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Let us continue our discussion on review of theory of elasticity. See in this review, I will 

try to highlight certain important aspects of how we solve the problem in theory of 

elasticity, rather than getting into detailed derivations. Whatever the discussion that we 

do, it will help us to develop the crack-tip stress and displacement fields in an indirect 

manner. This knowledge basis is essential for you to develop the solution for the crack 

problems. 
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And in the last class, we had started discussing the solution for the case of a beam under 

uniformly distributed load. I drew your attention to the fact, when I have a uniformly 

distributed load shear force varies along the length of the beam. 



It is not remaining constant; it is varying along the length of the beam. When shear varies 

along the length of the beam, your flexure formula is no longer value. Flexure formula is 

valid, only for the case of constant bending moment. We saw as an exception, if you 

have a constant shear force, you could use it as an exception. And if you have deep 

beams, then again there is a shear coupling, and in this case, what you find is the shear 

force varies linearly over the length of the beam. So, definitely, the flexure formula is not 

applicable. The plane sections do not remain plane before and after loading, so you need 

to expect a remedy by solving it through theory of elasticity. 

And another aspect, is while you learned how to draw a bending moment diagram, you 

first take up the case of concentrated forces. You may have a three point bend. I may 

have concentrated force rather than a distributed loading. But when you solve the 

problem by theory of elasticity, the boundary conditions could be easily specified when 

the loading is distributed like this. 
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So, this is one of the simplest problems taken up while developing concepts in theory of 

elasticity. The reason is, the boundary conditions could be specified. One of the first 

things, you do is, in order to write the boundary condition, you replace the support 

reactions, by the shear loading, on the end faces. And this is what this indicated here for 

clarity, and what is the stress function for this problem? The stress function for this 

problem, is given as phi equal to a 2 x square plus b 3 x squared y plus d 3 y cube plus d 

5 x square y cube minus 1 by 5 d 5 y power 5. 

If you really look at, you have certain elements of polynomial of degree 2, polynomial of 

degree 3, and polynomial of degree 5. These are combined in a suitable fashion to be a 

valid stressfunction for a problem that we have taken up. How the people arrive it there, 

are no set procedures, by trial and error, people arrive at some logical reasoning, they 

would be able to give it. But once the stress function is specified, the entire problem can 

be solved. And if you look at the stress function, I have the coefficients a 2, b 3, d 3, d 4. 

These have to be determined. I have 1, 2, 3, 4 coefficients. In these, 4 coefficients need 

to be determined. And you look at the boundary conditions, they provide you sufficient 

number of equations to get the coefficients. 

And what are the boundary conditions? The origin is taken as the center of the beam. So 

you have plus h by 2, minus h by 2, at h by 2. What you have is you have the distributed 

load. We are considering a unit thickness, so sigma y itself becomes minus q. So on the 



top surface, you specify the bulk boundary condition. On the bottom surface, and also 

you have specified the boundary conditions, sigma y equal to 0. 

And we also have on the top and bottom surfaces that is y equal to plus or minus h by 2, 

the shear stress is 0. And what other conditions that you can write? You could write what 

happens on this edge, as well as this edge, and that is covered by your overall 

equilibrium requirements. Because what we know here   is, only the sheer force. We do 

not know, what is the distribution? 

The distribution has to be obtained as part of your solution procedure. So I can only write 

on this edge, integral minus h by 2, to plus h by 2, tau xydy, equal to, qL by 2.That is 

only thing, which I can write. I would not be able to specify individual magnitudes of tau 

xy like, what I had done on the top phase, and the bottom phase. I know only the integral 

equal to a quantity like this. 
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And what other things that you have here? There is no force in the x direction, there is no 

moment and they also appear as relevant conditions. So I have integral, minus h by 2 to h 

by 2 sigma x dy, equal to 0. The net force is 0. And you also have, minus h by 2 to plus h 

by 2 sigma xydy, equal to 0. So this gives you the moment. And if you look at the 

boundary conditions, it is possible for you to evaluate these coefficients. I is not getting 



into those details, and once you know what is phi, you can easily write the expression for 

sigma x, sigma y and tau xy. 
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So, we will directly look up what are these stress quantities, and I get sigma xx as q by 8I 

into 4x squared, minus L squared y. If you look at like this, it looks as if it is something 

different. In a sense, this is nothing. But what you get from your flexure formula, this 

term is nothing, but My by I. 

So, I have a part of the solution is same as what we have seen in the strength of materials 

approach. But there is an additional term, which is actually a correction factor which is 

given as q by 60I, 3h squared y minus 20y cube. So theory of elasticity recognizes the 

deformation of the planes, and because we are satisfying the overall equilibrium 

condition as well as the boundary conditions and compatibility. And finally we get a 

solution, because we have not made any assumption on the displacement picture 

displacement is evaluated as part of the solution procedure. So in a sense it has 

expanded. That the scope of problems that you could solve by a theory of elasticity 

approach. That is the way you have to look at it. 

Then you have a surprise. That I have an expression for sigma yy, which we never saw in 

strength of material solution 



You would not even recognize that sigma yy exists, and that is given as q by 24I, into 4y 

cube, minus 3h squared y, minus h cube 

Then you have tau xy, which is given as qx, divided by 8I, into h square, minus 4y 

square. This is same as what you get from strength of material solution. Because shear 

force, varies as a position of x. You have the term qx here, and you will essentially get 

the shear force distribution as a parabola. 
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So, what you find is there are two quantities, which are different. You have additional 

term for sigma xx, and you also have another stress components sigma yy, because if you 

have to satisfy the equilibrium condition, on the top surface, unless you substitute these 

quantities however small, it will not go to 0. And this is pictorially represented in this 

slide. So you have the cross section of the beam, and you have the bending stress which 

varies linearly as in strength of materials. You have the shear stress. This is also the 

variation, is parabolic top and bottom surface shear is a 0 and you have the correction 

term to sigma x. 

See, this is only a schematic representation. You should not compare the magnitudes of 

this stress, and this may be quite small. In order to visualize the variation, it is drawn big. 

Similarly is the case for sigma y. Also you get two additional quantities, as part of here 

theory of elasticity procedure. 



So, if you take the problem of beam under uniformly distributed load, complete solution 

encompasses all these components. And this is only the correct solution. What you have 

got in strength of materials was only in approximation good enough, for engineering 

analysis. We are not making serious error, by neglect the correction term to sigma x, or 

not incorporating sigma y, and another aspect also you can keep in mind. 

See, I said, you have been able to solve comfortably a problem, of distributed load on the 

beam. Because I could specify the boundary condition easily, and my stress function of 

was also very simple. I had only combination of polynomials. Certain terms of the 

polynomials were selected, and put. We were able to get the solution, and it coincided 

with strength of material solution on few aspects. So that way you find that we on the 

right direction, so on and so forth. Suppose I want to solve the problem of a beam, with 

the concentrated load at the center, that means 3 point bending. 

We have seen already, you could have Fourier series, as a candidate for constructing 

stress functions. You would in fact have to do by taking several harmonics, and when 

you solve the problem, you will come out with a very interesting aspect. 

See in this case, we have seen shear varies parabolically, over the depth of the beam. In 

the case of a concentrated load, as you go closer to the concentrated load, the shear will 

not vary parabolically. Because you have a concentrated load on the top, surface shear 

just below the surface would be very high and it will diminish to 0. 

The overall shear force would remain same, that there is no confusion, but the sheer 

force distribution will be drastically different, and you can look at book by Timoshenko 

where he has written, pages after pages, how to solve the problem of a beam under 3 

point bending. And one of the significant result, there is shear variation is different, as 

you go close to the points of loading. And unless you take care of that in your design 

scenario by providing extra reinforcements, your beam will fail. 
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So, what you will have to keep in mind is, strength of material has provided a certain 

level of knowledge. But if you want to proceed further, you need to improve your 

method of solution, and that has been reasonably achieved by theory of elasticity. And 

you know we have looked at the problem in Cartesian coordinates earlier. Now we look 

at the problem in polar co-ordinates. What is the nature of bi-harmonic equation polar 

co-ordinates? And we will define what del square is. 

So del square sigma r, plus sigma theta, equal to 0, is the compatibility condition. And 

del square, is given as dou square, by dou r square plus 1, by r dou, by dou r plus 1 by r 

square dou square, by dou theta square. See in fact, when we take up the problem of a 

crack in an infinite plate, we would first solve by Westergaard’s approach, in arriving at 

the stress field equations. The Westergaard stress field equation is constructed, based on 

Cartesian coordinate system, and you would use essentially analytic functions for 

arriving at the stress and displacement fields 

Later, we would also look atWilliams methodology for crack problems. That approach is 

actually done in a polar coordinate system. So learning this is equally important. Another 

reason, why I cover this polar coordinates, is in fact, many problems of common interest, 

you find solution from polar coordinate system. The moment you define what is phi, the 

expression for sigma rr sigma theta theta, and tau r theta, are specified like this. And 

sigma rr is given as 1 by r dou phi by dou r, plus 1 by r square, dou squared phi by dou 



theta square, sigma theta theta, as dou square phi, by dou r square tau r theta equal to, 

minus dou by dou r, of 1, by r dou phi, by dou theta. In fact you should be able to 

remember this expression, by looking at the mnemonic way of understanding them. 

If you look at Cartesian and polar by looking at them again and again, you will know 

how to remember this, because they are very, very fundamental quantities. So the idea 

here is whatever we have learnt in Cartesian coordinate, the knowledge would help here. 

Also you have this del square, is given in this fashion. Once phi is specified, you could 

find sigma r sigma theta dou r theta. 
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Now let us look, at what are the forms of stress function in polar coordinates. It is very 

similar, to what we have look that in Cartesian coordinate system. We have look that in 

Cartesian coordinate systems. I could have polynomial functions, I could have Fourier 

series, I could have analytic functions, as candidates for coining stress function. In the 

case of polar coordinates, the generic form is, phi equal to function of r, multiplied by 

cos n theta, or sin n theta. You are not taking a very generic expression. In terms of theta 

you could have a general function in terms of r, and this kind of a combination is found 

to solve a variety of practically important problems, and we look at each of them case by 

case. 

Now you have the case 1, where you are talking about axis symmetric problem and here 

n equal to 0. One of the very famous problems in this category is the problem of a thick 

cylinder for thin cylinder. You knows p r by t p r by 2 t, you are able to develop. But 

when I have a thick cylinder, you have to go by theory of elasticity. And you have the 

stress function. For this is given as, A r square natural logarithm r, plus B r square plus, 

C natural logarithm r, plus D. And you know in theory of elasticity, if you come for each 

of this problem, a name is attached. He was the person who was to solve this problem 

first, and this is known as a Lame’s problem. And you have a thick cylinder. The wall 

thickness is considerable and if you have to find out, you will have to go by theory of 

elasticity. And what is the kind of domain here, we have discussed. What are simply 

connected and multiply connected objects? It is actually a multiply connected object. 



And in this case, just satisfying the bi-harmonic equation and boundary condition alone 

is not sufficient, you should also look at whether the displacement is unique, when you 

go round the ring, once that kind of argument is necessary to make the coefficients A0. 

So if you recall how you have solved the Lame’s problem, you would say a coefficient A 

has to be 0, by looking at the displacement picture. It is very important. See in theory of 

elasticity, we keep saying we are not making any assumption, about the displacement. 

Certain aspects of displacement information, need to be used for the solution procedure 

also 
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So, this is one category of problem, you can solve using this. The other category is please 

try to make neat sketch of this. The same stress function could also be used for initially 

curved beam in pure bending. You have very many practical applications, where initially 

the beam is bent. Suppose you want to analyze a crane hook, it is subjected to shear as 

well as bending moment. So if it is subjected to shear, we have to use another stress 

function to solve it, then linear superposition is possible, because we are living in the 

linear elasticity domain. So superposition is possible. It is a very useful technique. In fact 

superposition is a useful concept, when you have linear elasticity. The same idea we 

would also extend it, for linear elastic fracture mechanics. So principle of superposition 

is one of the very important tools. 



So you could go and get the solution for initially curved beams, with the same stress 

function. So what will happen is the coefficient will differ, it is depending on the loading 

and the boundary condition of the specific problem. 

And you can also construct another set of stress functions. First we saw the case n equal 

to 0, we label that as an axis symmetric situation. 

Now we go the situation where n equal to 1. We have already seen a generic form of 

stress function. So that would be rewritten as phi equal to, f 1 r cos theta, instead of cos n 

theta n, as has become 1 here. So it is cos theta or you can also have f 1 r sin theta 

function of r into sin theta, and the function of r. Why we put this as 1? It’s because we 

have also written in the generic situation f suffix n, we are now talking about n equal to 1 

so it becomes f suffix 1. So the function of r is taken as, A 1 r cube, plus B1 by r, plus C1 

r, plus D1 r ln r, and this is the useful stress function, to find out these tresses due to 

shear loading of curved beams. 

You know these are all problems that we come across. You cannot avoid them in actual 

engineering practice and some of the solutions we have been using it all along and 

actually it comes from theory of elasticity analysis. 
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We have seen n equal to 0 n equal to 1, the next step is n equal to 2. So what you find is 

n equal to greater than or equal to 2, you have a generic expression, where phi is defined 



as f n r cos n theta, or f n r sin n theta, and the generic function f of r, is given as A nr 

power n plus B n r power minus n plus C n r power n plus 2 plus D n r power minus n 

plus 2. 

You know this is a useful stress function, to solve the problem of a plate with a small 

whole infinite plate, with a small hole. See I am discussing this problem using a finite 

screen, so I have to draw a finite diagram. So when n equal to 2 the stress function is 

useful to solve the problem of stress distribution. In the case of a small hole in infinite 

plate subjected to uniaxial tension, you would also see some aspects of the solution more 

from the point of viewof appreciating the principle of superposition. 

You know quite a good variety of problems. You have been able to solve by taking stress 

function in this nature, there are also other forms of stress function. You have phi defined 

as C r theta sin theta. 
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You know the function of r is simply r, but the function of theta is slightly involve and 

you could have another stress function which is defined as C r theta cos theta. It is a very 

useful stress function. You know many problems, which are of practical interest could be 

solved I think, I would enlarge this figure for you. What you have here is, I have a 

concentrated load on a semi-infinite plate, you have infinite boundary here. 



I have a concentrated load, I have a load at an inclination, and I have a load which is 

tangential to the surface. And if you look at the diagram carefully, the same stress 

function C r theta sin theta or C r theta cos theta, could be invoked for all these three 

cases, by carefully defining theta. theta is defined from the reference point as the loading. 

Loading is horizontal. You measure theta from this loading, is vertical measure theta 

from this loading, and is inclined measure theta from the axis. 

So, if you recognize this you get a family of solutions. For important problems, just by 

redefining, how you measure theta? For all this cases, you get solution and if you look at 

the concentrated load, this is like your Boussinesq’s problem. 
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Then you have extension, of this. If you look at the contact stress analysis, it all started 

from this basic solution of Boussinesq's, which is extended by hertz. And you have 

Harshian contact problem, and you have also look at how to find the solution for a disk 

under diameter compression. That also comes from this basic solution. From this as the 

basic solution; you could find the solution, for the case of a disk under diameter 

compression. So it is a very useful solution and you would also be able to find out for the 

case of a wedge problem, the same stress function is useful. 
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And where do you find the application of wedge problem? Suppose I want to analyze a 

cutting tool. The cutting tool is a removing metal. While you do the measuring operation 

if you want to analyze the cutting tool, the wedge problem could be invoked. So from a 

practical point of view, quite a nice set of problems could be solved by looking at the 

stress function in polar co-ordinates. 
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So polar co-ordinate is very useful. You find very many practical problems. You could 

solve from stress function expressed in polar coordinates. You will now look at the 

problem of infinite plate with a small circular hole, just the highlight of it. I will not get 

into the complete solution, and as I mention for any of the problem in theory of elasticity 

a name is associated. For this problem of a circular hole, it was kirsch in 1898, who 

solved it, and this is known as a Kirsch's problem, and since we have a nice facility for 

animation for illustration I have taken it like this. You have an infinite plate with a small 

circular hole that could be visually appealing. But when I want to do it in a finite domain 

I have to take a finite diagram, and in order to see what kind of things I represent in the 

hole I make it bigger. It was one of the common confusions, I have come across in 

students, is they do not recognize the theory of elasticity provides solution only for an 

infinite plate with a small hole. Because you are accustomed to seeing a finite diagram 

like this in the books. 

The students immediately jump when they actually solve a problem of a plate, with the 

hole which is finite in dimension. They think that the solution is directly applicable 

because of space constrain you have this. 

You have to imagine that the boundaries, are at far away distances from the hole 

dimension, and there are other things that also we do. Though the problem is like infinite 

plate rectangular plate, with a small circular hole. One of the methods of solution is look 



at this as a boundary which is in circle in nature at infinity, and rewrites the boundary 

condition. You have only sigma x axis. These stress components could be rewritten as 

suitable boundary condition, for a circular plate and why we take up this in polar co-

ordinates. I have the circular hole and I also have the outer boundary a circle. It is 

convenient for me to specify the boundary condition. If I look at the problem in polar 

coordinates and this is what I mention, when people wanted to solve for the problem of 

elliptical hole. They needed to develop elliptic coordinate system, because they have to 

specify the boundary condition on the boundary of the elliptical hole 
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And polar coordinates system is lot more simpler. That is the reason you find infinite 

plate, with a circular hole was solved first. And we will also have a brief look at the 

principle of superposition employ, and before I get into that you have nice set of fringe 

patterns that are form, because of photo elasticity. And this is for a finite plate. Do not 

confuse this this is for a finite plate with the hole, not for an infinite plate with the small 

hole. 

So what we do is we are using Saint-Venant’s principle? The small central hole will not 

affect the stress distribution at distances, which are large compared to the diameter of the 

hole. So I take r is much greater than a, but pictorially it is represented in this fashion. 
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But mathematically recognize R is much larger than, and this is the kind of stress field 

that you have, and we would get that from the stress tensor. Stress tensor is given as 

sigma xx 0 0 0. It is a two-dimensional problem, and what we will do is, we will replace 

this; whatever the far field stress as appropriate boundary condition on the boundary of 

the hole, and which you could do it by suitable stress transformation. So I have the 

direction cosine matrix. I am taking a generate section at theta I between r and x, it is cos 

theta between r and y, it is sin theta between theta and x direction, it’s minus sin theta 

between theta and y it is cos theta. 

And we know, what is the stress tensor? I can find out the stress tensor in polarco-

ordinates by simply multiplying the direction cosine matrix. So you have this as a and 

this as a transpose. So you have this as, cos theta minus sin theta sin theta cos theta. So 

what we are doing in this step is, we want to recast the problem as the outer boundary 

being circular for facilitating a solution procedure. 

See there are also other methods of solution. People have taken the outer boundary, as 

rectangle and they have also proceeded. That is also another way of doing at it and this is 

all another method, which is far more simpler, and my interest is to show that how we 

use the principle of superposition to arrive at the solution. My focus is only on that 

because if I have to go to the level of superposition, I must look at the stress components 

on the boundary of the hole and then recast the problem. 
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So from the expression, we would be getting sigma RR, as sigma xx divided by 2 into 1 

plus cos 2 theta, and then tau r theta, as minus sigma xx by 2 sin 2 theta. I think you can 

take a sometime to plot this nice picture, so whatever you have as the boundary condition 

on this hole could be thought of as superposition of two problems. 

Here I have sigma xx by 2. Look at this as an annular plate, with sigma xx by 2 acting 

uniformly all over the boundary. This is one problem. For this you already have a 

solution, this is nothing. but your Lame’s problem and you have another problem I have 

shown only one loading I have shown the loading of sigma xx by 2 into cos 2 theta make 

a sketch of it 

The pictorial sketch is very interesting. You may not find in many books. In addition to 

this you also have the shear stress tau r theta that also we will show after you have drawn 

this. We will look at how the variation of minus sigma xx by 2 into sin 2 theta appears 

may be. 
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If you want, I can make this big. So this is what you have. You can draw it on the 

boundary, so this denotes positive values, this denote negative values. That is the symbol 

is that is used and we will also look at the shear stress. 

The shear stress variation will be something like this, and this is minus sigma xx by 2 sin 

2 theta, so you have both these kind of loading exist. In this problem you have 

contribution from sigma xx by 2 cos 2 theta and minus sigma xx divided by 2 sin 2 theta 

So what we have looked at is, we have looked at the problem of a small hole in an 

infinite rectangular plate is recast as small hole in a circular plate. And we have suitably 

looked at the boundary condition, by looking at the boundary condition; we were able to 

split this into two sub problems 
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One problem is your conventional Lame’s problem, with a specified loading. The 

loading is different here. That loading we have seen the other problem is you have the 

stress components sigma xx by 2 coos 2 theta, and sigma xx by 2 sin 2 theta. And if you 

look at the nature of the stress function, it is in the form of sin 2 theta and cos 2 theta. 

So that is the reason, why you are able to take that kind of a stress function? We have 

said n equal to 2, is the good candidate for solving the problem of a plate with an infinite 

hole. 

So you solve this problem using that stress function, and add these two, when I find out 

sigma xx component 1 here, component 2 here. You could add them, because we are 

living in the domain of linear elasticity. In linear elasticity, one of the very powerful 

methodology is principle of superposition. 

In fact when we look at certain solutions for finding out, stress intensity factor in fracture 

mechanics problems, we would employ principle of superposition and evaluate the stress 

intensity factors. Because there again, we are going in for a linear elastic fracture 

mechanics. 

So that is the reason, why I thought, that I should emphasize principle of superposition 

has been used even, in your conventional theory of elasticity approach, it is not 

something new. 
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The strength comes from your linear elasticity that is what is important. Then you could 

also have a look at the elliptic coordinates. I will just show the elliptic coordinates and 

you have to recognize, that these were necessary for solving the problem of a plate, with 

an elliptical hole. And this comes from your basic expression, x square by cos h squared 

alpha, plus y square, by sin h squared alpha equal to c square. And for different values of 

alpha, one gets confocal ellipses. These are shown here. I will also zoom in and show 

you have confocal ellipses. 



So when you specify, what is alpha? You define the boundary of the elliptical hole. So it 

becomes convenient, to specify the boundary condition, and this is what, I emphasize. In 

the early development of theory of elasticity, when they have to solved a problem 

parallely they had to develop suitable coordinate system. Also skewed plates are used in 

aerospace structures. 

So they develop skewed coordinate system, and they if they have to analyze swear, they 

had developed spherical coordinate system and spherical bipolar coordinate system. And 

these were all important stress contributions, in those days. So without suitable 

coordinate system, they were unable to attach problems that come across in actual 

practice. And this is where your finite element solutions, which are basically numerical 

in approach, provided a via media, to handle complex boundaries at least approximately. 

So that is the advantage of your numerical techniques. So if I have to solve a problem by 

analytical approach, I need to develop suitable coordinate system as well. 
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So you specify alpha equal to a constant, and then a find out what is the inner boundary 

of the ellipse, and you have alpha and beta. You essentially get sigma all alpha, alpha 

and sigma beta beta that you interpret as suitable quantities for your data interpretation. 

So what you have is semi-major and semi-minor axes of the elliptical hole, are given as a 

equal to c cosh alpha naught and be equal to c sin h alpha naught. 



So this provides you a comprehensive over view, on certain aspect of theory of elasticity. 

We have look at the Cartesian coordinate system, as well as the polar co-ordinate system, 

and the moment you get the stress function you are in a position to arrive at the solution. 

So the starting point, is a stress function. How people get the stress function is a very 

challenging aspect. 
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See, before we take up the issue of developing crack-tips stress and displacement fields, I 

said analytic functions are used to coin the stress function in fracture mechanics. That is 

what Westergaard has used. So we need to understand, what an analytic functions. You 

know if a function is analytic, when it is having a derivative. The derivatives of a 

function of a complex variable, w equal to f of z, is defined by dw by dz. You have the 

similar notation as linear interpretation, you put w prime, you put 1 prime it is, dw by dz 

equal to f prime z. It is given as limit delta z tends to 0. You evaluate the function at z 

plus delta z minus f, of z divided by delta z. 

So now we will have to look at, for you to get this differential. What are the finer aspects 

that we will have to look at, and z is a complex number, .z equal to x plus i y 
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So what you will have to keep in mind is for the derivatives to exist, no matter how delta 

z approaches 0. It is necessary that the limit of the quotient be the same 

So that has to be ensured. So you look at this function. W as a real part, u x comma y 

plus imaginary part, given as i, into v into v of x comma y. The real part is u x y, 

imaginary part is v x y. 

And we have already said, we want to find out whether the derivative exists. So dw by dz 

the definition is limit, delta z tends to 0, delta w by delta z. 

So you could have, delta z is real. In that case, delta y equal to 0. You could have, delta z 

is imaginary. In that case delta x equal to 0. 

So no matter, how delta z approaches 0 that is depicted in the graph here. So you have in 

the first case, delta x equal to 0, delta z equal to i delta y, so it varies like this. The 

second case you have delta y equal to 0 delta z equal to delta x, so it varies like this. 

In second case you have delta y equal to 0 delta z equal to delta x so it varies like this 

you could have a case where both delta y and delta z exchanges so there are related like 

this. It is a linear relationship or it could also move in a curve. Now what we want to 

ensure is whichever way delta z approaches 0I, must have a unique value of dw by dz 



which enforces certain conditions, between the real and imaginary part forming the 

complex function. 
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These conditions, you have developed, you have to know, what the reason behind it is. 

Because whichever way, delta z goes to 0 I must get one unique solution, and now we 

will take case by case. We will take the case that delta z is real, and we want to write 

what is dw by dz. 

And what is dw by dz? It is nothing but in the limit delta x tends to 0. You have to 

calculate u of x, plus delta x comma y, plus iv, of x, plus delta x, comma y, minus u of x 

comma y plus iv, of x comma y, divided by delta x. And these could be grouped as real 

and imaginary part. That is what the way depicted in the next step. And these could be 

written comfortably, from the basic definition of how do you write differentials. 

You are having this as, u of x plus delta x comma y, minus u of x comma y. So this I 

could write it, as when the satisfy the limit x tends to 0, I can simply write this as dou u 

by dou x. I can simply write this as dou v by dou x. So what you get here is dw by dz 

becomes equal to dou u by dou x plus i dou v by dou x. We are taking a case when delta 

z is real. 



(Refer Slide Time: 50:21) 

 

Now we will take the case when delta z is imaginary and we will write the same thing, 

let us see what we get. So here you have to carefully write this as, limit delta y tends to 0, 

so that means x plus i delta y, is what we are looking at and x is 0 here. So you have this, 

as i delta y coming to the picture, and suitably these expressions are written here again. 

You write the generic expression, then segregate them by real and imaginary parts and 

you get comfortably write this as, 1 by i dou u by dou y, and you will have this, as dou v 

by dou y. 

So what I get here, I get this as dw by dz equal to 1, by i dou u by dou y, plus dou v by 

dou y. Or in other words, this actually dou v by dou y minus i dou u by dou y. So now I 

have two expressions, for DW by dz. They cannot exist like, that so there has to be some 

interrelationship between the real and imaginary points. We will continue that in the next 

class. 

So in this class what we have done is, we have done a brief review of theory of elasticity 

and towards again we have looked at what are analytic functions. All this have been 

developed in your courses on mathematics. Because you have lost touch for a long time 

it is desirable that we review them, and take up evaluation of stress fields, in the case of a 

plate with a crack. Thank you. 


