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Hello everyone, I am Aditya Bandopadhyay and welcome to the 6th lecture, in which we are

going to study system of Non-linear equations and Newton’s basins of attraction, ok. So, first

let us try to motivate, how systems of non-linear equations can arise in your studies.

So, consider you are a chemical engineer and you are interested in a particular reaction. So,

you have a tube like this and benzene that is C 6 H 12, C 6 H 6 rather; it comes in at a certain

temperature.  So,  it  comes  in  at  1400 Fahrenheit  and it  undergoes  various  decomposition

reactions. So, the first reaction that it undergoes is C 6 H 6, it decomposes to C 12 H 10 plus

H 2; then C 2 C 6 H 6 plus C 12 H 10 they react to give C 18 H 14 and H 2. So, this is called

as biphenyl and this is called as triphenyl.

So, benzene it decomposes into a mixture actually of benzene into a mixture of biphenyl,

triphenyl and hydrogen; these are the different products as a result of thermal decomposition.

So, now let us try to write down the various reactions. So, we have two equations. So, let this

be r 1 and this, this be r 2. 



So, r 1 is the rate at which benzene decomposes and it is equal to some constant times an

Arrhenius factor, it looks something like this. So, it is Arrhenius factor which depends on

temperature times the partial pressure of benzene square minus partial pressure of diphenyl,

partial pressure of H 2 divided by K 1.

Similarly, r 2 that is the rate of decomposition of benzene through this reaction ok; this is

equal to some other constant. So, let me call this K 1. So, this is K 2 times exponential of

some another Arrhenius term actually times. So, this will be P hydrogen or rather the forward

reaction will be P benzene P diphenyl minus P triphenyl times P hydrogen divided by k 2;

this is how the reactions they look like. So, let us say that there are. So, let us consider only

the mole fractions, ok.
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So, considering that one mole fraction of benzene enters into the system. So, if x 1 moles of

biphenyl and x, ok. So, suppose x 1 moles react from here and x 2 moles react from here. So,

the moles of benzene, the mole fraction of benzene that will remain will be 1 – x1-x2 that of

biphenyl will be a *x1 / 2. 

So, let us balance this reaction. So, there will be 2 over here. So, one mole of benzene would

decompose into half a mole of biphenyl. So, that is why this x1/2 occurs and eventually x2

moles of benzene would react with biphenyl.



So, x1-x2; this will be instead of a, it will be 1. So, these are the mole fractions of benzene

that remain; these are the mole fractions of biphenyl. So, triphenyl you get x2 moles, ok. So,

triphenyl will be x2 and hydrogen will be. So, over here it will be x1 upon 2, so hydrogen it

will be x1 /2 + x2.

(Refer Slide Time: 05:43)

So,  then  at  equilibrium  what  will  happen  is,  the  reaction  rates  will  become  0.  So,  at

equilibrium r1 =0 and r2 =0 and this implies Pb^2 = Pd *Ph/K1. 
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Similarly, Pb *Pd will be equal to Pt*Ph/K2, alright. So, this implies that. So, we make use of

the  fact  that  the  partial  pressure  of  benzene,  diphenyl,  hydrogen  and  triphenyl  will  be

proportional to the mole fraction, ok.

So, this square will be proportional to (1-x1-x2 )^2 and this will be equal to (x1/2-x2 )*Ph

where Ph will  be (x1/ 2 + x2)/k1. And the next reaction it  will  be Pb, so that  is partial

pressure of benzene times Pd. So, that will be equal to x1/2-x2 and this will be equal to x2

multiplied by the partial pressure of hydrogen and all this divided by K2.

So, in order to find out how many moles in equilibrium that we will get, we need to solve this

equation and this equation simultaneously. I am solving that simultaneously, requires you to

solve this nasty looking non-linear equation. So, that is how these equations are quite relevant

to any studies which involve a bunch of chemical reactions, sequence of chemical reactions,

ok.

So, in fact let us proceed. So, let me execute this first cell; this first cell is something which is

going to be common and so we are not going to sweat it a lot. So, it is import numpy and

import matplotlib and update the r c Params of matplotlib and the inline rendering to be s v g,

so that the plots in Jupiter Lab they look much better. So, let me execute this. So, let us try to

solve the equation, the system of equation. 
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So, let me write it down. So, it will be x*e^(x+y) -2 and xy-0.1*e^(-y). So, this could be a

model for some set of reactions as well.

(Refer Slide Time: 09:15)

But essentially we want to find out the roots of this, so both will be equal to 0, ok. Let us first

make use of the library functions in python and later on we will see how we can encode this

and we will try to see how we can get some insight, when we write the code ours self, ok. So,

let us import scipy.optimize as sco, ok. Let us define the functions.

So, define system of sysfunc, it will take as an input x. So, here x will be a vector and that

vector  will  comprise of x[0] and x[1], ok. Whenever we are doing sequence of series of

equations, we will give as an input x; but here x will not be a scalar, rather x will be a vector

and the vector components will be x[0] and x[1], because the indexing in python starts with 1

with 0 ok, that is the same with c as well.

So, now we must return an array ok, you must return an array. So, the first element of the

array will be this x[0]*np.exp^(x[0] + x[1]); because y =x[1] and x[0]=x. So, over here this is

equal to x and this is equal to y ok; this is something which we will keep in mind. Apart from

this it will return the second set of equation as well, which is x[0]*x[1]- 0.1 *np.exp(-x[1]),

alright.

So, once we have this, let us say sol= sco.fsolve; we will pass the function handle that is

sysfunc and we will give some guess values. So, the guess values will be in this case (1,1),



ok. So, let me execute this. So, these are runtime error it says, the number of calls to the

function has exceeded 60, ok. So, let us see whether we have input something incorrectly; we

have forgotten to put - 2 over here.
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So,  there  was  an  offset  and  once  I  added  the  correct  equation;  I  have  forgotten;  I  had

forgotten to write this - 2 anyway. So, it executes, let us see what, let us print out what sol is.

So, print sol, let us print out. So, sol = 0.8021 whatever it is and 0.111. So, we can verify

whether this is the solution by substituting this array into system of equations, ok. So, let us

find out.
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So, xsol ,ysol =sys or return value of x[0]; return value of equation 1 return value of equation

2 equal to sysfunc of sol. Let us print what the return values are re1 ,re2. So, it is 10^(-15).

So, obviously whatever we have over here is a solution of the system of non-linear equations.

So, this is how you can sort of pass on the function handle to the f solve solver, which is

inside the sub module optimize of scipy; it is a very easy thing to do. But now let us try to

encode this particular program our self. So, we will do it using a fixed point iteration and let

us first devise how we can form this particular fixed point iteration. 
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So, over here, we have x*e^(x+ y)=2 and the other is x*y=0.1e^(-y). So, the first equation

that we can form is x =2/e^( x +y) and the second equation will be y =0.1e^(-y)/x. So, this

seems like a fair approximation. So, let us define, ok. So, let us define the right hand side of

this particular function. So, let us define gx(x); let us just call it g, ok. So, it will return two

values.

So, the first will be 2*np.exp(x); so –2*np.exp(-(x0+x1)), ok. So, this is the first value that

we will return; second value will be 0.1/x[0]*np.exp(-x[1]). So, these will be the two return

values, ok. So, we are done with the function; before trying to solve all this, let us first plot

the two functions.

So, how can we plot these two functions? So, keep in mind, these are not explicit functions;

these are rather implicit functions ok, we want to find out say the root of this. Essentially

there will be some curve which will be defined by this equation; let us say it is this curve,

some curve which will be which will be defined by this equation and wherever they intersect

that is the root.

But let us first try to plot these things; but because they are not explicit functions on their

own, you must find out an implicit way of plotting it, ok. This is something which is quite

useful and it will be quite useful for many other works. Let us define x = np.linspace(0,1) and

y=np.linspace(0,1).  Then  what  we  will  do  is,  we  will  define  the  mesh  grid.  So,  [X,Y]

=np.meshgrid(x,y).
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So, what it does is, if we have a linspace like this; so suppose this is x ok, these are all values

of x and we have a array like this. So, these are all the values in y. So, the mesh grid; so

capital X and capital Y will contain all the inside intersection points ok, it will contain all the

inside intersection points. 

So,  this  is  what  all  the  inside  intersection  points  will  be  assigned  to  x.  So,  all  the  x

coordinates of all these points will be inside capital X and all the y coordinates of all these

intersection points will be in capital Y. So, in fact let me just run this much and show you

what x and y are.

So, look, across as we move along columns, the x increases; but as we move along rows, the

x does not change. So, it means that when you move along rows, it has the same x value. But

if we if we print y, we will see that as we move along rows the y value will change; but as we

move along columns, the x value remains, the y value remains constant. 
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So, I hope this gives you an idea of what a meshgrid structure looks like. So, it gives you an

output x and y. Let me delete this cell. So, once we are done with this, we will try to create an

implicit  function of these two things; meaning we will create a level set, this is called as

creating a level set.
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So, let me create the first level set, it will be clear what it means. So, F1 = X *np.exp(X+Y)-2

F2 =X *Y-0.1 *np.exp(-Y). So, these are two levels, ok. So, capital F and capital Y are two

functions.

 So, depending on the value of F. So, suppose F were to be 0; if F were to be 0, if I try to plot

the iso line of F1, where all the points along this curve correspond to F1 = 0. So, this is an iso

line, along this curve all the values of F1 will be 0. And if all the values of F1 are 0 along this

iso  line;  it  means  that  it  is  the  curve  that  we  are  looking  for.  So,  you  do  an  implicit

declaration all over the mesh and try to find the iso line of that particular level set, F1 is

called as a level set function.

Similarly, we will have another level set function say like this. So, this will be the iso line of

all the points on the curve, where F2 = 0, ok. So, let us do that; let us do the iso line. So, the

way to do it is; plt . contour. So, X ,Y,F1; if I simply do this contour, it will give me a family

of curves for F1.
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It will give me a family of curves for F1; meaning I will have all the different family of

curves for different values of F1. So, this iso line is for some particular value of F1, this iso

line is for some particular value of F1 and so on; but I am more interested in finding out the

iso line for F1 when it is 0.
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 So, by specifying that I only want that iso line, I can plot only that single curve, alright.
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Similarly, I would like to find out the iso line of X,Y,F2 and the 0 curve, alright. So, over

here the intersection point is very close to 0.8 and the that is fair enough; the first intersection

point was in fact near 0.8 and the y value is 0.11. 

Let us see great, the y value also seems to be something close to 0.11. So, the intersection of

these two curves in the plane gives us the root; the root is the pair x y where the two curves

intersect, alright. Let us now write down the fixed point iterations as we have defined over

here, excellent.
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So, let us define the number of iterations. So, Niter=100; let us say x, let us define x=np.zeros

and over here the size we have to specify. So, it will be (Niter,2). So, we will have Niter

number of rows and 2 columns ok; we will save each pair inside this. We will declare x[0,:]

as the initial guess point; so initial guess point is suppose [1,1].

So, by doing this, we are setting the first row to be equal to the guess value. So, we have

defined a bunch of zeros. So, at this moment this is x, ok. In fact, let me execute this and

show you. So, let me execute this and show you what x is; let me go to a next cell and print

out x. 
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So, all the rows are zero; but we have assigned the guess value to the first row. And we will

try to successively loop over all rows and try to iterate over various values, like the 1 D case

as well.

We chose the guess value and then we iterated;  we made successive corrections to those

values and find found out the root,  ok.  So, this  is how it  looks like;  let  me remove this

particular cell, we do not need it, alright.
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So, we have defined the guess values, we will defined count=1 for i in np.arange(1,Niter); we

will say x[count,:]=g(x[count -1,:]), ok. We are selecting one entire row, passing it to the g

function that we have defined earlier, ok.

So,  essentially  in  the very first  loop 1,1 gets  passed to  this  function,  the  return value is

assigned to this. So, once we are done with this computation, we have to update count. So,

count will become count +1, ok. 

Let me execute this and in the end on top of this plot, let us do plt.plot. So, we must plot all

the x y values, ok. So, x the first entire row contains all the x iterates and x the second entire;

the first column contains all the values of x, basically this will have some values, in fact let

me print out what x is to show you.
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So, print x, alright. So, the first column it contains all the iterations that have happened to the

values of x; the second column contains all the iterations that have happened to the value of

y. So, when we plot these points; this is the x coordinate, this is the y coordinate. So, we must

plot  all  the  columns  which  are  corresponding  to  x  and  all  the  columns  which  are

corresponding to y.
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So, we must do over here, all rows of the 0th column x all rows of the 1st column. So, this

particular splicing we have discussed it in the very previous lecture, this is called as splicing.

So, just giving a colon(:  ) means, it  is selecting all the rows, comma 0 means of the 0th

column; similarly over here all the rows comma first column. And let us mark them by a

black something like this by black markers.
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Let us set the line width to be equal to 1; let us see what happens, ok. So, we have started our

guess over here; this point corresponds to 1 ,1. At the end of the first iteration, it has swung to



this point; second iteration swung to this point, third over here, ok. So, it is zigzagging its

way towards the final root, alright.

So, we see this is the nature of convergence for a system of equations, ok. You can try this

out for a variety of system of equations; you have the basic outline of the program with you,

try to go wild with it. So, one little point that I would like to impress over here is a small

subtlety; actually we are returning over here a list, this particular thing in python is a list.

Ideally you would like to cast it to a numpy array before passing it out of a list. 
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So, rather than having this return value,  we rather do it np.array of this  entire thing. So,

before returning it from the function, it would convert it to a numpy array nothing else, it

does not change anything; but instead of returning a list, it would return a numpy array. And

lists in python have very weird behavior, very syntactically different behavior than numpy

arrays, ok.

So, we have this solution; I had written down something over here, this was the initial the

original equation. And we can modify the sequence to sort of dampen out the oscillations. So,

how to dampen out the oscillations? So, let us update the value of x partially with the old

value of x itself and partially with the new value that we found out using the g function, ok.



So, let me do this, let me do x[count-1,:]plus this. Let me multiply it by a factor say, suppose

0.2 and correspondingly let me multiply this by the 1 minus that factor. So, it is essentially a

weighted sum of these two terms; let us see what happens. 
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Because the number of the oscillations have died down quite quickly. So, damping the update

value allows us to reduce oscillations; in fact let me do this 0.3, 0.7.

(Refer Slide Time: 28:54)

The oscillations have dampened down even further; they are converging to the root quite fast.
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Let me do this, ok. So, it is converging rather fast. So, this is how you can take a weighted

sum between the old value and the new value, alright. 
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So, have a go at this; try to figure out why the behavior changes like this. Try to apply your

mind to it, try to find out the mathematics behind it, ok.
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So, let us proceed to Newton’s, Newton Raphson iteration are. So, what is the idea behind the

Newton  Raphson  iteration?  So,  we  have  a  f(x).  So,  suppose  we  write  f  (x)  in  the

neighborhood of a point x0.  So, we have f(x0) +df/dx|x0 *(x-x0) – x0+d^2f/dx^2|x0*(x-

x0)^2/2! and so on.



So, now, when we approach the root; when we approach the root for the non-linear equation

the; so basically we are trying to solve this particular equation. So, we have made a guess

point around the root. So, if f x is a root, so we will have 0 is equal to f(x0) +f’(x0)*(x-x0).

So, now if we rearrange this, we can find out an expression for the root. So, we have -f(x0)

/f’(x0)+x0 and this will be equal to x; I have just rearranged all of this. So, then x at the kth

iteration or rather x at the (k+1)th iteration will be equal to x[k] -f/f’. So, f and f’are both

evaluated at the kth iteration.

So, this gives us a very easy way of sort of trying to find out a root with an initial guess and

like I have shown in the previous lecture; you would also need to supply the derivative of x to

the function. But in this lecture, we are going to write it down our self; because later on we

are going to use certain divergent properties as well to make an entire phase plot. So, it is

worth our time to writing it down and it is a really simple code, it is this is the code; it is just

one update, ok.

So, let us go over here, let me write down what we are trying to do; Newton Raphson method

implementation ok, we have moved ahead of fixed point iterations, ok. So, let us define the

function. So, let us make a simple function. So, let the function be 1 – x^2. So, we want to

find out the roots; so obviously the roots are +1 and -1. 

So, let us go over here, let us define f which takes an input x and the return value will be 1 –

x^2. Let us also define dfdx; it takes an input x and let us return -2*x, fine. Let us define the x

array. So, x array will be np.linspace(-2,2), y array will be f(x). Let us plot this, ok. 
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So, this is the plot quite obviously. So, now, let us do, let us write down the Newton Raphson

iterations on top of this.
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So,  let  us  define  Niter  as  10,  let  us  say  the  guess  value  is  0.3,  alright.  For  i  in

np.arange(0,Niter); let us do x=x -f (x) /dfdx(x) that is it. I mean if we print out the values of

x. So, print x; so this gives us the values it goes through. So, first point is 0.3, after that it

shifts  to  1.81;  then  1.18 and then it  eventually  converges  to  1,  it  converges  right  rather

quickly to the value of the root, ok.



So, let us try to pictorically also draw this. So, once we have the guess value, what should we

do? I mean what is actually happening graphically; this is you should be able to tell this.
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You should be able to understand what is happening graphically. So, this is the curve, you are

making; suppose this is the guess value. So, essentially you are trying to find out the tangent

over  here;  wherever  this  intersects  the  axis,  this  is  the  function.  So,  then  you  drop  the

function on this; then you make a tangent over here, you end up over here, you drop a vertical

over here, you draw a tangent over here, drop a vertical to the function, tangent and then

something like this happen.

So, let us see, let us try to plot this entire sequence. So, the first point that we will draw is the.

So, the first point is obviously the guess value and f of the guess value. And from that we

draw whatever we have updated comma 0 ok; it says quite simple. So, let us do this. So, let

us plot, so plt. plot. So, the first thing that we will plot or rather let us draw the line directly.

So, the x coordinates. So, let us first draw this particular line, let us draw this line. So, the

coordinate will be xg,0 to xg,f. So, in order to plot, we will first give the x coordinate. So, it

will be x,x; the y coordinates will be 0,f(x), alright. Once the updated value is obtained, let

me save it to x0; let me save the old value in x0.

So, now we will do plt . plot. So, it is going from this old value to the new value. So, this is

the new value,  this  is  the old value ok.  So,  the  x coordinates  will  be xold,  x  and the y



coordinates will be f(x0),0 alright. So, let me make this tangent to be a red line; let me make

the vertical lines to be black lines, alright.
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So, this is how it looks. So, this was the initial guess; we go over here, make a tangent.
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So, let me also draw the x axis. So, this makes things much easier. So, it if this is the guess

value, then you draw a tangent, you drop the vertical onto the curve, draw a tangent, drop the

vertical onto the curve again. So, eventually you converge very quickly to the plot. Let us



change the guess value; let us change the guess value to - 0.3 for example and it obviously

converges to the other root.
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So, it all depends on where you guess, ok. Now, you may think that great, Newton Raphson

iterations they converge for all guess values regardless of what is going on; but obviously,

that  is  incorrect,  it  does  not  converge,  you  need  a  good  guess  value  also.  Not  for  this

particular simple case; you can go ahead and plot, you can go ahead and use this function to

draw a bunch of complicated curves. 

In particular  there is  a very famous case x; so y = x^(1/3).  So,  this  particular  thing,  the

convergence using Newton iterations is quite difficult, ok. I ask you to have a go to this; have

a go on this sometime later on. 
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So, now this is fine; but let us now move on to a slightly more interesting topic, it is called as

basins of attraction. So, we know that if we have a nth order polynomial, there will be m

roots. So, there is a multiplicity of roots, ok. 

So, if we consider just the equation x to the power say x^3=1, suppose this equation. So, what

are the roots? So, immediately you may say x =1 is your root and that is fine x = 1 is indeed a

root; but in the complex plane there are two more roots, ok. So, 1 is e^(2*pi*i); so 2 i pi, ok.

This  is  what  1  is  in  the  complex  plane  ok;  because  e  to  the  power  this  is  cos(2*pi)

+i*sin(2*pi),  ok.  So,  right  over  here  you  see  that  this  is  1,  this  is  0.  So,  this  is  the

representation of 1. 

So, when you take a third root, x becomes e^(2*pi/3*i), so obviously these are some, this has

some coordinates;  I mean in the argand plane that is the complex plane,  there are points

which correspond to this. So, one root is this, one root will be this and one root will be this.

So, there will be three roots; the third root I mean, this is also a solution, ok.

So, you can find out n*pi and then divide and then you get multiplicity of roots. So, this is

something which you might have studied in class 11 or 12. So, now, let us see how we can

represent all this in the complex plane. So, the same technique can also be used to find out the

roots in the complex plane. 
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So, simply Z(k + 1) = Z(k)- f (k)/f’(k). So, it is just a matter of replacing everything by the

complex function, nothing else.

(Refer Slide Time: 41:25)

So, let us do that, let us find out the following. Let us make a general function; let us define

f(z) and it will return 1 – z^2. I mean it is just an easy case, we know that this root will still be

plus - 1, we do not need to worry so much; but I mean depending on what this return value

will be, we will obtain a bunch of complex solutions as well.



Let us define dfdz it will take an input z; let it return -2*z. Let us define the iteration. So,

define iterate or iterf and it will take as an input z that is the initial guess. So, once it enters

with an initial guess Nitermax = 100, count =1, error =1, err_threshold =1e-6.

So, the reason why I am defining an error threshold is because, I am giving a very large

number of iterations; I am giving 100 iterations. So, suppose like in the previous problem; in

the previous problem, we give 10 iterations, but we see that even after 4 iterations it had

converged, right. So, we do not want to waste iterations to keep, to make it keep converging.
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Rather once it reaches a condition where suppose x10 and x11; so the difference between

these two is 1e-6 that is the threshold that we defined. If the difference between these two

falls  below this;  we say  that,  the  convergence  has  happened,  we do not  need  to  iterate

anymore. That is why I define a bound on the error, so that we can break the loop; we do not

need to keep on looping till 100 iterations.

So, the way to do it is, while error is greater than error threshold ok; what should we do? So,

zn will be equal to z – f(z)/dfdz(z). The error that will be calculated will be np.abs(); so we

will find out the relative error, 1 – zn/z, ok. So, it is updating the value of z and also assigning

it to zn, so that we still have the old value z; we are finding out the absolute, the relative error

between z n and z and then we can update z. So, then z equal to zn and we can update count

as well 



 So, once we do this, we can return the value of count; we can return the value of z and count,

ok. So, we will return z ,count. So, not only will we have. Actually so, Niter max does not

make sense, Niter max in this program does not make sense; but we can say if the error is

greater than error threshold and count is less than Niter max.

So, it there can be a case where you are continuously iterating; but you have not reached the

root ok, you will keep on iterating till infinity, but you want the program to stop somewhere.

So,  you say that,  unless  you still  not  reach the  error  threshold;  but  wait  you have  done

sufficiently large number of iterations, so you have to stop somewhere.

So, that is the bit the program bit which will do that. So, it will check these two conditions; if

error is greater than error threshold and the count is less than the maximum iterations, ok. So,

it will return the value of z and the number of iterations it took, ok. So, let me execute this

and see there is no error fine, everything is fine.

So, now let us define the complex plane, this is the complex plane; a point on the complex

plane is x plus i y, ok. So, in that case this will be x = np.linspace(-2,2) let say 100 points, y

=np.linspace(-2,2) and say 100 points, X,Y =np. Meshgrid(x,y).

Then we will define the z matrix as X + 1 j * Y; remember that X and Y are two matrices

which contain all the x coordinates and y coordinates of all the intersection points, then we

assign it to z. So, now, let us define c as just a color array; it will sort of show the number of

iterations it took for each point in that entire grid.

So, np.zeros(np.shape(X)). So, it is going to create a c array. So, corresponding to this entire

grid, we will have a bunch of x values for all of this, a bunch of y values of all of this. 

And for all the points on the grid, we will define a zero array c and eventually that c will

contain the total  number of counts or the total  number of iterations  it  took to reach that

particular threshold that we have defined, alright. So, c is this for i in np.arange(0,np.shape(z)

[0]) its first value; for j in np.arange(0, np.shape(z)[1]) the first value, c[j,]. So, z,c[j,i]=iterf

(z[j,i]).

So, we are looping over all the values in this grid. Note it is j,i, it is not i,j and think about it,

why it  is  that  way ok;  because  the  rows  and  columns  are  swapped.  If  you move along



columns, you are actually incrementing x that is the reason why it is j,i. And I request you to

think about it; unless you think deeply about it, it will never be clear.

So, c[j,i] is equal to. So, you are taking one point on the argand plane,  passing it  to the

function iterf, doing all the iterations, finding out how many iterations it took for a point, for

that particular point to converge to a root; the value of the root will be z. So, once this is

done. In fact, let me print out the value as well.

(Refer Slide Time: 49:18)

So, let me print out z and c [j,i]. And in fact, let me print out the initial or the point in the

argand plane as well,  where we have started. So, it will give us the point where we have

started the converged point and the number of iterations it took. Let me execute this, ok. 

So, the first point -2- 2 j, it converge to -0.99 +10^(-13). So, it converge to a value of -1;

essentially this is - 1, it took 7 iterations. In fact, this is a very odd way of representing it; I do

not want so many digits.
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So, let me just round this off to one decimal. So, np.round(z,1), oh much better. So, we have

started with - 2 - 2 j, it has converged to a value of - 1 + 0j, it took 7 iterations; then we took

this value, it also converged to - 1, 7 iterations so on and so forth.
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Some of them took 6 iterations; some of them took 7 iterations ok, some of them 6 iterations.

(Refer Slide Time: 50:42)

Let us scroll through this 7 iterations, 6 iterations; to reach that error threshold, it has taken 6

iterations. 
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There are some zones with 5 iterations excellent; but obviously there will be points in the

argand plane where the root would have been exactly  that  point,  it  would have taken no

iterations, some points have taken 8 iterations, ok.

So, rather than scrolling this list indefinitely; let us in fact plot for each corresponding point

on the argand plane, the number of iterations it took. Let me comment out this line; once we

exit the loop, let me plot it.
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So, plt.pcolor; so pcolor stands for a pseudo color plot, ok. So, it is a pseudo color plot; it tells

it, it gives you an information about the 2 D data that you have. So, x,y,c; let us do this, ok.
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So, let me add a color bar. So, plt.colorbar and let me set the aspect ratio to 1. So, ax=plt.gca

and then we will do ax.set_aspect(1), alright. So, in this region there are points which took

only 4 iterations; but over here they took 13 iterations.
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In fact if we resolve this further, let me resolve this further; it will take a bit more time to run,

it should not take too much time, I am running a fairly decently powered computer, ok.
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So, these are the zones where it takes a lot of iterations; these are the zones where it takes

moderate  number  of  iterations,  these  are  the  zones  where  it  takes  minimum  number  of

iterations. And it takes minimum number of iterations; because look it is very close to the

roots; it is very close to the roots, in fact this is for z square. So, what is the equation; 1 –

z^2= 0, so essentially z ^2=1. 
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Let me make it cube and the derivative will be -3*z^2; let us see what happens, ok.
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So, it takes a bit more time, no problem; suddenly the whole situation looks a bit odd ok,

suddenly it is not so trivial anymore. This seems to be a very weird looking braided pattern

appearing out of nowhere. And if you play pay close attention, there are still this zone, this

zone and this zone; these are the roots of z ^3=1, we know that.

I have just shown you that, this point, this point and this point they are the roots of z^3=1,

and that is fine, it takes a very fewer number of iterations to converge in these zones. But

now, there is a; there is a band of zones, where convergence it takes a lot more iterations. In

fact, let us zoom on this part; let us zoom on this particular tile 0 to 1 and 0 to 1.
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Let me run this cell again, ok. So, I should take 0.01 and 0.01; because having 0 that d f d x

causes some errors. So, once we run this, we will see a magnified portion, ok. 
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So, I do not know if you can see this in the recorded resolution; there is plenty of things that

are going on.
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In fact let us try to zoom in on this particular point; so this particular point is approximately

say it is a tile of 0.6 to 0.8 in the y direction and 0.3 to 0.5 in the x direction ok, 0.3 to 0.5 in

the x direction and 0.8 and 0.6. Let me run this. So, it will do its calculation no problem.
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It takes a bit of time; because I have given a significantly large, ok. So, it shows a very; I

mean despite  being,  despite  zooming into this  further  and further,  we seem to have that

braided structure and it is appearing out of nowhere. I mean you could not anticipate from

this that, there will be these zones in and otherwise purple looking domain.

So, the purple is zones which do not require lot of iterations to converge; but inside them

there are these link like structures and if you even zoom in further, you will keep on seeing

this link like structures. 

And the orange, the purple zone is called as the zone of attraction; these blue links they are

the zones where there is no, I mean the convergence takes a lot of time. In fact, for a very

complicated form of the function that we are trying to find; there may be zones where there is

no convergence at all, ok. There may be zones where there is no convergence; in fact let me

go back to the default value. 
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Let me go back to - 1.5 to 1.5. In fact, instead of pcolor; pcolor that rendering takes a bit

more time. Let me just show the; let me show the array c as an image, that does not take so

much time, ok. So, the computation ok; let me just tell you the computation here does not

take much time, it is the pcolor function that takes lot of time.
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Now, this should run quite fast; at least relatively fast ok, there you go. So, these are the

zones where the roots are; these are also the zones where you have fast convergence, ok.

Inside  all  those  links  and  lobes,  you  have  zones  of  fast  convergence,  ok.  It  is  a  very

fascinating diagram; it is not at all trivial to predict a priori.
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In fact, let me make this z ^4 4. So, z^ 4, you have 4 roots ok, you have 4 roots over z to the

power 4; this is the first root, second root, third root, fourth root, ok.

So, let us see; let us not guess around and let us see what happens, ok. So, 100 iterations have

been hit at several points, ok. So, these are the, these diagonal lines are the zones where you

do not really have a very easy conversions; but these locations are the points where you have

fast  convergence.  These  gaps  between  these  weird  links,  they  are  also  having  good



convergence. Even on these lines, you have zones of fast convergence and slow convergence;

it is quite bizarre ok; it is quite bizarre.

So, lastly we move on to the last topic, in which we want to classify this entire zone as to

which root it actually converges to, ok. Right now, we just know that ok, this point takes less

iterations  to  converge,  this  point  takes  less  iteration,  these  points  take  less  iterations  to

converge; but there is still the question whether this guess over here?

So, essentially we are guessing this point and does it converge to this root, does it converge to

this root, does it converge to this root or does it converge to this root? A very non trivial

question to answer as well and the answer is not at all straightforward ok; the answer is not at

all straightforward. So, let us make a program to see that, ok.
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So, now let us look at the basins of attraction that is, if we have an argand plane and if we

know that these are the roots, we want to know whether when we take this point on the

argand plane and then when we iterate it; whether this root converges to this root or this root

or this root or this root, essentially that is what we want to find out.

So, let us make use, let us make use of the same code; let us reuse this code. So, we do not

need to plot anything and in fact, rather than passing the number of iteration, rather than hard

coding the number of iterations; let us pass it into the function, ok.
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So, let us take as an output the count; we want to take the count into picture, we do not want

this. So, this is essentially what the code is and we have to pass the count the Nitermax as

well.

So, we have to define the Nitermax over here. So, let say it is 100. So, as the maximum

number of iterations we will allow. So, what we want to do is, essentially take this value of z

in the argand plane, iterate it. So, when it is iterated; so this is z0, then suppose you said zn.

So, if this converged value with this error threshold is reached in n less than Nitermax, then

we found a root.

So, we must take this zn and we must insert it into; we must keep in mind that it is a root. So,

how do we keep in mind it is a root? We must create a root array. So, the root array will

contain the different roots. So, root 1, root 2, root 3; so if it is a fourth order equation, there

will be 4 roots and so on, ok. So, we have to store this. So, because we do not know the roots

of priory; if we knew the roots of priory, why would be doing this in the first place? So, we

do not know the roots.

So, we need to define certain things. So, we will define total roots, so it will be 4. So, root

array will be np . zeros and this will be total roots. And remember the roots will be complex;

so we have to change the data type to complex; this is how you do it. 



In fact, the total roots if, even if we do not know if it is a complicated function; we can define

the total roots to be much more than 4, it can be some large number. The fact that we are

initializing everything to zero; so it makes things much simple, we can take the total roots to

be much larger, other things will all be zero, ok.

So, each time you find a root, you insert it; you insert a root if the root is not already in the

root array. So, initially the root array is all zeros; suppose you take this particular point, it

converges to root 1. So, you take whatever this converged value will be and you insert it over

here. So, this will become a root 1.

Suppose this particular point, it converges to a different value; so then you take it and insert

into this. Suppose this point it converges to the same value; so then root 2 is already existing.

So, do not need to insert anything to root array. So, you take all the points in the argand

plane, iterate all of them, see their convergence and if they converge to a new root, you add it

to the root array; if it does not, then you do something else that is what the idea is behind the

root array.

So, root array is this, root count =0; then we have called this, this is z is the root and count is

the number of iterations. So, if count is less than Nitermax; it means that, if the number of

iterations has exceeded the maximum number of iterations, we have not converged anywhere

within this particular error threshold. 

It  means  that,  that  particular  point  in  the  argand  plane  took way  more  iterations  and  it

probably would not converge; this means that we will assign this argand plane point a value

of nan ok, nan stands for not a number, it does not stand for a cheese naan or a butter naan, it

is not a number.

So, if you do not achieve convergence; you will put it as nan, so that in the plot it will appear

as a white space. So, if count is less than Nitermax; what will we do? If z not in root array.

So, if the converged value is not inside the root array; then what do you do? You insert it into

the root array. So, root array, root count will be equal to z; then root count is equal to root

count plus 1 ok, this is what you do.

Now, if root or if z is actually in the root array, ok. So, if z in root array; then what do you

do? So, for this particular point to be converged to this root and this the converged value for

this. So, the converged value, if it is R 2; then we will assign this point, this particular index. 



So, the index will be 0, 1, 2, 3. So, if it converges to second root, we will assign it a value of

2, assign it a value of 1; if this value converges to the third root, we will assign it a value of 3;

if this point converges to the first root, we will assign it a value of 0.

So, basically we are taking the entire argand plane; for each point on the argand plane we are

assigning it a value 0, 1, 2, 3 depending on to which root it converges, right. And if it does

not converge, we set it to a value of nan; when we plot this depending on the color of the

zone, we should be able to predict or not predict, we should be able to tell that this point will

converge to this value ok, that is what we are targeting.

So, if  z is in the root array; then what should we do? C[j,  i]  will  receive the index. So,

np.where root array equal to equal to z ok; it checks where root array is equal to z and the 0th

entry of this.
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And let  me  show you what  the  where  function  does  just  to  recall  your  memory.  So,  a

=np.linspace(0,5),  let  me  print  a.  Now,  not  linspace,  arange.  So,  now  let  me  print

np.where(a==3) or. So, it says a is 3 at the third point 0 1 2 3; in fact let me make this 2 to 10.
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So, a = 3 happens at 1, so this is the solution. And we do not require the data type; so we need

to take the 0th element of this output. So, np.where outputs it has a tuple, because there may

be matrices.

So, we need the 0th element of this output, this function output; that is why this 0 appears.

These are just syntax, I mean the logic should be clear; syntax follows any time, you can

always Google the syntax, but it should be clear what the logic is. So, c should take the value



of the location of the root. If it is not the case, if z is not inside the root array; then what do

you do? 

If z is not inside the root array. So, else c[j, i] has to be assigned a value of nan, there you go.

So, this is it, this is the entire program; let me run this ok, there is a small error. Let us see

what has happened, index 4 is out of bounds; let us see what is the issue, ok.
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So, here is the issue; the value of z that we obtain over here. So, there will be roots which

look something like this versus there will be roots which look something like this. Well these

are  essentially  the  same  root,  but  the  fact  that  the  computer  uses  a  floating  point

representation; we have to really reduce the number of digits in order to make these roots

appear the same. 

So, z, so essentially it is what is happening; because of this it is interpreting this and this as

two different roots. So, it is creating much more roots than is desired. So, this is a classic

mistake that this code attracts. So, z should be rounded. So, np.round(z) and we have to round

it to the first decimal place. This should now work excellent; it works let me remove this

particular cell, we do not need it. 
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Let me now plot this. So, plt.imshow(c) and plt.colorbar; wow this looks fantastic. So, what

is happening? We have four colors; we have four colors over here 3, 2, 1 and 0. In fact, let me

take a screenshot of it and try to explain it in this.
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So, what is happening? Let us see. So, all the points; all the points that originate in this purple

sector, they will converge to a certain root; all the points that originate in the yellow sector,

they will converge to some different root; all the points that originate in the green sector, in

the blue sector will converge to their each different roots. 



So, in case you want to know which root it converges to, we simply need to print out root

array. So, the purple ones they converge to - 1; the blue ones they converge to 1; the green

one they converge to i  and the yellow one they converge to -  i.  So,  now look there are

pockets, there are small pockets which have different convergence properties; if you traverse

across this line, you will see that, ok. 

If you are at this boundary, it is very difficult for you to start off at a certain point and end up

in a different in one of the particular roots; because you would expect this entire region to be

converging to a certain root, but there are small zones. In fact, let me run this program and let

us zoom into a certain section; let us try to zoom in to a certain section. So, say 0.2 to 0.4 and

the same over here.
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So, look if you focus over here very closely; let me increase the resolution maybe that helps

500 by 500 ok, this may take a while, but it is worth it. So, in that in the meantime let us see.

So, there is green, then there is some pockets of multi colored stuff going on; then there is

purple, then there is white. So, the white corresponds to zones where there is no convergence,

ok. So, the white these two lines you have nans; that is why they are white, they have no

color, much better.
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So, there is purple over here; then again blue, then again green, yellow. So, there are there is

some multi, I mean I do not want to call it a fractal right now; but the more you zoom in, the

more these structures they will reveal themselves, ok.
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In fact, let us zoom in even more; let us see whether we get something from this, ok. So,

understanding the convergence is not at all trivial is what I want to say and these things are

called as Newton’s basins of attraction. 

So, it is not at all trivial to tell whether this point in the argand plane will converge to that

particular root; what you have is, this purple value over here, it is still converging to - 1, this

thing is still converging to - 1, this thing is also still converging to -1 ok, the green one was

converging to 1.

So, this  thing is  converging to  1,  these all  regions are converging to  1 no doubt,  this  is

converging to 1, this is converging to 1, this is converging to 1, this is converging this is

converging to 1 and there are small zones inside this as well; the more you zoom in, there

will be even more zones of small very small pockets of green as well, they will also converge

to 1. 
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Look the structure becomes even more bizarre. So, over here, there is another series of colors

that will happen and the more you keep on zooming in; the more this bizarre structure will

begin revealing itself. This white line is the zone where not even a single value will converge;

all the points on the diagonals, they will diverge, ok. So, if you guess on this line, you will

not get anything.

So, yeah this is what I wanted to discuss, I hope you have learned something new; if not, you

have seen how to create such complicated plots with the help of very easy programming. And

I will see you next time with another lecture on non-linear dynamics; until then it is goodbye

from me, have a nice day, bye.


