you had forgotten that is all at this 

stage; stress function you are not writing, if somebody gives you a problem, if I ask a 

question develop a stress function for it, it is a herculean task. 

If you look at the history and the development of fracture mechanics, people struggle to 

arrive at stress function, and we had seen even for the very famous problem of the central 

crack, Sanford has to come and rescue that you have to have one more stress function 

capital y, only then the problem is complete; and it had taken quite a number of years. 

So, the only exercise that you can possibly do is, do the mathematics without skipping 

steps; that would also give you some kind of attachment to the result that you get, rather 

than looking at the final expression, it would help you to do that. I hope you have got the 

expressions. 
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So, in the first case, when I have the loading is triangular, you would have to look at the 

integral of root of a minus s divided by a plus s into ds; and when you do that, it turns out 

to be from the table of integral an expression like this. The first term is square root of a 

plus s into a minus s within the limit 0 to a; and second term is plus two a sin inverse root 

of a minus s divided by 2a from 0 to a; and when you substitute the limits and simplify, 

you get an expression that this is equal to a into pi by 2 minus 1. You know, this you will 



have to substitute it back and get the expression for K. I am not giving you the 

expression for K, we will have a look at it.  

And what would be the type of integral that you will have to evaluate, when the pressure 

is constant? The expression is different, and the expression turns out to be integral 0 to a 

1 by square root of a squared minus s squared into ds, from the table of integrals, you 

have this as sin inverse s by a with the limits 0 to a and once you substitute you get the 

expression as pi by 2. Here you are only looking at, what is the kind of expressions that 

you get from the integral value; these are not the final expressions for K, we will have a 

look at the final expression for K. 
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So when you have the pressure loading varying as a triangular fashion, the expression for 

K reduces to 1 minus 2 by pi p naught into square root of pi a. 

On the other hand, when I have pressure is constant, you can go and simplify, the result 

reduces to p naught root pi a; a very important expression, because you know, pressure 

loading is very common in many of the engineering applications. 

 And what do you find here, whatever the expression for stress intensity factor, for a 

center crack subjected to uniaxial loading or bi-axial loading, because we have always 

said the stresses on the horizontal direction is not contributing to the quantity K; the K is 

still not effected, there you got that as sigma root pi a, you have an expression very 

similar to that when the crack faces are opened by pressure. See, here we have looked at 

a mathematical approach, and then got the expression for a distributed loading, as well 

as, for a constant pressure.  

Later, I will solve the problem by a method of superposition, there you will again get the 

same answer. The reason is, for you to appreciate method of superposition, this answer 

will give you some kind of a confidence; because you have already seen the result is, p 

naught root pi a, I am going to get the same result by method of super position. So, you 

learned the no answers of method of superposition from this result, then apply or extend 

method of superposition for other class of problems. 
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And as I mentioned earlier, you know, when stress functions are developed, the 

developers of those stress functions also looked at, by what suitable modifications, they 

could extend the utility and solve more variety of problems. I would like you to make a 

sketch of this.  

And Westergaard in 1939 itself, in his original paper, he had obtained and reported this 

stress function; this is meant for evenly spaced collinear cracks in an infinite strain. See, 

for the first look of it, what you get? In which class of problem, we are going to get 

evenly spaced cracks? That is not the way developers look at it; they have a stress 

function by tweaking it slightly, they are able to solve this kind of a problem. 

What we will have to look at is, how the solution was looked at by later investigators and 

what is the substance they extracted out of it. It is a very important problem from that 

perspective, if you look at the problem as such, it is an academic interest. And for this, 

you have the stress function given as Z1 equal to sigma sin pi z divided by w whole 

divided by square root of sign squared pi z by w minus sin squared pi a divided by w. 

And you are sufficiently trained now, the moment you are the stress function, it is 

possible for you to find out the expression for stress intensity factor. 

In fact, Westergaard did not know it; he provided the stress function but he did not 

evaluate the stress intensity factor in 1939; because at that time, stress intensity factor 



concept was not available, it was only introduced by Irwin. So, the expression for stress 

intensity factor is credited to Irwin; there was a paper in 1957, where he had formalized 

all this. And for this problem of evenly spaced collinear cracks, the expression for stress 

intensity turns out to be sigma root pi a, this is magical, this till remains, which is 

multiplied by another factor, which is like w by pi a multiplied by tan pi a divided by w 

whole power half. 

And what is w? w is the spacing between the cracks, I have, this as given as w and length 

of the crack is 2a, and I have the origin fixed at the crack center, and you have cracks 

extending in this direction, as well as, extending in this direction. And the expression for 

K is credited to Irwin Westergaard and Koiter. 

Because for any problem, the stress function takes a predominance, it was reported by 

Westergaard; from the stress function, Irwin extracted the value of K, an expression for 

K; and this is known as a tangent formula, because this is in terms of tan pi a divided by 

w, it is known as a tangent formula. And what way this expression was used? That is 

what, we have to look at it. 

And from now on, you will always see this kind of expression, involving the crack length 

and a geometric parameter of the problem. 
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Is this you have to read it as a by w ratio; for all our future discussion, we will look at 

what is the value of a by w or two a by w, things of this nature. So, what is so important 

about this problem? Now, take up a line A B and C D, which are in between the cracks; 

and what would happen to lines A B and C D? 

Because of symmetry on edges A B and C D, no shear stress can exist. See, for all these 

cases, I would like you to make sketches; that is the reason why I am talking slow. So, 

you should be able to draw the sketch and also, assimilate the concept and discussion. 

You have evenly spaced collinear cracks; and I take a line A B and C D, which are in 

between the two cracks, from arguments of symmetry they have to remain straight; if 

you have shear stress, they cannot remain stretched. So, shear has to be zero. And for the 

lines to remain straight, you need to have stresses developed in the horizontal direction. 

So, what I get out of it? I am able to cull out a finite strip from an evenly spaced collinear 

cracks. So, in fact the base solution of evenly spaced collinear cracks is the mother of all 

solutions. Now, what is the problem I have? I have a plate with a central hole and we 

have already discussed sufficiently, that the stresses in the x direction does not contribute 

to changing the value of K; and you have to take it that, this is a schematic; in fact, 

accurate plots have been obtained by Irwin and his co-workers for various values of a by 

w ratio, they have obtained this plot. When the a by w ratio is small, the sigma x is 

smooth; only when a by w is very large, you find the sigma x values are very high on the 

crack axis. 

So the argument here is, as long as the a by w ratio is small, the advantage of solution for 

evenly spaced collinear cracks can be taken as the value of K for a finite strip; because 

all practical situations, you have only finite body problems. And this is the kind of 

argument they had put forth and we would see for that. 
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So, from looking at a problem of infinite plate with a collinear evenly spaced cracks, we 

are able to discuss, what is the kind of SIF for a crack, in a plate of finite dimensions. 

Now, this is shown with a finite… You have the edge straight. I have a center crack, I 

have a load applied as sigma; and mind you, a problem like this, is labeled as CCT 

specimen - Center Cracked Tension specimen - you know they had abbreviated like we 

had seen DCB specimen - Double Cantilever Beam specimen - RDCB specimen, then 

you have the CCT specimen, then you have Single Edge Notch specimen – SCN - 

specimen, if you look at literature in fracture mechanics, it reads like this. 

 And in those days, when Irwin developed, this was the specimen they had used for 

finding out the fracture toughness also, you have to keep in mind. So, this was used for 

material testing; so, they needed expressions, which are analytically, reasonably good to 

find out the value of K. And what you have to keep in mind is, when I have longer and 

longer cracks, the edges will have a considerable influence on the stress field; So, the 

solution need to be improved further. 

But this is how the initially the solution was looked at. So, when a by w ratio is small, we 

result for evenly spaced collinear cracks can be taken as the value of K1 for a finite strip 

also. We would do modification; we would not stop here; we would do the necessary 

modification. And I would like to emphasize again, the influence of stress components 



parallel to the crack phase on K1 is ignored. This is the kind of approximation that we 

make. 

And you know, this all happened at a time when people were having only slide rule for 

calculation, they were not having a computer to do the calculation; and in 1966 Esida 

solved this problem numerically, and he arrived at a solution with 36 terms, it is too 

difficult to handle. 

So, Brown and Strawley, later on, he simplified that expression and arrived at an 

approximate solution. Then they were many other developments. 

We would see some of those solutions. What you will have to recognize is, for a by w 

which is small, this is a reasonably a good approximation; because you know, you will 

have to come out of infinite body problem to finite body problem, how do you go that? 

People have cleverly made this argument and then arrived at this. That is what I said, 

evenly spaced collinear cracks may not be important from a practical point of view, but 

from that, you could arrive at solution for a center crack, we would see, you could get it 

for an edge crack, as well as, double edged crack; that is the starting point, from that 

point of view, it becomes important. 
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So, the general solution you could write it in the form, sigma root pi a, a function of 

alpha and alpha equal to 2a by w; for this case, I have the crack length 2a, width is w. 



And what Feddersen did was, I mentioned you have the solution of Esida, he is did a 

fitting for the results, and he obtained an expression for K, which is given as sigma root 

by a, that is magical, this is available, multiplied by secant of pi a divided by w whole 

power half; and this is known as a secant formula. This, he obtained purely from 

heuristic arguments; and what the literature says is, later on people tried to attach a 

theoretical development, which did not really succeed; but nevertheless, this is fairly 

accurate, you find the accuracy is plus or minus 0.3 percent, for alpha less than 0.7 and it 

is within 1 percent, for alpha equal to 0.8. 
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You know, the, whatever the final expressions I give and accuracy, these are from the 

hand book written by Murikami, stress intensity factor hand book has this information. 

And you also have another approximation that is given by Tada, which has an improved 

accuracy. The function is given as 1 minus 0.025 alpha squared plus 0.06 alpha power 

four multiplied by root of secant pi a divided by w. And this claims that the accuracy is 

within 0.2 percent for all values of alpha. 

See, what I would like to caution is, these are not from analytical solution, you must 

understand that; people have done a numerical analysis either by boundary collocation or 

finite element, as the case may be, and whatever the results that they have got, they have 

fit an appropriate empirical relation; and these are time tested; people have found them 



useful, So, you could take that for finding out the stress intensity factor for finite 

geometry. 
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And these expressions are also compared in a graphical form, and also make a note of 

this graph. 

So, I have x axis is given as 2a by w, it is given as 0, 0.2, 0.4, 0.6, 0.8 and I go up to 1.0; 

on the y axis, what is plotted is, K1 divided by sigma root pi a, I have 1, 1.5, 2, 2.5, 

etcetera. And this is how the variation of SIF is predicted by Irwin’s expression, and I 

have already said that Irwin’s expression is the simplest and crudest of all of it. But it 

was the very good starting point; and in fact CCT panels, they had use this expression for 

finding out fracture toughness also. 

Now, we are not using CCT specimen for fracture test, we are using modified compact 

tension specimen, we would look at that, when we take up the chapter on fracture 

toughness testing; and how does the expression for Feddersen goes? 

Though this expression is obtained based on heuristic arguments, this is reasonably 

accurate and in fact, it is preferred than the tangent formula; though the secant formula is 

preferred, but it is purely an empirical argument; and by enlarge the most accurate fit is 

by Tada; and you find only hardly a small difference between the graphs by Tada and 

Feddersen. 



So, make a neat sketch of this. And what you find here? If you compare, whatever the 

solution by Irwin, if you take the reference as Tada, up to 0.4 the Irwin solution and Tada 

solution are very close; there not much of deviation. And if you look at the Feddersen 

solution, it is up to 0.85; they say that the solution of Feddersen is reasonably accurate, 

and it is also simple to calculate. 

If I have to go to Tada, I have to evaluate a serious functions, whereas this is simpler to 

evaluate. Now, we have looked at what is the kind of stress intensity factor for a center 

cracked specimen. 
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Next, we will move on to single edge notched specimen; and what is it that you see? For 

small edge cracks, what is it that you see? You have a factor, 1.12 attached to this, what 

does it signify? See, if you have to appreciate, how fracture mechanics got developed, 

structures design based on conventional design were breaking, and they found that cracks 

are more dangerous, and they have to arrive at a solution. At that time, numerical 

methods are not very well developed, and they could go and solve the problem left and 

right, that was not the case. 

So, they have to use engineering judgment to appreciate which of the cracks is more 

dangerous. And you see the expression here; what is striking here? In the case of a center 

crack, the crack length is 2a, you got the value of sigma pi a root of pi a, whereas you 



have an edge crack which is only half its length, the stress intensity factor is higher than 

that; it is again through the thickness crack. 

What is the argument behind it? It is the very interesting argument they had put forth, we 

will see that also. 
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So, what you will have to look at is, collinear cracks evenly space is the mother of all 

solution; from this, you arrive at, what is the SIF for a center cracked specimen. What is 

the SIF for a single edge notched specimen, and what is the SIF for a double edge 

notched specimen; you could see all of them, if I cut like this, I get this specimen; if I cut 

like this, I get this specimen; if I have a cut here and cut here, I have double edge 

notched specimen. 
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And when you cut like this, what happens? See, I have this as an ellipse, which is 

enlarged here; and when you look at, I have a slope, this is horizontal because of 

symmetry. 

Now, if I have to get a single enlarged specimen, I have to cut it here. So, when I cut it 

here, what happens? See, the edge becomes free, there is no constrain that this slope has 

to remain horizontal. So, in essence, the crack will open up further; that is what is shown 

here, the slope need not remain horizontal and a crack will open up. 

So, for the crack to open up, you need to apply more stress; this is the way, they have 

argued; and what they also call it is, I have that crack tip here, this is called a back free 

surface; and if the crack becomes large, you will have a front free surface. So, in the 

literature you will find back free surface correction, factor front free surface correction 

factor, because this is how engineers operate, the back free surface correction factor is 

given as 1.1215 which is simplified as 1.12; that is what you come across. 

See, what you will have to keep in mind is, the problem is so complex, and they come 

out with beautiful engineering arguments. I would like you to make a sketch of it, you 

know this is very important, what you will have to note here is, for a, when you cut like 

this, embedding the central crack; because of symmetry, this slope will remain 

horizontal. 



But if I cut along the center of the crack, which is what is the case, in the case of a single 

edge notched specimen or double edge notched specimens, you will have a higher stress 

intensity factor and the crack will open up more; and what would be the case? When I 

have a longer crack, this solution is not sufficient. So, what people have done is, people 

have gone to boundary collocation, which is the numerical technique; they exhaustively 

satisfied the boundary, as much as possible; so, you have a series solution available, that 

is how people have proceeded. See, people have not given up, when you have a complex 

problem, people were at it and arrived at very interesting solution. 

You know, if you look at this, this would also be a training for you to apply,when you 

face very difficult situations; with the available knowledge, what kind of arguments I can 

put forth and extract as much as possible from what is available, which could be verified 

and corrected later with sophisticated solutions, when they become available. So, the 

correction factors approach is the way engineers operated; that is very much seen in 

fracture mechanics development. 

(Refer Slide Time: 45:18) 

 

So, when I have a long edge crack, I would have an expression like this, and this is 

credited to Brown and Strawley. And the function F1 is given as 1.12 minus 0.231 alpha 

plus 10.55 alpha squared minus 21.72 alpha cube plus 30.39 alpha power 4 and the 

accuracy is given as plus or minus 0.5 percent for alpha less than equal to 0.6. 



And you will have to be careful, how the function F1 is defined, you have to look at, and 

you will also have to look at, how alpha is defined. 

See, we have seen alpha as 2a by w in the case of center crack, in the case of a single 

edge notched crack, you have seen that as a by w. 
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So, you have to use the correct value of alpha and then evaluate the expressions. And 

you also have a variation provided as a graph. So, that gives you, how SIF varies and the 

variation is much more sharper than what do you have in the case of a center crack. 

So, what you find at this stage? A crack proceeding from surface is more dangerous, than 

a crack which is inside; that knowledge is very important, because it should alert you and 

in the worst case, I can always start with sigma root pi a as a starting point; then put 

appropriate correction factors. This is how you will have to look at solutions of SIF and 

in this class what we had looked at was, we have evaluated the stress intensity factor by 

using the stress function definition and then we proceeded to find out the stress intensity 

factor for triangular loading on the crack faces. We said another important problem is, if 

I have a constant pressure on the crack faces, which is an equally important practical 

problem; we found the stress intensity factor as p naught root by a; then we moved on to, 

evenly spaced collinear cracks in an infinite strip. 



I said, to start with, it looks like an academic exercise and the beauty of thus is, how the 

later investigators utilize this, as a starting point to find out the stress intensity factor for 

a finite strip having a center crack, then a single edged crack; we will see in the next 

class, what is the solution for double edge crack. 

Then what is the stage set for? The stage is set for, go back and verify the class 

experiment where we broke the specimen, paper specimen; because there our common 

sense failed, what you saw was different than what you would anticipate from common 

sense by just telling the length of the crack as the basis for fracture. It did not work. 

Now, once you develop all this equations, we are armed with mathematical calculation to 

verify our observation in the experiment. So, please come with the calculators in the next 

class. Thank you. 


