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Hello, and welcome back to this lecture of Microsystems Fabrication by Advanced Manufacturing 

Processes. Let us recap quickly what we did last lecture. We talked about laser beam machining, 

and we probably already know that it is basically the photon-to-matter interaction which converts, 

which essentially converts into the physics of photon to phonon conversion. And so, there is lattice 

vibrations induced by the high level of energy pumped in by the photons which causes local 

temperature to rise, and it is a surface phenomenon. So, the temperature rises to an extent because 

of an extremely high intensity of energy packed in so that it goes into the vaporization state, and 

it creates a sort of burst effect and that is why the machining probably is much faster and it is a 

surface phenomenon which is different than the E-beam machining where E-beam typically 

percolates to a region or a small skin which is called the beam transparent layer. So, it is more 

towards the surface that the LBM is geared to. 

 

We talked about introductory concepts of laser, laser being light amplification by stimulated 

emission of radiation wherein the first stage there is an absorption, there is a frequency which is 

sent in, frequency of light which results in a very quantized manner an electron to go to a higher 

orbital from a lower state and an avalanche of these processes are produced together which is 

known as population inversion. Once this state is reached all the high energy atoms are when 

incident or when having the same frequency or same energy coming out of a photon which is fresh 

and which strikes the inverted population system leads to essentially a higher energy, but a more 

stimulated energy which is independent of the intensity, and this is called stimulated emission. So, 

there is a huge coherent amount of energy which is lost suddenly, and this energy is tried to retain 

until there is a threshold which happens after which the energy starts escaping which is the laser 

beam. So, we also talked about various lasing media like solid state and gas phase lasers where the 

medium changes from solid to gaseous in nature. 

 

Solid phase includes of course, ruby crystals other different kind of such media where the 

population inversion is possible with a certain frequency and gas phase of course, can vary from 

helium to argon, neon all these different kinds of media for lasing action take place. So, some facts 

of laser-mediated machining was discussed the amount of the magnitude of intensity that is amount 

of power per unit area clubbed into a surface machining surface is very-very high in laser 

machining. Also, the time that that makes the time of machining extremely small duration of 



machining is very small in laser and then of course, because you can super focus through expensive 

optics the beam to a small spot there is a tremendous increase in the resolution of the system. These 

days lasers are used for laser beam-based lithography where up to size of about 2 to 1 micron range 

is possible using laser beams. Also discussed about the mechanics of material removal where there 

is a photon-to-phonon conversion and started working on the thermal model where we would 

assume a constant heat flux on a small area or region on the surface where the beam on the beam 

incident side of the surface and with that we would try to make a model of the heat transfer based 

on material properties of the work material like thermal diffusivity, density specific, volume-

specific heat, conductivity so on so forth. 

 

So, let us go back on that model and try to extend this forward a little further. So, we already have 

seen how the beam can be modeled in a one-dimensional heat using the principles of one-

dimensional heat conduction where the depth from the surface is considered to be z and t being 

the time. So, temperature with respect to different depths from the surfaces z as a function of time 

was given by an equation represented here as del square theta Z t by del Z square minus 1 by alpha 

del theta Z t by del t equals 0. We assumed boundary conditions that at the surface of the workpiece 

corresponding to there would be a constant temperature gradient with respect to the z-direction the 

depth and it was given by minus 1 by K H t and we further assumed by that it was a semi-infinitely 

long surface and that the thermal properties of the workpiece remain unchanged and assumed theta 

equal to 0 at time t equal to 0. Now, this is actually the baseline temperature which is actually the 

room temperature about 24 degrees or so, but then we assume that to be the baseline and so theta 

can be equated to 0 at time t equal to 0. 

 

So, assuming that we arrived at a solution using a conventional PDE methods where theta Z t was 

represented by twice H by K root over alpha t by pi exponential minus z square by 4 alpha tau 

minus tau by 2 error function the first kind z by twice root alpha t. If we tweak this solution to the 

boundary conditions which have been represented here, we have at z equal to 0 theta 0 t simply 

represented as twice H by K root over alpha t by pi this goes off and so does this and so therefore, 

we are actually left with sorry I just need to rewrite this. So, this is z we are actually left with very 

simplistic expression theta equal to 2 H by K where K is the thermal conductivity to square root 

of alpha t by pi t being the time alpha is the thermal diffusivity it is the ratio of the conductivity 

and the volume-specific heat of a material. And if you want really machining to happen you have 

to assume that this theta 0 t of the surface hits the melting point of the surface almost immediately. 

So, if the melting temperature of the surface is known we can tentatively estimate the time of 

machining tm to be pi by alpha theta m K divided by twice H square. 

 

So, that is how time of machining is. We try to calculate in some cases what typically this time 

would be, and we obtain for normal system where we were trying to machine tungsten surface 

with only a 10 percent coupled power of the beam, we obtain the time of almost about close to 53 

microseconds or 5.3 microseconds which is actually very small number in terms of time of 



machining. So, this process is really very fast for in comparison to some of the other processes that 

have been illustrated before. So, let us now work on slightly different problem. 

 

We already have from before the equation delta theta z t minus d z 2 minus 1 by alpha delta theta 

z t by del t equal to 0. We know that the boundary conditions on the surface become theta z at 

point of time 0 is 0 and del theta by del z that means the gradient of temperature on the surface in 

the z direction on the surface corresponding to theta equal to let us say 0 at some point of time t is 

given by minus 1 by K H t, H t being the heat flux and which is actually constant and continuous 

on the surface and that is how semi-infinite region being exposed to a laser beam can be modeled. 

We slightly change the connotation of the problem by converting this semi-infinite region into a 

circular region meaning thereby that the beam actually now has a diameter d. So, you have a laser 

beam circular of diameter d, and you want to actually try and see how you model this equation for 

a circular laser beam which is more realistic and closer to the real-world situation. So, here the 

boundary conditions have to be slightly tweaked because of that and the new boundary conditions 

become theta z equal to at any point of time is at a point of time t equal to 0 is 0 because the laser 

beam is supposed to just get start irradiating the surface at time t equal to 0. 

 

Therefore, the temperature is still the room temperature the baseline temperature. The only other 

difference which would have in this particular case is that the gradient of temperature at the surface 

for corresponding to all different points of time t equal to 0. Now, really becomes a function of 

beam diameter and we can consider this to be minus h t by K pi d square by 4.  

 

             

So, if we assume this to be the new boundary conditions the solution that would emerge to this 

equation for a circular beam become equal to theta z t equals twice h root of alpha t by K times 

error function of the third kind z by twice root of alpha t minus same again times root of square of 



z plus d square by 4 divided by twice root of alpha t. 

Just worth mentioning that these three different error functions of different kinds would be 

represented as the basic error function of variable zeta is the numerical integration 2 by root pi 

integral varying between 0 and zeta e to the power of minus square of x d x. 

 

The second kind is basically a variation of this error function and just write it algebraically as 1 

minus error function zeta. This is only for simplicity sake that we are assuming this and there is 

another representation of the same error function, and we call it error function third kind or third 

type it is 1 by root pi e to the power of minus zeta square minus zeta times of error function of zeta 

that of second kind. So, we call this third kind. So, that is how we have defined these different 

values if you may recall in the earlier slide as well, we had if the heat flux were a step function 

meaning thereby that we assume that the heat starts at point of 0 at point of time t 0 equal to a 

constant heat flux H and continues there in for all points of time. So, it is like a step function in 

that case the solution that came out involved this second kind and it is basically nothing but 1 

minus error function and just for simplicity sake for algebraic representation, we are trying to 

represent the error function in various ways. 

           

So, that you can shorten the notational representation of the whole formulation that has been 

arrived at. So, here the same thing is done with a third kind which again is slightly complex form 

of what we had the error function 2 or second type. So, in a nutshell if we were to really find out 

the value of theta 0 t. corresponding to z equal to 0 and for all points of time t that means the 

temperature variation on the surface with the exposure to the beam starting from point of time t 

equal to 0 onwards. So, it just amount to putting the value of z to be 0 in this particular expression 

here and trying to find out how it would behave with respect to this new value. 

 

So, the value of the error function of the third kind ierfc zeta for zeta which is equal to again z by 



twice root of alpha t as we have assumed in earlier in this coefficient here, right here that is what 

the zeta value is. So, this becomes equal to very simply just 1 by root of pi e to the power of 0 

minus 0 error function of zeta equal to 0. So, this is simply 1 by root pi. So, if we represent this 

value or we substitute this value in the equation for the temperature on the surface theta 0 for all 

point of time theta 0 t we get this essentially boils down to let us just first write the whole 

expression twice H alpha t by K the error function of third kind z by twice root of alpha t minus 

the error function of the third kind again root of z square plus d square by 4 by twice root of alpha 

t corresponding to z equal to 0. So, this further becomes equal to 1 by root pi we just derived it in 

the last step minus ierfc the error function of the third kind ierfc and the z goes away here. 

 

So, it is basically d by 4 root of alpha t. So, that is essentially how the temperature variation on the 

surface of the machined workpiece the function of time can be represented as. So, if you know the 

beam diameter in this particular case d is the beam diameter and you are a pair of the different 

material properties of the material like K alpha so on so forth, and you also are aware of the coupled 

heat flux which in this case also is assumed to be like a step function. So, starting at time t equal 

to 0 you have a finite heat flux H which translates over all point of time in space. So, all point of 

time and so therefore, the theta the surface temperature as a function of time can really be equated 

to the melting point or melting temperature of the workpiece material, and you can have a good 

estimate of the time of machining based on looking at the various values obtained in this 

formulation here let us call it equation 1. 

        

So, let us just now slightly change this problem we had an earlier problem here where we found 

out assuming the surface or the workpiece to be a semi-infinite region we found out that the time 

of machining in this case was a very small value about 53 microseconds. Now, the same problem 

if we just change the beam from interacting with the semi-infinite region of the workpiece to a 

circular beam of diameter d how the whole time would get modified let us have a clear look at it. 

Now, in this case we have tweaked the problem slightly. So, you have a focused beam of diameter 



or 200 microns and remaining conditions being same the workpiece is tungsten sheet power 

intensity is about the same 10 to the power 5 watts per millimeter square assume about 10 percent 

absorption remaining 90 percent is reflected of the surface, and then all other properties like 

thermal conductivity volume-specific heat are given for tungsten sheet. So, it is merely the same 

problem with assuming in this particular case the beam is not a semi-infinite beam, but it is actually 

a circular beam of diameter 200 microns. 

 

Let us see how the difference would come in terms of machining time for both the cases. So, let 

us write down on the complete equation for the temperature theta 0 T equals theta m and this 

particular case as you know it is 3400 degree Celsius, and this can be equated to twice H root of 

alpha t by K times 1 by root of pi minus ierfc error function of third kind d by 4 root of alpha t. 

We plug in the various values here for example, H in this particular case is 10 percent of 10 to the 

power of 5 watts per millimeter square amount of power which is coupled comes out to be 10 to 

the power of 4 watts per millimeter square, and we have alpha in this particular case as 2.15 watt 

per centimeter degrees Celsius volume-specific heat rho c 2.71 joule per centimeter cube making 

I am sorry this is K thermal conductivity making the volume making the thermal diffusivity alpha 

the ratio of K by rho c 2.15 by 2.71 this comes out to be about 0.79-centimetre square per second. 

So, with all these parameters from the question we try to plug in these into this equation here and 

try to obtain the calculate the value of the time of machining t which is involved at several places 

here in this equation as you can see. So, we get 3400 equals twice times of if we just prefer 

converting this into watts per centimeter square this comes out to be equal to 10 to the power of 6 

watts per centimeter square, because you know everything else has to be consistent the units have 

to be all in CGS, and so to the reasonable extent and what we are left with is 2 times of 10 to the 

power of 6 times of root of 0.79-centimetre square per second times Tm the value of the machining 

time divided by K which is 2.15 watts per centimeter degree Celsius times of 1 by root of pi minus 



the error function of the third kind of this whole term. So, let us convert this 200 microns into 

centimeters. So, this comes out to be 210 to the power of minus 6 that is about 210 to the power 

of minus 4 meter or about 0.02 centimeters. 

So, this can divided by the term 4 root of again 0.79 t m. Let us call this value beta root of 0.79 t 

m, and we try to calculate the value for beta from this particular equation here right here. So, the 

first thing we need to do is to put the beta value in write in this equation here, and we can rewrite 

this equation as 3400 equals this whole thing can be calculated and written down as 9.30 times 10 

to the power of 5 times of beta, this is the beta value times 1 by root of pi minus the error function 

of the third kind of this whole term here which we call zeta. So, therefore, as you can rightly see 

here that zeta is basically nothing but 0.02, I am sorry let us just write this thing here. So, 0.02 by 

4 times of beta which makes it equal to 1 by 200 beta. So, that is how zeta can be classified. So, in 

summary, beta has been estimated as 0.79 time of machine t m, and zeta new parameter here is 1 

by 200 beta.  

And we can write down this equation if as you already know the error function of the third kind of 

a parameter zeta can be represented as 1 by root of pi e to the power of minus zeta square minus 

zeta error function of zeta. So, here the zeta value of course, is 1 by 200 beta. So, we can have this 

represented as 3400 equals 9.3 into 10 to the power of 5 times of beta times of 1 by root of pi 

minus 1 by root of pi exponential to the power of minus zeta square plus zeta times of 1 minus 

error function of zeta. 

 

That is how you can represent 3400, and you already know that the error function of zeta is actually 

twice by root pi integral 0 to zeta e to the power of minus x square dx. This is a numerical integral, 

and so you have standard tables calculating the error function as an area under the curve of e to 

the power of x square with respect to x, and for different zeta values zeta ranges varying between 

0, and different zeta values real values of zeta you have different error function values. So, this is 

represented here in this particular table as you can see for certain coefficient x here this represents 

the error function of x. And so, this essentially the zeta over equal to 2 0.2 the area under the curve 

twice root of pi of the area under the curve which is actually the error function is 0.2227. And so, 

you can take this all the way to about 2 for the curve to have complete area of about 1. 

So, actually 2 4, so essentially the variation from 2 to 4 is very less as you can see almost going to 

0.9953 here, and then goes to about 0.9999 at 2.8 x value, and then after that following this whole 

region it is about unity. 

So, it converges the value converges at about 4 the error function. So, in this way we can actually 

try to estimate by using a software the various values of zeta equal to 1 by 200 beta by plugging 

the beta value and trying to see what the error function comes out to be equal to plug this back 

here, and numerically try to determine what beta can be. So, the equation can really be solved by 

numerical methods in an iterative manner. 



 

Of course, we can start with the value of beta corresponding to the semi-infinite region time which 

was obtained 53 microseconds is 0.000053 seconds, and putting this t m value get the 

corresponding beta value, plug this beta to find out the zeta value, and the first approximation first 

iteration that can come out from the zeta is by plugging, and playing with the zeta here this is the 

error function you can calculate what is the e to the power of minus eta square by root of pi, put it 

back here, and try to find out how close this equation comes to 3400. 

 

Then you can actually vary the t m to a slightly lower value and try to again estimate beta vary the 

t m to a higher value, and try to estimate the beta, and see what is the trend here is it going closer 

to 3400 or far away from 2400 this equation. And so based on that you can actually figure out a 

good beta value for which this whole expression right hand side would be equal to the left-hand 

side. In this particular case using the table, and the numerical integration value the solution of this 

equation 3400 equals 9.3 10 to the power of 5 times beta by 1 by root of pi minus 1 by root of pi 



e to the power of minus zeta square plus zeta times of 1 minus twice by root of pi integral 0 to zeta 

e to the power of minus zeta square d zeta. This comes out to be corresponding to a zeta value of 

0.5, beta of 0.01, and time of machining 0.00073 seconds sorry it is 13 second. So, the time of 

machining in this particular case, as you can see 0.00013, is very small in comparison to the very 

large in comparison to the time of machining which was earlier for a semi-infinite region for 

obvious reasons that you are trying to reduce the beam area from a semi-infinite interaction with 

the workpiece to almost a small value of the diameter d equal to 200 microns. So, therefore, more 

time would be needed for this machining to happen because of heat losses across the beam 

boundary to the remaining part of the solid. So, we will just see the effect of power intensity. 

 

         

So, if let us suppose the power intensity in this particular case is H is very high of course, because 

of a higher H the t m should reduce, and if the t m reduces then you have this value of zeta here 

which has been estimated to be 100 1 by 200 beta root of 0.79 t m. So, as the t m reduces zeta 

value goes up. So, some changes should happen in this particular equation based on if the zeta is 

either reducing or increasing. So, supposing there is a case when the power intensity of the beam 

is low or time of machining is high, and subsequently the zeta is falling down here, zeta goes down. 

 

So, obviously, if we look at this part of the equation here, this equation or this part of the equation 

with the smaller value of zeta should typically go down. For example, if zeta were approaching 0 

then the let us just write down the equation once more 3400 equals 9.3 10 to the power of 5 times 

of beta times of 1 by root of pi minus 1 by root of pi to the power of minus zeta square plus zeta 

times of 1 minus error function of zeta that is what this term is corresponding to in this particular 

case. So, if zeta is going to 0 then this term goes to 1, and effectively we are having a zeta value 

here which is d by 4 root of alpha t as we have already cited before, and of course, it is small, but 

then we just want to find out because there is a smaller term which is here which is also beta. Let 



us find the overall effect on this equation because of that. 

 

So, one thing is that if this goes to 1 corresponding to zeta tending to 0 these two terms 1 by pi 

cancel with each other, and we are left with 9.3 10 to the power of  5 times of beta times of zeta, 

and let us just write the value of zeta here which is d by 4 root of alpha t on the surface 

corresponding to z equal to 0 times of 1 minus the error function of the value zeta. Zeta of course, 

is 1 by 200 beta as you have seen before. So, therefore, if we just sort of put this whole expression 

back in place try to see how this equation would change. We have theta on the surface 

corresponding to z equal to 0 at any function as a function of time t is twice h root of alpha t this 

is the beta value mind you divided by K times of now we have d by 4 root alpha t times of again 1 

minus error function of zeta, and zeta is d by 4 root alpha t as we already know here this root alpha 

t goes away we are left with h d by twice K 1 minus error function of zeta, and that is equal to the 

surface temperature as a function of time. 

              

If supposing the again value of this error function d by root of 4 alpha t m this tends to 0, and if 



you may look into this step reason for that that as x tends to 0 the error function tends to 0. So, we 

are talking about a typically zeta value between 0.2 and point I mean 0.0. So, in that event, the 

expression here would change to the simple formulation that total amount of power which is 

needed. 

 

 

So, that only the minimum possible melting temperature is hit upon let us say for example, this is 

equal to theta M. So, H d by 2 K is typically theta m, and in other words, the power which is needed 

which is called the critical power. That means, power enough for the melting temperature to hit 

upon is represented simply by twice K theta m by d, d is the beam diameter, and these are simplistic 

assumptions for a machinist where you can assume that you know the d value is in microns, and it 

goes to an extent that this whole value d by 4 this argument here d by 4 root of t m kind of tends 

to be between 0.2 and 0 something like that. So, in that event, the critical power which is needed 

for the temperature to go to a melting point of the workpiece is represented by this H c r equal to 

twice theta m K by d. 

 

So, having said that we can actually solve a small numerical problem where we define, or we try 

to find out this value of the critical power for a laser machining system. Here let us say for 

example if we already know the diameter to be 200 microns of the beam, and we assume the 

same tungsten workpiece meaning thereby that the other properties thermal conductivity and the 

thermal diffusivity remains similar to what we have taken earlier, and we assume that 10 percent 

of the beam is absorbed 90 percent is reflected. So, we need to find out that critical value of the 

beam power and let us look at how what kind of power values would be hitting upon in this 

particular case. So, we already know that H c r here critical power is represented as twice K theta 

m by d theta m as we know is the melting temperature of tungsten about 3400 degree Celsius. 



 

We already know the K value as defined earlier to be 2.15 watt per centimeter degree Celsius 

thermal conductivity of tungsten workpiece. So, in this particular case beam diameter, of course, 

is 200 microns let us put it in centimeters as 0.02 centimeters. So, we get the critical power H c r 

to be equal to twice 2.15 times of 3400 by 0.2, and that comes out to be 7.37 10 to the power of 5 

watt per centimeter square. We already know that 10 percent of the beam power is the only power 

which is coupled to the system. So, we are left with 7.37 10 to the power of 6 watt per centimeter 

square as the incident power for just about reaching the melting point of tungsten on the surface 

by because of the beam matter interaction. 

 

So, I think we have come to the end of today's lecture. Thank you. 


