
Engineering Fracture Mechanics 
Prof. K. Ramesh 

Department of Applied Mechanics 
Indian Institute of Technology, Madras 

 
Module No. # 02 
Lecture No. # 12 

Pop-in Phenomenon 
 

In the last class, we have looked at the elegance of energy release rate approach to 

explain certain aspects that is seen in the experiments. And we have also looked at, by 

conceptualizing resistance, we have been able to extend what are all the concepts 

developed for brittle materials to ductile solids. In the case of brittle materials, the 

resistance was constant, whereas when you go to ductile solids, you have plastic energy 

dissipation, and in view of that, as the crack length increases, the plastic zone size also 

increases. So, the resistance increases as the crack also increases in length. 

And we have looked at two extreme cases of specimen thicknesses. In the case of a plane 

strain where the thickness is very large, the variation of R was slightly shallow. 
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The moment you come for a thin specimen which is in plane stress, we saw that the R 

curve was very steep like this. This has helped in understanding a very important concept 

that would have what is known as stable fracture. And what do you see in this graph? 

When the stress level is increased from sigma 1 to sigma 2, you have at this point, G 

equal to R. So, fracture initiates at sigma 2 and the corresponding energy release rate is 

G; when I increase the stress further to sigma 3, then the crack advances by a small 

amount and stops. Until I increase the stress further, it would remain there. When the 

stress becomes sigma c, you find G equal to R as well as the slopes of these two curves 

are equal. So, beyond this, you will have fracture instability. So, what this graph shows is 

a crack of initial length a 1 has advanced by delta a 1. For this extension, the fracture was 

stable; beyond this, you have unstable fracture (Refer Slide Time: 3:00), and now you 

can appreciate. 

When we said what are the necessary and sufficient conditions for fracture, we were able 

to see the necessary condition is G 1 should be equal to R 1 because we are looking at 

the mode1 scenario as well dou G 1 by dou a should be equal to dou R 1 by dou a. This 

becomes a sufficient condition. Only when these two conditions are satisfied, you will 

have catastrophic moment of crack. 

(Refer Slide Time: 03:41) 

 

And another important aspect also we looked at. When you say sigma c, what is the 

corresponding critical crack length? Is it a 1 or a 1 plus delta a? You have to keep in 



mind when you have the stress as sigma c, a crack of size a 1 will have a stable fracture 

extension, followed by unstable fracture. So, you should not mistake that a crack length 

of a 1 plus delta a 1 is a critical crack length for the stress sigma c. In fact, many fracture 

calculations where erroneous because of this misinterpretation. So, these are all subtle 

things. 

So, what you will have to look at is, without getting into much of mathematics, we have 

been able to explain the phenomena of stable fracture that is seen in thin plates. The 

stable fracture would be followed by unstable fracture, but you are able to explain with 

the strength of R curve concept. And we will also look at other subtle issues. 

(Refer Slide Time: 04:59) 

 

When you have the energy release rate as a straight line, it leads to another contradiction. 

We have the expression for G as pi sigma square a divided by E. So, they are all straight 

lines. Now, R is a curve and when I have cracks of different lengths a 1, a 2, a 3, a 4, I 

think I would redo the animation; have a look at it how the different crack lengths 

indicate the critical value of G. For the crack length of a 1, you will have the value of 

critical energy release rate as G c1; for crack length of a 2 you will have this as G c2; for 

crack length of a 3 you will have this as G c3. 

I would like you to make neat sketches of this. This is very important. It is illustrating a 

very subtle concept. The animation is very helpful to understand this. For a 4, you have 



this as G c4. So, what you eventually get is different critical energy release rates for 

different initial crack lengths. 

This cannot be possible because when we say the resistance is inherent in the material, 

the material has to behave in a similar fashion for any lengths of cracks. The material 

property should remain more or less same when you are looking at for different values of 

crack lengths. So, what is a mistake that is possibly happening here? See, one of the 

issues here is you have taken an infinite plate with a central crack. In practice, everything 

is a finite plate; nothing is infinite; not only this, you start with the particular crack 

length, then the crack advances. 

So, when the crack advances, no longer the original calculation of energy release rate 

would remain so, because the crack length, as it increases, the edge of the crack faces the 

edge of the specimen, the crack-tip becoming closer to the specimen edge. So, this would 

definitely alter the expression for energy release rate. In fact, when we develop the stress 

intensity factor concept, we will also involve this kind of a parameter which is a function 

of the a by w ratio. You will have a basic expression for stress intensity factor and you 

will have a multiplying factor. 
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On similar lines, what you can also think of is, as the length of the crack increases, I 

cannot have this as the expression. This expression has to be different. That would also 

be a non-linear and you could label that as beta square pi a sigma square.  

This is a factor function of the problem on hand; it is a function of a by w ratio. And 

what you get here, this makes the change that you no longer have a linear variation 

because beta is not constant; that itself is changing as a function of a by w and you will 

have, in essence, a non-linear curve depicting the fracture. And I have for the crack 

length a 4, the corresponding failure energy release rate is G A, and for a crack length of 

a 3, the corresponding critical energy release rate is G B; they are very close to each 

other whereas, if we had the energy release rate as straight lines, you are having a large 

variation from G c1 to G c4. So, what you gain here is, making the energy release rate as 

a non-linear function leads to approximately the same G c for all crack lengths. So, this 

explains what you would expect in actual practice. 

In actual practice, the material parameter will dictate and material parameter will remain 

same, irrespective of whatever the cracks lengths you have. And when you go to stress 

intensity factor literature, you would have what is known as a fracture toughness which 

is given a symbol K suffix C and fracture toughness for specific thicknesses, or if you 

look at the plane strain fracture toughness, it is considered as a material property and 

constant K C is not objectionable from an engineering point of view because there again 

you will see, if you go for thin panels, the value of K C increases. That is a separate 

aspect, but for that particular panel, if I have several crack lengths, the failure also should 

be dictated by one critical value of K or one critical value of G. That is what is attempted 

here. 
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So, what you will have to look at is the energy release rate also has to be a non-linear 

function. I think I would redo this animation so that you will be able to appreciate how 

the graphs have been drawn. Now, you have the line drawn for the crack a 4. You have a 

non-linear curve which is touching this at this point at this point G equal to R and the 

slopes of G and R curves are matching. So, fracture instability will occur here and now 

we look at for a shorter crack length, and the line is like this. 

So, this shows that you would have a constant value of G for different crack lengths. If 

you recognize G also varies nonlinearly. See, now we have looked at thin plate. We have 

also looked at, earlier, a thick plate. What happens in intermediate plates? See, what you 

will have to keep in mind is we have developed the concept of energy release rate and 

resistance, which has successfully explained how failure occurs in brittle materials, how 

failure occurs in high strength ductile solids. We have seen it for a thin specimen and a 

thick specimen. In intermediate thickness specimens, a very nice phenomenon is 

observed; the phenomenon is called pop-in. 
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And we would see, what is this phenomenon? You observe very carefully and listen very 

carefully. I will do the animation again. So, this is for an intermediate thickness plate and 

cross section is shown; on the crack face it is shown; so, watch what happens. This is the 

initial crack front and you have the load versus displacement; make neat sketches of this; 

you do not have to worry about three-dimensional representation; you will have to make 

this graph as well as what happens on the crack front (Refer Slide Time: 13:08). 

And also listen very carefully. I would repeat the animation. Have you heard a click 

sound? You know, what you find is the crack as advanced as a thumbnail and this is 

observed in intermediate thick plates, and we need to find an explanation whether such a 

thing is possible with our understanding of G and R. 



(Refer Slide Time: 14:09) 

 

I would repeat the animation. You listen again carefully. Suddenly it jumps and stops 

there. It does not proceed further. The crack stops that it does not proceed further and 

you could see the enlarge picture of the thumbnail crack; that is what you see here. 

 (Refer Slide Time: 14:24) 

 

In fracture toughness experiment, what you do is you measure what is known as crack 

mouth opening displacement. You would measure the displacement in these two faces 

(Refer Slide Time: 14:36). 



So, in such a graph, you will have a step here (Refer Slide Time: 14:42) and then you 

have a methodology, how to find out the load at which the crack has initiated; that will 

be done. Again I will repeat the animation; have a look at it and also sketch it; it is very 

important how the graph look looks like P versus CMOD. 

So, this is an experimentally observed phenomenon and if you look at, this is an 

animation; so, the click sound is loud enough for you to hear; it is very small magnitude 

sound. And in fact, in one of the nondestructive testing technique called as acoustic 

emission, they capture this sound. So, when you have a structure, when crack advances, 

these small sounds would be captured by the probe and they would be in a position to 

locate where the crack is in this structure, what orientation, what length, so on and so 

forth. So, new branch of nondestructive methodology in monitoring cracks has grown, 

but it is very difficult to process the data also because it is like searching a needle in a 

hay stack because you could have noise from various sources. So, you find engineers 

have successfully found out what kind of an approach they should use for data 

processing. 

So, what is interesting is, if you find any small clue, engineers are ready to exploit it to 

the extent possible. Now, our concern is, we have seen what is pop-in and it is also used 

in one of the nondestructive testing methodology, and we should be able to explain it 

from the point of view of R curve concept. 

(Refer Slide Time: 16:44) 

 



So, if we do that, it would give us a confidence that we are proceeding in the right 

direction. So, this is what happens and this could be easily explained. So, what you find 

here is, look at the shape of the R curve; see, in the case of brittle materials, we had R as 

constant because it is only the surface energy which is really causing the resistance; so, it 

remained constant and you were able to explain, when G equal to R, fracture not only 

initiates but it is also an instability. 

When you go for a plane strain specimen, you had a shallow R; when we went for a 

plane stress specimen, you had a steep R; when you go for an intermediate thickness 

specimen, you could have the R such that you have a horizontal phase and then the curve 

starts. So, what happens is the fracture will initiate and it will jump. So, this is what 

happens. So, with the R curve concept, we are in a position to explain what is observed 

in actual practice. So, that means we are in the right direction. We have been able to see 

for thin specimens, thick specimens as well as intermediate specimens. 

I would again repeat the animation just for your clarity. So, this is what happens (Refer 

Slide Time: 18:20). So, when the stress level is increased, fracture instability will follow. 

So, this is another example which shows we are on the right direction. This brings to our 

conclusion, all the concept that we wanted to look at in an energy release rate. You 

would come back to this chapter after developing crack tips, stress and displacement 

fields because we need to find out an identity between stress intensity factors in energy 

release rate. 

And we have also said, whatever the calculation of energy release rate we have done for 

the infinite plate with a certain crack is only approximate because we have directly taken 

the value or looked at the analogy. We have not actually derived it. We will do that 

derivation at that time. 
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Now, what we will look at is, we have looked at in the last class, a problem for which 

you need to bring specimens and see, in a multiple crack scenario, how the specimen 

behaves? Let us look at the specimen first and the specimen was something like this. 

What you had was, you had a thin strip of paper because it is easy far us to bring it as a 

specimen and you had one central crack. This is shown as a thick line just for clarity.  

Crack will be invisible and you have edge cracks far away from the central crack and 

these are shown as a equal to 8.5 millimeter; they total to 17 millimeter less than the 

central crack. But what I had asked to you was I had asked you to bring 3 specimens: one 

specimen will have the edge crack of the size of 9.5 millimeter, totally 19 millimeter; 

that is, the edge cracks, if you add them together, it is longer than longer than the central 

crack; then, you had another specimen with 9 millimeter; if you add them, the length of 

the crack is same as a central crack; the third case is the double edge crack; total length is 

shorter than the central crack. 

Now, we will take up the specimen with 9.5 millimeter double edge crack. I would like 

you to take the specimen and insert the pencil and carefully load it. Carefully load it and 

I would like to see, how the failure occurs. Are you all ready? Now, I think you keep the 

specimen straight and apply it uniformly; apply the load uniformly. Fine. I think you can 

you can take the specimen now. We just break the specimen; break the specimen; break 

the specimen. Can you tell me how many people have got the double edge crack failed? 



Raise your hands. So, I find 1, 2, 3, 4, 5, 6; so, it is obvious because in this example, we 

had the longest crack was the double edge crack. And some people have not got the 

result as double edge crack mainly because you know you are doing the experiment with 

hand and you may not be in a position to apply the load uniformly.  

See, in experiment, you have to be very careful at every stage of making the specimen. 

You cannot be less alert while making the crack and be very careful in applying the load 

because when you are making the crack itself, you should have taken a very sharp blade 

and then make it very very carefully because crack-tip is very important. Later on, we are 

going to see if crack-tip blunts, it is helpful in fracture mechanics. That is what has 

happened to them because if the crack tip is not made properly, the specimen behavior 

would be different. So, it is obvious to expect, when I have double edge crack longer 

than the central crack, fracture would initiate there.  

Now, let us look at the second specimen. Please take the second specimen where the 

center crack and some of the double edge cracks are of equal magnitudes. Now, hold 

them straight, or if you are fine, you can apply uniform load horizontally; try that; it is all 

trial and error; Fine. And then, you would report which crack has broken. Can you raise 

the hands where the double edge crack has broken? How many of you have got it? 1, 2, 

3; out of 6 or 7 students, 3 have got specimens broken; others, they have not been able to 

break; double edge crack or center crack? Double edge. And what about any one has got 

the center crack breaking? Fine. 

So, that kind of scatter should be there. Then only you are doing a proper 

experimentation. In fact, by enlarge if you look at even in this case, it is only the double 

edge crack has got separated first. So, at this stage, you can understand one thing. Even 

though we have multiple cracks in a structure, it is the crack that is critical, is going to 

affect the performance of the structure. So, we are justified in taking a single crack and 

develop our mathematics so that we understand what happens in the presence of a crack. 

Now, we will take up the last specimen. Unless you have made the specimen very, very 

carefully and also applied the load very carefully, the specimen will not behave the way 

it should behave. 
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So, let me see, we start breaking the specimen; start breaking the specimen where have 

you got the specimen broke? That is good. So, which one? How many have got the 

central crack? How many have got the double edge crack? Central crack - you raise your 

hands; so, I have 1, 2, 3, 4; double edge crack - 1, 2, 3. So, that means only three students 

have got very good specimen made for this case. See, later on, we are going to have 

methodologies to calculate the stress intensity factor. And if you look at, these are all 

finite specimens; I have not supplied the batch of paper to them; each one had brought 

their own quality of paper; so, there would be variation and specimens were made by 

individual students.  

There could also be variation and unless you perform the experiment carefully, even in 

this case, only the double edge crack would fail because the stress intensity factor would 

be slightly larger than the central crack. So, when I keep increasing the load, the stress 

intensity factor would become critical at the double edge crack. So, common sense fails.  

What you find is, a crack can be shorter physically, but what configuration it is available 

on the actual structure also matters. And this also gives you a comfort that even though I 

have multiple cracks, if they are far away, we have already seen another example; we 

have seen several cracks in a pressurized thick cylinder; there also we found there is no 

major interaction even when they were few millimeters away. So, we are justified in 



learning fracture mechanics for a single crack, for us to develop the mathematics 

comfortably. 

And now, what we will do is, before we get into the chapter on the crack-tip stress in 

displacement fields, it is better that we review concepts in strength of materials as well as 

theory of elasticity and get into the solution for the crack-tip stress fields. 
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Now, let us look at what we have learnt in strength of materials. Every statement here is 

important. First thing what you get is, you get what is known as closed form solution for 

simple problems. And what is the closed form solution? You get the values of stress 

magnitudes at every point in the domain. That is how you have got a solution. 

Suppose I take a tension strip. The problem is so simple, away from the points of 

loading, you get the normal stresses, sigma is constant everywhere. If the cross section is 

constant, if the load is uniform, then it is constant everywhere. So, at any xy position, 

you have the answer from the solution. Similarly, when you go for bending, away from 

the points of loading, if you look at the central zone, you will be in a position to get what 

is the variation of stress over the depth of the beam. 

If I specify any value of x y z, here, not x y z, only x y, I would be in a position to find 

out the complete magnitudes of stresses. No problem. For all that, what is the kind of 

assumption that you have done? A very important assumption you make in strength of 



materials; you make an assumption that plane sections remain plane before and after 

loading. And what I have achieved out of it? 

See, if you look at the whole course of strength of materials, you avoid solving 

differential equations. It is a first level course in solid mechanics. You are able to avoid 

solving differential equations by making a very important assumption about the 

displacements. Plane sections remain plane before and after loading. And what you have 

done? You have been able to solve problems related to slender members, and when you 

have looked at the slender members, you have also carefully looked at what kind of 

problems you would solve. 

You have evaluated stress field in a beam under pure bending or torsion of a circular 

shaft. See, I have brought this specimen; this is rectangular; I can also twist it. But you 

do not solve a twisting of a rectangular shaft in a first level course; you postponed it. 

You never even asked a question when you were learning torsion, why I am not 

considering torsion of a rectangular shaft? 

(Refer Slide Time: 31:01) 

 

Suppose I take it and then bend it, you can look at it; if you look at very closely here if 

when I bend it, you would be able to see how the lines (Refer Slide Time: 30:24), the 

lines they remain vertical. They get rotated; the plane sections remain plane; they do not 

change; they just do not change. So, that is the advantage in the case of strength of 



materials. You have made this important assumption and you are very careful in 

selecting the kind of cross section; that also help in solving your problem. And many 

may not know that the cross section of the beam does not remain in one plane, even for a 

cantilever beam with an end load. What is the difference? 

See, when I say beam under pure bending, if you really go back and see your strength of 

material course development, you would have developed the flexure formula only for the 

case of a beam under fore point bending, which is giving only constant bending moment 

in the length of the beam, for which you want to find out the stresses. The moment I go 

to a cantilever, when I have an edge load, what happens? You have the bending moment 

varies along the length, but the shear force remains constant. 

So, what you are having is you are having bending as well as shear and this is the 

simplest beam that you come across in many applications. And what you have done? 

You have used only flexure of formula for this also. You never questioned, you have not 

derived your equations for this, but you have still utilized flexure formula thinking the 

formula is fully applicable. How this was applicable and what way the sections change 

when you have shear? We will have a look at it. 
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Now I am having a section of a rectangular beam and I have taken two sections for 

illustration and we are going to look at what way the plane sections change because of 



shear. This is subjected to shear loading like this, and mind you, the shear loading is 

constant; I am only looking at constant shear loading. Try to make a sketch of it because 

you have a feeling that you have learnt strength of materials very well. There are certain 

issues which you have not focused. 

When I am developing a course in fracture mechanics, I am pointing out then and there, 

what is a kind of solution development? What are all the difficulties people have pointed 

out? How these difficulties were addressed? In fact, when we look at crack-tips, stress 

and displacement fields, even on the boundary condition, we are going to have an 

elaborate discussion. So, when we want to do that, let us look at in strength of materials, 

have we understood all aspects of it? You make an assumption in strength of materials 

plane sections remain plane before and after loading. That is violated even when I have a 

constant shear. How does this appear? When I have constant shear, you have these lines 

changed. It is not a straight line; it is a curve; this is a curve. 

So, what you find is, your assumption is no longer valid in the case of even a simple 

situation of constant shear. How are we justified in utilizing that result? There is a 

comfort. Engineers always work like that; they will develop a solution and try to apply 

the practical problems and then bring in correction factors, if they are necessary. 

If you are unable to solve the problem in all its totality by your analytical methodology, 

correction factors really help. In fact, when you are looking at design of a spare gear 

tooth that is consider as a cantilever beam and you would have done something like a 

Louie factor; that factor accommodates these kinds of issues; you may not be aware of it. 

So, in actual solution, you assume plane sections remain plane, but in reality, it is a 

curve. 

We will again look at this animation. It was originally like this (Refer Slide Time: 

32:25), then after the shear force is applied, you find that the sections have deformed like 

this. And if you look at the distance between two lines - two blue lines and two brown 

lines, they would remain same. See, whatever the effect of shear is not affecting the cross 

section. So, the shear and bending are decoupled; they are coupled. So, that is why when 

you want to calculate the bending stress, you still use the flexure formula.  



The flexure formula is valid as long as you have constant shear, if it is a variable shear 

force along the length of the beam which is happening in many practical situations, when 

your analysis is only approximate; please make a note of it; it is very important . 
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And that is what is summarized here: the deformations due to shear loading become 

significant only in deep beams. So, in deep beams, you accommodate that. So, usually 

this effect is ignored in a course on strength of materials. But if you look at good books, 

the term, the strength of materials analysis of beams subjected to both bending and shear 

as engineering analysis of beams is no longer called as analysis of beams; the moment 

you bring in engineering, you also understand there are approximations. So, you are 

looking at the approximations. So, without approximations, there is no engineering. So, 

this explains, even in simple bending, how we have compromised in the case of strength 

of materials. 

Now, before I take up theory of elasticity, I would like to answer a common question 

raised by many students. In the first assignment sheet, we had a review of solid 

mechanics, and one of the problems asked was - what is the definition of a free surface? 

The concept of free surface is very important both for numerical studies as well as 

experimental studies. Even for analytical development, you should know how to specify 

the boundary condition carefully and we would look at that. You know, what you will 



have to look at is, we have learnt a stress tensor; what is the utility of stress tensor? 

Stress tensor provides totality of the stress vectors at a point of interest. 

When you go to a more circle, every point at the boundary of the more circle identifies 

particular plane passing through the point of interest. What is actually fundamental is 

you want to know the stress vector on all the possible planes passing through point of 

interest. Stress tensor is only a via media. But we have focused so much on stress tensor; 

we forget the importance of stress vector. 

So, that is the reason why I said you have to go back and look at stress vector more 

closely.  
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Suppose I have a stress tensor, how to find out the stress vector? Because I am going to 

find out stress vector on a plane of my choice and that is what is given here: If n is the 

outward normal of a surface, then the stress vector on that plane is what we want to find. 

I know the stress tensor at the point of interest. Can anyone recall what you have done in 

the course? It is nothing but your Cauchy's formula; as simple as that. 

So, you have the symbolism. I have the stress vector on plane n is nothing but stress 

tensor multiplied by the direction cosines defining the outward normal of the plane. And 

before we look at from a solving an example, we would just make a statement, what is a 

definition of free surface. 



On a free surface, stress tensor need not be 0, but stress vector is necessarily 0. In fact, in 

many of your problems like simple tension, bending, or torsion, you had free surfaces. 

So, some stress component may exist. That is a reason. When you are writing the 

boundary condition, you would be trained to see if it is a free surface; you cannot say 

everything is 0 there. So, what is said here is stress vector is necessarily 0; stress tensor 

need not be 0; that is what is mentioned here. We have to qualify the statement. We 

would go and qualify the statement. We will also look at other issues. So, when I say like 

this, mathematically I would write it like this - T n equal to 0. So, that is the 

mathematical definition of a free surface.  

And another important aspect is, what is the direction of this vector? See, when you take 

a surface, the surface may have outward normal like this, but stress vector can be at any 

angle; it need not coincide with an outward normal direction. And at a point of interest, 

you will have infinite planes passing through it; one of the planes may be a free surface. 

Suppose you are taking a point on a boundary of the specimen and it happens to be a free 

surface, you would be able to identify a plane that is defined as free, but you may have 

stresses on all other possible planes. So, in all other possible planes, you will have a 

direction of the stress vector. And what you have? Another important result is - the stress 

vector direction on a free surface can at best be tangential to the surface; this is another 

property. This you can go and verify.  

I am going to take up one example problem which all of you know. We would qualify all 

these statements because this understanding is very fundamental and it is important. And 

another statement is stress vector cannot cross the free boundary. So, if I have a free 

boundary, if I find in any one of the planes passing through the point of interest, the 

stress vector, that direction cannot cross a free boundary. See, if you have looked at the 

development of shear, you would have learnt shear cannot cross a free body. That is the 

reason why you have on the top and bottom surfaces of the beam under bending, shear is 

0. So, shear cannot cross a free boundary is only a particular case of a generic result; that 

is, stress vector cannot cross the free boundary. 
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Now, what we will do is, we will take up a simple problem of a tension strip. I have 

taken (( )) to show the loading like this. I have not shown this as a uniform loading 

because I want to draw your attention that this is a free outward corner and this is where 

I have applied the load. And what happens to this surface (Refer Slide Time: 43:36)? 

This is a free surface, this is also a free surface, because I have applied load only here. I 

have put a pin here and I am pulling a load. So, at distances away, because of sign may 

not principle you will have the uniform stress solution. 

Now, you take a point B somewhere on the free surface and you also imagine that I have 

x axis as horizontal and y axis as vertical. And first of all, we have to find out what is the 

stress tensor. And when I want to write the stress tensor, I will fill in all the nine 

components; it is a good practice to do that; it is a good practice to write the stress tensor 

in all its completeness and since I have considered this as a y direction, I would have 

some magnitude. If I know the cross section, I can find out that the stress magnitude in 

the y direction, sigma y is a. 

No other stress component exists, because the problem is very simple one and this is 

again a close form solution. This is the case at every point in the domain, away from the 

points of loading because near the points of loading, there will be deviations. You could 

obtain that only from theory of elasticity, if at all the problem is solvable; otherwise, you 

have to go for a numerical and experimental analysis. 



Now, I know the stress tensor and you also know that this surface is a free surface. So, 

free surface is defined by outward normal and that normal also we can find out. That is 

given as n 1 and the direction cosines are very simple to write. The direction cosine is 

nothing but 1 0 0. Now, I can find out what is the stress vector on plane n 1 because I 

define plane n 1 as the free surface. 

So, I have the calculate T n 1, and when I do this, T n 1 goes to 0. So, we have indirectly 

proved, the mathematical definition of a free surface is T n equal to 0. In this particular 

case, the plane is n 1; so, T n 1 equal to 0. So, that is what you get from your Cauchy's 

formula and in an expanded form this is done. This you could go and verify you could 

also go and verify on this surface that it is a free surface; you could go and verify. And 

we would see another interesting problem; I have taken a corner here. 

(Refer Slide Time: 46:41) 

 

I will show another interesting picture. I have a protrusion that is out of the specimen. 

See, without performing a stress analysis, I want you to tell me, what is the value of 

stress at the corner. You can only make guess work. See, you will not be able to 

convincingly say, this is so. What I am going to do is, if I know what happens to the 

stress vector, if I understand what is a free surface, if I also understand what is the 

direction of stress vector on all the possible planes passing through the point of interest, I 

would be able to answer this question convincingly. 



So, what you have here is, I have to look at what happens at point A, and mind you, this 

is a very sharp corner. It is a very sharp corner; there is no curvature there; that is very 

important. If there is curvature, the discussion is not valid. So, what you find here is, this 

is a free surface defined by outward normally n 1; this is a free surface defined by 

outward normal n 2 (Refer Slide Time: 48:07). 

Suppose I have on this point A, if I consider point A forming the surface n 1, the stress 

vector would be along this direction. Suppose I consider point A belonging to surface n 

2, the stress vector would be on this direction. So, this leads to a contradiction. How the 

contradiction can be resolved? The contradiction can be resolved only when stress tensor 

is 0. So, at the corner point, stress vector can be 0, only if stress tensor is also 0. So, you 

get a very important result. See, without performing stress analysis, you can go and say - 

now this is an outward corner. The same discussion you can do for corner 1, corner 2, 

corner 3, corner 4 - all of these corners’ stress tensor is also 0. Stress vector is 0, stress 

tensor is also 0. And it is a very useful property when you do an experiment by photo 

elasticity because we would start the zeroth fringe order from there. 

Now, if you look at, I have the instead of the protrusion, if I have a material removed 

here like a v groove, then this corner becomes singular. You will have very high stresses; 

they are called reentrant corners. When you are doing a course on fracture mechanics, 

you should also know about reentrant corners. In fact William’s Eigenvalue solution was 

meant for that kind of a v groove when it is protruding out; when it is having a free 

surface, it is 0; when it is inside is totally different. 

In this class, we have looked at the further concepts in energy release rate. We have been 

able to show convincingly, how to explain the phenomenon of pop-in that is observed in 

intermediate thick plates. Then we moved on to performing an experiment which showed  

among the multiple cracks, it is the critical crack that we have to pay attention; length of 

the crack is not the definition of identifying its criticality; its configuration is also very 

important. Then, we took up review of strength of materials followed by what is a 

definition of a free surface and its utility for getting quick results in certain situations. 

Thank you. 


