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Hello everyone. In this lecture, we are going to look at fixed point iterations or more 

generally in the context of non-linear dynamics. 
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We are going to look at 1D Maps. So, what are 1D maps? 
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So, let us go back a step backward and distill the essence of a non-linear equations or in 

phase space right, we have an evolution of a trajectory, but through the Poincare section, 

we have seen that if we have a transect, it could be a time transact because of periodicity 

or it could be a space transact as well. You can have a reduced dynamics which you can 

analyze on a plane for example, in this case.  



So, we can have a plane like this so, the trajectory can go like this, come back again, 

intersect over here so, this is 1, 2 and it can do this several times. So, we are looking at 

how on this particular plane, a point is mapped onto the point that point is then mapped on 

to this point and so on. So, such kinds of discrete observations are classified as maps 

alright. So, we say that x[k+1] is f(x[k]) where x[k] is then mapped to x[k +1]. 

So, in the context of 1-dimensional maps, these are just points on a line and we will look 

at the evolution of this and we have seen examples of this when we have analyzed the non-

linear solvers, algebraic solver and how it led to oscillations or all these kinds of things. 

So, now, we will have a bit more insight and we will see how a simple map can give rise 

to seemingly complicated things.  
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So, right away, we will observe that if we have a fixed point, then 𝑥∗  if it is the fixed point 

is going to be 𝑓(𝑥∗). So, this is by definition a fixed point. The point is mapped onto itself; 

it is not moving ok. So, more generally, a map can be defined as this. Now, let us look at 

the behavior of a map in the vicinity of a fixed point.  

So, let x[k] be written in terms of 𝑥∗ + η𝑘 where η𝑘 is like the correction to the fixed term 

alright. So, we are looking in the neighborhood of a fixed point. So, if this is the fixed 

point, we are looking over here. So, now x[k+1] can be written as 𝑥∗ + η𝑘+1 = f(x∗ + ηk) 

and we can make use of the Taylor series and write this as f(𝑥∗) + f`(𝑥∗)η𝑘 + 𝒪(η𝑘
2)  



Now, because 𝑥∗ is a fixed point, 𝑥∗ is going to be = f(x) so, basically this is becoming 

f(𝑥∗ )= 𝑥∗ and so, we have this. So, this cancels out and thus, we have an evolution of the 

correction to the fixed point as η𝑘+1  =   f`(𝑥∗)η𝑘 + 𝒪(η𝑘
2) 

Now, if this can be neglected compared to this, then the evolution is quite simple to write 

and it is η𝑘+1  =   f`(𝑥∗)η𝑘  =  λη𝑘. Now, the η the rather the η𝑘 will decay if the 

magnitude of  λ is less than 1 right. So, imagine, this is the η space, and this is η𝑘+1 so, if 

magnitude is less than 1, then it will map on to something like this and it will map onto 

something like this, then this, then this. So, each time you are sort of converging towards 

something.  

So, this is the case where |λ|, the magnitude of λ is less than 1 and the sign of lambda is 

positive. If the sign of lambda is negative and the magnitude remains less than 1, then this 

point will be mapped on to this point over here which will be then mapped on to this point, 

then on to this point.  

So, because of the flipping of the sign for each iterate, you will have an oscillatory 

convergence. If lambda is = 1 and quite obviously, η𝑘+1 = η𝑘 and then, you have to resort 

to analyzing the higher orders that you have neglected over here ok. So, now graphically 

how does that particular map that is x[k+1] is = f(x[k]) look or in fact, what is the solution 

graphically of this. 
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And we have actually had a look into this, it is not that difficult to recall that on one hand 

you have x, on the other hand you have f(x). So, for example, let this be that particular f(x) 

and so, this is y = f(x) and this is x and this is y and this function is simply a straight line 

which goes something like this, it intersects the function over here. So, at this particular 

point, we have x = f(x).  

So, this line is y= x. So, at this particular point, we have y =x and that is the solution, this 

is the fixed point so, this is the fixed point. So, now, the slope of the function f(x) at the 

fixed point governs what the behavior of the convergence will be. If the slope is bounded 

that is of the magnitude is less than 1, then we will have convergence if it is not, then we 

will diverge. Let us go to the computer and see how this looks like.  
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So, let us have a look into the map of, let us look at Map of 𝑥𝑘+1 = 𝑥𝑘
2 ok. So, let us see 

how this looks like.  
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So, first things first, we will need an initial value x0 = 0.2or in fact, even before starting 

this, let us first plot these things. 
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So, let x = n. So, we have to first import all the libraries alright. So, we only need this, we 

do not need solve_ivp and mlab over here alright.  
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So, let me run this. Then, x = np.linspace(-2 ,2); f = x**2 and g = x, then we will do plt.plot 

(x ,f, x ,g ) alright. 
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So, this is the fixed point, obviously, x = 1 is the fixed point. So, now, what is the slope at 

x = 1? So, the slope at x = 1 so, this is the function so, it is going to be  2x and x = 1 the 

slope is greater than 1 it is  2. So, we expect that point to be an unstable point.  
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So, now, let us perform the iterations and actually see whether an initial guess converges 

to that point or not. So, for that, let us in fact, reuse this code. So, we already have the plot 

of this. So, let x0 = say 0.5 alright, then let us first print out all the values.  

So, for let us do 10 iterations for i in np.arange(0 ,10), xi= x0**2 and then, we will assign 

x0 as xi and just after this, we will print the value of i and so, the iteration number and we 

will print out the value of the present iterate or x simply. So, let it be %f and here, we will 

print i and we will print xi alright. So, let me run this.  
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So, it starts with x = 0.25 and then, it is converging to 0, it is converging to this root so, 

obviously, this is also a root and over here, the slope is 0 and this attracts ok. So, 

immediately, we can say that this is a stable root. 
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Let me change the initial condition to 2 alright. 
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When we start at 2, the iterations are growing out of bound and we have a very large value.  
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And then, we have floating point error. Well, it is a representation error more like, it is an 

overflow error because it is getting too large for the computer to represent through it is the 

finite byte size that it has. So, then we would like to ideally plot what this series of 

iterations look like. So, before that, let us see per iteration what is really going on. 
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So, suppose we have this as x0. So, the first point will be f of so, this particular point is 

f(x0), then we assign it to x1 so, this is assigned to this so, this becomes x1, then this 

becomes f(x1), this gets assigned to x2 and so on.  
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So, let us try to achieve this particular plot on top of this. So, per new point we have to 

plot first, this particular line and this particular line, then so, per iterate, we have to plot 

the two sets of lines; one is this and one is this alright. So, alright. So, let me do it over 

here. So, we will first plot plt.plot so, it will be x0, f(x0) so, let me write it like this, we 

will convert the functions later and this we have to give a pair of x coordinates so, this also 

will be this and this will be 0 alright.  

Then, once the new point is found, we will plot in fact, we can do it over here plt.plot the 

line will be going from x0, f(x0) and this second point will be f(x0) and this will be the 

same point so, f(x0). Now, the task is to define what f is.  

So, we will go over here alright, we will declare this as a function. So, this is the function, 

and we will define g(x) as simply return x. So, now, this will be f(x) and this will be g(x). 

So, let us run this and see what happens. So, I forgot the commas alright ok.  
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There is a ok.  
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We need to make lesser number of iterations or maybe only 4 alright.  
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 It is flying away. So, let me focus our attention in the vicinity.  
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So, I need to change the plot limits. 
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Sorry, I need to make it at least 5 so that we can actually see the point. 
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So, it is. So, starting over here so, then, it is flying off to the infinity.  
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In fact, let me choose 1.2 as the initial point that will be better for us to visualize.  
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So, it is starting over here, then it is going to this, then this point is mapped over here, then 

to this and so on. So, it eventually flies off to infinity. So, because of this slope every 

iteration is getting a bump up so, the value of λ is greater than 1. So, after every iteration 

η𝑘+1 = λη𝑘 so, this is going to be λ2η𝑘−1 and which is going to be λ3η𝑘−2 and so on. 

So, because of the multiplicity in λ, if λ, the magnitude of λ is greater than 1, then this will 

fly off to infinity as we can see over here whereas, if you take a lower value of the root, it 

will appear to converge. 



(Refer Slide Time: 17:04) 

 

So, if we focus on this particular fixed point, so, let me take a guess as - 0.5, we will see 

that it converges to the other fixed point.  
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But the other fixed point is not that I mean it is not that interesting because it is a trivial 

sort of fixed point so, it is converging like this ok. So, the point that I am trying to make 

is it depends on what the value of the root is at the point and depending on that, we will 

achieve convergence or divergence.  
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So, let me just fix the plotting so that it does not plot every time from the base. So, the first 

point, so, let us just start plotting it like this alright. So, this is how the plot looks like. 
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Let me reduce the scale, let me make it something like this. 
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So, we start off with a guess over here, when it is mapped onto this value, then it is mapped 

onto this, this, and this and then it converges. So, it is pretty fast convergence, and the 

divergence is pretty wild because of the fact that the root is larger than 1.  
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Now, let us look at the other case where the root does converge. So, let us take a case 

where 𝑥𝑘 or 𝑥𝑘+1 = cos(𝑥𝑘). So, let us look at what graphically the root should be. So, 

this is the plot of cos and this is the straight line. So, there is a root somewhere over here. 



So, this is going to be π/2. So, there is a root between this fixed point between 0 and π/2 

alright. 
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So, let me copy this snippet, let me paste it over here and let me simply make this as 

np.cos(x). So, let me run this. 
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So, let me choose an initial point something like 0.1. 
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So, what is the slope of the root so that is also critical to see?  
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Well, let us expand the axis a bit. So, my bad this should have been changed and xi should 

be f(x0), it should be simply this alright. 
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So, we do have convergence happening.  
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And let me increase the number of iterations to highlight how that convergence takes place. 

So, let me take 10 iterations. 
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Boom, so, we do have a convergence and it appears to be somewhere around 0.7.  
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So, let me reduce the scale to 0.5 to 1.2 so that we have a better look at what is really 

transpiring and such kinds of plots are called as cobwebs and we have already discussed 

about this.  
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So, 0 to 1.2 because they resemble the cobwebs of a spider web; so, those are called as 

cobwebs alright. So, it starts somewhere over here, then it goes on to this, then it maps 

onto this and so on. So, each iterate it appears to converge towards this. So, at this point, 

the slope of cosine you will find that the magnitude is less than 1.  

So, this is how roots can converge depending on the local or the slope at the fixed point 

and graphically, it is rather easy to figure out what the fixed point should be, but 

numerically for the fixed point so, for the points to converge to the fixed point, you have 

to ensure that the root is bounded to 1 alright. 
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So, now let us proceed to a very famous map that is 𝑥𝑘+1 = 𝑟𝑥𝑘(1 − 𝑥𝑘). So, this 

particular map is also called as the logistic map. So, now, let us encode this and see what 

happens.  
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So, first of all, I mean based on the value of r even before solving this so, let me just encode 

it. So, let me split the cell over here to show you how the plot looks like.  
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So, this is how the plot looks like and there is obviously, a fixed point over here and a 

fixed point at 0. 
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If we increase the value, then let me make it 2. So, there is a fixed point over here.  
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So, let us focus on 0 to 1 and so, what is the maximum going to be? You said x = half so, 

it is going to be r/ 4. So, let us choose this to r/4 + 0.1 alright. 
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So, this is how, this is the fixed point and now, the slope of the fixed point appears to be 

somewhat close to 0. So, we expect this fixed point to be a stable fixed point, it is going to 

be an attracting fixed point. So, let us see.  
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So, let me now merge this bit of code along with this and we will see whether or not that 

fixed point is indeed attracting or not. Let me remove this, we have to pass r as the 

additional argument because in this problem, r appears as a parameter to the map and we 

will see that depending on the value of r, we will have varying behaviors.  
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In fact, let me turn off the printing of the values. If at all you want to play around with this, 

you can turn on printing the values and then, it will be clearer to you how that iteration 

actually takes place. 
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But for me, I find it more illuminating, I find it more illuminating if the values are indeed 

shown through a figure.  
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So, this is the guess, and it gets mapped onto this, then it gets mapped onto this, it gets 

mapped onto this and so on until it reaches the root.  
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Let us increase the resolution of the curves simply by changing the range alright great.  
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So, and similarly, if we choose a value somewhere over at 0.6 suppose, we should be still 

getting that kind of a convergence. 
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So, there you see it converges.  
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Let me make it 0.8 and again it converges.  
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So, regardless of where the initial guess is, you will see that everything converges to the 

fixed point.  
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Let me increase the value of r, let me make it 3. Now, what happens look at this?  
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So, when r = 3, something quite I mean it seems to converge, but it may take a huge amount 

of iterations to converge ok, it still not converged.  
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Let me take 100 iterations. 
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It is still not converged. So, why is this happening? Let us go back and look at the equation.  
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So, the  𝑓(𝑥) = 𝑟(𝑥– 𝑥2). So, what is 𝑓`(𝑥)? It is going to be 𝑟 − 2𝑥𝑟 ok. So, when. So, 

𝑥 − 𝑟𝑥(1– 𝑥) = 0 so, the solution of this would give you the fixed point and this is the 

slope at the fixed point.  

So, we have to substitute the slope over here. So, let us expand this. So, it is 𝑥 − 𝑟𝑥 +

𝑟𝑥2 = 0 so, we can write it as a 𝑥2 − 𝑥 + 𝑥/𝑟 = 0 so, this is what x common. So, this is 

𝑥 −  1 + 1/𝑟 =  0. So, 𝑥 =  0 is a root right and 𝑥 =  1 −  1 / 𝑟 is a root.  
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So, let us superpose that root on top of this. So, plt.plot(1 - 1/r, 1 – 1/r) let us mark it with 

a black marker.  
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So, this point is the root. 
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Now, we are interested in finding out what the value of the slope is at the root. So, the 

value of the slope will be r*(1- 2*(1-1/r)), this is the root so, I have just taken r common, 

this is 1 - 2x. So, what is this? This is going to be r*(1 - 2 + 2/r). So, this is going to be 2 -

r alright. So, when r so, 2 - r mod of this less than 1.  
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So, if 2 -  r is less than 1, then it means 2 - r should be less than 1 and it should be greater 

than -1. So, the first inequality says that 1 is this and this implies r should be less than 3 

and this the second inequality implies that r should be greater than 1. So, if r lies in the 

open set 1 to 3, then we have a stable fixed point.  
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So, let me make it 3 point 1, let us see what happens.  
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Well, it just keeps around right, it keeps on going and most likely it will diverge after so 

many iterations, I have not kept the number of iterations very high.  
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But let me increase this, let me make it 4, let us it will be clear.  
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So, at 4, it is going all over the place and really, I mean there is something which is quite 

bizarre to see, you do not expect this kind of behavior from well, you do not expect in the 

sense that for the uninitiated, you do not you will feel that things will be very well behaved, 

but it seems to go all over the place, it is not converging to the fixed point alright. 
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What happens at r = 0.5?  
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And the same thing, I mean it goes and it gets attracted towards the other root that is x = 0 

ok, there is no intersection point. 
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So, when things are between.  
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So, when things are when the r is between 1 and 3, we expect the fixed point to be stable 

like this.  
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But when r exceeds 3 that is when weird things begin to happen and let us now take a peek 

into why this kind of behavior actually occurs so that we can once we look at the time 

series or not the time series, but the iterate series that per iteration how does the root vary, 

we will be in a position to explain why there is a certain periodicity in the way the roots or 

the iterates appear once that is clear.  

We can then move on to the bifurcation diagram where ultimately we will see how that 

period doubling that we have seen in the case of the van der Pol oscillator that kind of a 

period doubling also occurs in such kinds of iterated maps. So, let us see.  
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Let us now plot the iterates how they look like. So, let me grab hold out this snippet and 

instead of plotting the cobwebs, we are now interested in plotting the.  
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So, we are now interested in plotting the time series right. So, for that we need to plot the 

following thing let me show you. So, on the x axis, we will have the iteration number and 

on the y axis, we will have the actual value of the x, the present x so, it will look something 

like this or if it converges, it will look something like this. So, let us have a look; let us 

have a look. 
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So, for that we need to create. So, let us create first the n array. So, let this be this. So, for 

i in n right and we need to store the value of iterate so, this will be xi = np. let me initialize 

it by zeros so, np.shape of n. So, in case we change n, we already have a soft code method 

of defining what xi will be right. 

So, once that happens, we do not need all this plotting anymore so, we can get rid of these 

lines, we can also get rid of this alright and so, here, I can write xi[i] will be xi[i-1] that is 

it, that is pretty much the code and we have to not do this for i = 1, for i != 1 we have to 

do this alright. So, let me run this. So, we have forgot this, if i != 1 alright. So, it runs and 

so, at the end, let us plot. So, we will do plt.plot and this will be a plot of n versus xi alright. 

So, well.  
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This has to be 0 ok. What seems to be the issue? We have not given the initial value. So, 

xi[0] = x0 ok. So, we have not passed on the initial value and we are trying to iterate so 

obviously, x = 0 was the initial value and so, if I do not write this line, it means that x0 

will be 0 because I have initialized everything to 0, it was simply iterating zeros and 0 is a 

fixed point ok; 0 is a fixed point. So, simply we are getting zeros ok. So, now that we have 

this in place, we can suppress this and let us see ok. 
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So, after just a few one iteration maybe it settles down.  
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Let me change the value of r, let me make it 2.9 ok. 
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So, it iterates, and it converges to 0.65, 0.65 should be equal to the value of 1 -1 /r. So, let 

us also plot that particular point.  
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So, plt.axhline and we will make it pass through 1 -1/r.  
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So, this is that fixed line, this is the root, this is the fixed point that we have calculated 

analytically.  
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Now, what happens when r exceeds the value of 3?  
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So, it appears to oscillate the values appear to oscillate in a periodic fashion and the period 

appears to be 2 meaning if I look at this point after 1, 2 it again repeats ok.  
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So, let me now increase the value of this to 3.5. Now what happens? 
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It appears to go so, 1, then 2, then 3, then 4 and then again it repeats. So, we see that the 

frequency has increased alright.  
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And then let me make it 3.9.  
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So, now, we have this. So, there is no discernible.  
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So, let me increase the number of iterations to say 400.  
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So, there does not appear to be a well-defined iteration cycle.  
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And for 3.9, let us see how the cobweb looks like. So, we know that something funny 

happens, but how does it look like alright.  
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So, that is the reason I mean it goes towards the fixed point, then its repelled away from 

the fixed point, it keeps on looping all over the place, but it is really never sort of settling 

down on the actual value and it appears to be like a limit cycle that we have studied in the 

non-linear dynamics part, but there is no periodicity.  
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Let me make it 4.1, let us see. 
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And it blows away to infinity well.  
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Let me make it 3.95. 
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And we still have something like this. So, what is what happens beyond r = 3 ok, there is 

obviously, some period doubling that is happening and beyond that period doubling, it 

seems to go off the rails I mean there is no discernible pattern that we are able to observe 

and let us look at, let us go back a step and look at how the plot actually looks like.  
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So, this was the original plot ok.  
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Let me suppress the printing of the iterates and.  
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So, if we go back, let me this has to be there. So, this is a different map.  
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In fact, let me take this snippet, let me paste it over here so that we can see the map clearly. 

So, let me remove all these guess values and let me simply plot this ok. 
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So, this is how the plot looks like and now, beyond r = 3 I mean this is not a stable fixed 

point, it is an unstable fixed point, it is not converging to that root.  
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But now, let me plot instead of f(x), we saw that the period doubled instead of converging 

it to two oscillations so, let me plot f(f(x)), let me plot this. 
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So, now, we have we saw that it was oscillating between two roots, but not two roots, but 

two iterates and those iterates were actually this and this, but now, we do not know whether 

these points are stable, we need to guarantee that the slopes of f`(f(f(x))) alright.  
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So, we are trying to explain why there were two oscillations like this, this and this were 

being repeated meaning it is going to this point, then it is thrown away to this point and 

then, it is again thrown away to this point over all successive iterations, it is not converging. 

(Refer Slide Time: 41:21) 

 

So, let me make it 3.1 ok.  
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So, in fact, let me make it this 3, let me show you. So, at 3, it is just tangent and that is the 

boundary of stability. Below 3, we had the single map that is f(x) which was converging.  
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So, let me also plot x,f(x,r). So, the green curve intersects the orange curve and at this 

parameter where r = 3, it was a stable point, but beyond 3, it becomes an unstable point 

and beyond 3, after it becomes an unstable point, we see that it oscillates between two 

iterates.  

(Refer Slide Time: 42:15) 



 

And those two iterates are these roots, this root and this root while this root becomes 

unstable. So, it is like a bifurcation that occurs where the original root becomes unstable 

and it goes to two different roots and you can revisit the earlier lectures on bifurcations to 

figure out what kind of bifurcation it is. I am not going to discuss all that over here, but 

you can imagine that it becomes tangential and now you have two roots appearing, this 

root and this root. 

And this root, the slope appears to be low, but at this point also the slope appears to be 0. 

So, these two points, these two iterates are stable points, but whether or not the iterates are 

oscillating around these two points remains to be seen. 
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So, let us go back to this diagram, let me copy this.  
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Let me go over here, paste this.  
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Now, let me define f(x, r) as something else. So, here, we want the double iterate meaning 

f(f(x)) because it is going in a two cycle so, we want to see the iterate of the iterate because 

that appears to give us two roots. So, let me modify this code so that it returns us the f(f(x). 

So, let me define this as f1 and let me define f(x,r) and we will return f1(x,r). So, it is like 

calling that function within this function. So, let me plot this. 
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And in fact, let me plot, let me reduce the parameter.  
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After reducing the parameter, let me. Well, you can see that it is settling on these two roots. 

So, if I start from here, it is like going in I mean in a metaphorical circle, it is going in a 

rectangle across those two iterates but let us try to show it also. 
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So, if you try to plot the how the iterates occur in a map of f of; in the map of f of f of; in 

the map of f(f(x)), it appears to converge to this root, but the reality is in the in actual map, 

it is actually going across these two points and that is clear by looking at these oscillations.  
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So, now, let us increase the value of the parameter ok. So, now, at a certain point, it will 

also become unstable.  
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So, probably we have to plot f of this and because we see that the period becomes 4 so, we 

need to plot f(f(f(f(x)))) ok.  
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So, now, it will intersect over here where the slope is mild. So, we need obviously, more 

number of points over here let me choose this to have 200 points. 
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So, it will intersect over here, then over here so, these two become the stable points, but 

then eventually, if you keep changing the parameter, you will see more intersection points 

and so, as you keep changing this, as you keep taking a larger value of r, this stable point 

will become unstable, it will give rise to more and more points afterwards it will descend 

into chaos as we have already seen.  
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So, when it becomes quite large.  
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So, for this also there is a four cycle going on.  
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For this and there is something weird going on, there appear to be some intermittent 

moments, but so, how do we quantify all this I mean there is something going on I mean 

as we change the parameter r, either it is iterating between I mean it goes to a fixed point 

when the parameter is less than 3, when it is more than 3, it goes into a 2 cycle and into a 

4-cycle, into an 8 cycle, then completely erratic so, how do we make sense of this and the 

way is to make a bifurcation map ok. So, let me first tell you how that map will be 

generated. 
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So, for each value of r so, suppose on the x axis, we have the values of r and we will plot 

so, we will do say 400 iterations and we will plot the 200th to 400th iteration whatever 

iterates we have, we will plot those values ok. So, if it goes into a two cycle, we will do 

see two points over here.  

So, here is x k going from 200 to 400 so, if it settles down to this two, if it goes flat, then 

we will see one point, if it has something like this like 1, 2, 3, 4 and then it repeats so, we 

will have 1, 2, 3, 4 something like this. So, this will call; this will call as a bifurcation map.  

So, let us see how we can assess the way this kind of cascading occurs and once it becomes 

very erratic, we will expect to see a lot of points, but will it actually have a cascade or will 

it not have a cascade so, let us see, let us see how to do that.  
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So, we will reuse some of our code as usual. We will take this; this appears to be a nice 

snippet to work with. 
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So, over here, we will increase the iterations to 400 and we will plot not the time series so, 

plotting n not the time series, but the iteration series so, n versus xi that will be the iteration 

series, but we do not want this in fact, we do not want any of this. So, we will plot, we 

have to plot r versus xi going from 200 to 400 I mean by that I mean going to 399. But 

now, r is a scalar value so, we need to have ones multiplying this. So, when r times one’s 

np.shape(xi[200:400]).  
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Or rather let us define this as the y and ok. So, let me, sorry alright, this has to be np.ones. 
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So, we have a bunch of, we need to actually only plot the points, we do not need to connect 

them by a line. Again, it looks something like this because it is sort of iterating and get 

getting across all these points one after the other, there is no sequence inherent to this.  
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So, now, what we need to do is to sweep over the values of r, we need to sweep over all 

the values of r and let me change the markersize, let me make it 1.  
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It looks much better; it looks much more polished.  
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So, now let me remove this and let me perform a loop over all the values of r ok. So, this 

does not change, we initialize it for each set n does not change alright. So, for r in 

np.linspace let me just check the parameter value 3.4 to 4, let me take a 100 points. So, it 

will do all this plot and it may take a bit of time. So, let me run this ok.  
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We get this wonderful looking diagram and what we do see is ok.  
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Let me do it all the way from 2.9 because we want to take r less than 3 as well because 

when r is less than 3, we will have only one iterate. So, let me run this again.  
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So, we have one iterate like this and it splits into two iterates, it remains like this until 3.4 

something and it splits again into 4 cycles because see at this transect, in this particular 

transect, we have 1, 2, 3, 4. So, you have the iterations over a large span sort of going over 

these four points again and again ok.  
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So, let us see, let us choose 3.5 just to show what those four points are.  

(Refer Slide Time: 52:53) 



 

So, it is this point. 
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In fact, let me choose only 50 ok.  
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So, it is this point, then this point, then this point, then this point so, it is four distinct points 

over each cycle over which this set of iterates keep on happening and that is reflected over 

in this particular plot.  
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Let us now do this plot but let me choose a denser sort of let me do it from 3.4; let me do 

it from 3.4 to 4 and let me take 200 points. So, this may take a while.  
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So, this particular diagram is called as the bifurcation map. There are various interesting 

things to be noted over here. First is there is a period doubling bifurcation that goes on and 

then, it descends into chaos, but in between those doubling cascades, there are windows 

where it does not really sort of double anymore, it goes back to a period three in fact.  

There is only 1, 2, 3 and there is a large window where there are no iterates, it is iterating 

over this branch, this branch and this branch and there seems to be a sort of they seem to 

be these slits where suddenly the bifurcation does not happen anymore and goes through 

a; goes to a period three cycle where.  

There are lot of odd things that happen and I will give you some links where you can 

explore all this with the help of some of these tools that we have developed, some of the 

programs that we have developed. Let me in fact, make another diagram, but over different 

range, I want to show you something interesting.  
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So, let me choose it between 3.847 and 3.857. Let me run this. 
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So, essentially by dropping the initial ones, we are sort of plotting the long-time dynamics. 

It was we did something like this for the Poincare map as well.  
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And let me show only this lower branch. So, let me just change the plt.ylim going from 

0.13 to 0.18. So, we run it again. 
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It runs rather fast on my PC, but ok. So, this is the diagram that we have and so, this 

diagram that we have plotted for a smaller window on the previous curve, it does appear 

to be the same kind of diagram that happens over here. So, there is a certain cell similarity 

to this entire bifurcation diagram.  

Again once again we see 2, then 4, then 8 descending into chaos and windows where 

nothing really goes on, 3 cycles appearing large gaps where there are no iterates and so on. 



So, it is quite I mean unusual and you would never have predicted that such a simple map 

such a logistic map could give such a rich dynamics ok. 

So, you can play around with the parameters, you can see what really happens, you can 

zoom into the different zones by creating your own the small segment where you want to 

make the plot to zoom into the appropriate location and you will keep on seeing this kind 

of stuff happening ok. So, this is called as the bifurcation for the bifurcation diagram for 

the logistic map. 

And the such kinds of things do appear for a lot of; for a lot of physical processes as well 

such as transition to turbulence and so on even synchronization of big swarms of things. 

So, it is not just confined to the analysis of a logistic map, but it can extend to a lot of areas 

of physics and mathematics and I will put some links in the description as well, you can 

have a look and feel free to explore this and this gives you the platform to perform 

numerical experiments. 

So, all these things you cannot really go on field and take measurements, but in many 

cases, such kinds of measurements have shown this kind of a bifurcation pattern as well. 

The most famous experiment is the leaking faucet experiment, and we will see in the last 

week whether we can achieve, we can record those data’s and we can construct this 

diagram also. 

So, with this, I request you to play around, have fun, explore the depths of various maps 

and some assignment problems you can really attack them with all your might and with 

this, I conclude this particular lecture and I will see you next time with random numbers, 

bye. 


