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Hello everybody, welcome back to this series of lecture on Elements of Solar Energy  
Conversion. We are almost closing to the end, and today we are going to continue talking 
about the photovoltaic conversion mechanism, and today here we are at lecture number 34. 
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So, in the last class; what where we stopped? We have looked at the minority carrier injection 
right. So, due to the p n junction diode and if you apply a small potential ok, for forward bias 
potential, then you have some carrier injection in the minority side right; that is called 
minority carrier injection. 

So, for the n side, you have an increase in the concentration of holes, and that happens at the 
space charge region edge. And for the n side, we know, or we have designated that location 
to be xn, and that value is dependent on the equilibrium value of hole concentration in n side; 

multiplied by 𝑒
𝑞𝑉𝑎
𝐾𝑇 − 1. So, this is the carrier injection that happens, and you can see that it 

depends on the applied voltage. 

And similarly, for electrons, and of course, that will be in the P side where it is the minority 
carrier, there we will have this ∆np, and the space charge region edge in the N side is −𝑥𝑝. 

So, that will be  

∆𝑛𝑝(−𝑥𝑝) = 𝑛𝑝𝑜(𝑒
𝑞𝑉𝑎
𝐾𝑇 − 1) 
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So, I mean a similar procedure you can follow, and you can obtain this particular expression. 
And it is important to note that minority carrier concentrations are significantly affected; I 
stress on the word significantly affected under forward bias condition right. 

But the majority carrier, of course, they are also affected and amount wise; they are equally 
affected because it has to be mass balance; the total number of holes or electrons are not 
getting changed, there is no generation, no recombination so far. So, only due to bias; what 
we have? We have the same amount of some amount of holes going from the P side to the n 
side. 

And there, the minority carrier holes are significantly affected, but the majority of carrier 
concentrations are not significantly affected; we can say. Because the carrier concentration 
itself was higher to start with, and that is why a little bit of decrease does not matter ok. 

(Refer Slide Time: 04:44) 

 

Now, you can see from the expression itself; you can say the carrier injection happens as long 
as the potential is applied right. If you take out the potential, then that carrier injection will 
go away. 

Now, this carrier injection; is causing a larger concentration of the minority carrier at the edge 
of the space charge region, is not it? And in the Quasi Neutral region, where there is no field 
ok, that means ξ is equal to 0. So, there will be no drift current, right. And under equilibrium, 
the diffusion current also does not exist because, in the Quasi Neutral region, there is no 
gradient of these concentrations; if there is no gradient, there will be no diffusion right. 

So, under equilibrium, it does not, but once you increase the space charge region edge 
concentration, so there is a gradient that you are creating. So, the carrier injection is creating 
a concentration gradient in the Quasi Neutral region right because one edge, you have altered 
the concentration for ok. So that means diffusion will occur; let us first try to understand this 
qualitatively, how this carrier injection is going to affect the currents ok. 

(Refer Slide Time: 07:50) 
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So, you can qualitatively say that if this is the p n junction where this is the space charge 
region, you have this P side, N side, and here you have the space charge region. 

Then, on the P side, where the electrons are minority carriers, you have a larger concentration 
here. So, you have a concentration; gradient created at the edge of the Quasi Neutral region, 
ok. So, this is the electron concentration gradient ok created, and similarly, you can have some 
other hole concentration; it does not have to be equal, and in the N side, you have this hole 
concentration gradient right; this is the result of the carrier injection. 

So, whenever under equilibrium itself; under equilibrium as well as under forward biased 
condition; under forwarding biased condition, this recombination happens ok; with some 
characteristic lifetime, this we have seen before. So, in the continuity equation, the general 
form of continuity equation is this, if we write it for the minority carrier in the P side, that 
means, for the electrons right; this we have seen earlier, we are just restating it. 

So, under steady-state; this term will be 0 right, and if there is no generation; that means no 
light is falling on the diode, that term will also be 0; so under no light condition, no light or 
any form of energy going in; so that will not generate anything.  

So, what terms are we left with! This term right. So, we will be 

1

𝑞

ծ𝐽𝑛

ծ𝑥
=

∆𝑛𝑝

𝜏𝑛
 

𝜏𝑛 is the characteristic lifetime for an electron, ok. So, this is the continuity equation form, so 
this is the continuity equation for minority carriers on the P side. 
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Now, just by definition of  

𝐽𝑛 = 𝑞𝐷𝑛

𝑑𝑛𝑝(𝑥)

𝑑𝑥
 

Everything we are talking about on the P side, only the same thing can be done for, the other 
side ok and this is by definition right. 

Now, so, if we put this in the continuity equation, then what we get? We get the governing 
equation for the minority carriers electrons on the P side. And this Dn τn, this is the diffusion 
coefficient multiplied by the characteristic lifetime; you can see that it gives us a unit of length 

squared ok. If you look at the units, so you can as well write it in terms of 𝐿𝑛
2Ok. 

So, Ln is what? Ln is basically nothing, but this (𝐷𝑛𝜏𝑛)1/2and it is called diffusion length for the 
minority carrier right. So, what we obtained here is the governing equation. So, this equation 
is the governing equation that dictates how electron concentration in the P side of the diode 
will vary with the length from the edge of the space charge region right. 

So, earlier what we have seen, that if this is the space charge region, you have some 
concentration, and it will vary. So, this governing equation tells us the; so, basically, the form 
of this variation is obtained by solving this governing equation ok; that is the purpose, and 
that exact form is important, because then only we can quantify it. The concentration gradient 
form will tell us; how the diffusion happens. So, it is important to get hold of it to exactly 
quantify the diffusion current. 

(Refer Slide Time: 15:19) 
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Now, this governing equation is second-order; ODE, Ordinary Differential Equation right. You 
have only one dependent and one independent variable; the independent variable is the 
length x, and the dependent variable is ∆𝑛𝑝. So, the second-order ordinary differential 

equation will require two boundary conditions right; this you are familiar with your math 
background. 

So, what can we have? The first boundary condition that we have is at the space charge region 
itself. So, and that is x equal to (-xp) because we are talking about the P side and the space 
charge region stands where x is equal to (-xp), and it is known right rather ∆ np is known from 
the carrier injection, right. 

We have a quantifiable or quantified value of ∆ np at the space charge region edge ok. And 
what is that value? ∆ np is equal to at minus xp is equal 

∆𝑛𝑝(−𝑥𝑝) = 𝑛𝑝𝑜(𝑒
𝑞𝑉
𝐾𝑇 − 1) 

So, let us not use VA anymore; we do not have to say applied explicitly, that is the only voltage; 
so we are going to use V. So, here a small note that VA is being replaced by V, as no other 
voltage is present in the expression; so, there is no confusion; earlier we had to do it because 
we had to differentiate that applied voltage from the built-in voltage ok. 

So, now we do not have that built-in voltage anymore in the expression, so we do not have 
to differentiate by explicitly telling it is VA ok. So, this is the space charge region ∆𝑛𝑝 and the 

second boundary condition that we have is as x tends to infinity; that means, deep into the 
quasi-neutral region; what you have? You have, this tends to 0 because there will be no effect 
of the carrier injection deep into the quasi-neutral region; so that you can say x tends to 
infinity, your ∆𝑛𝑝 tends to 0. 

So, the boundary conditions you have, the governing equation you have; so you can find the 
solution of the GE; the governing equation under this boundary condition, which is ∆𝑛𝑝(𝑥); 

that means it is a general variable x now, and that is equal to ∆𝑛𝑝(−𝑥𝑝) and then this 

exponential function of x divided by Ln. 
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So, you can try this by yourself, and you can see whether you are getting this solution or not. 
Very straightforward, from your high school days differential equation understanding, you 
will be able to solve it ok. Now, we can put this value of the pre-exponential factor ok, which  

∆𝑛𝑝(𝑥) = 𝑛𝑝𝑜(𝑒
𝑞𝑉
𝐾𝑇 − 1)𝑒−𝑥/𝐿𝑛  

So, that is the complete solution of that concentration gradient, so it gives us the form of how 
that variation happens. 

(Refer Slide Time: 19:59) 

 

Now, let us go back to the P N junction diode; let us look at it again. So, again this is the space 

charge region ok, and we can see that this is x equal to (−𝑥𝑝) and this is x equal to (𝑥𝑛). Now, 

for the P side, so this is the P side, and this is the N side. So, for the P side, the ∆𝑛𝑝 happens 

like this, ok. And for the N side delta p n; so, this is basically this is delta p n as a function of x, 
is not it? And this one is ∆𝑛𝑝 as a function of x. 

Now, you can see the direction of these two changes for ∆𝑛𝑝 and ∆𝑝𝑛 are in opposing 

direction right. So, if you fix your like fix your origin here for the ∆𝑛𝑝; then, let us say that the 

x is increasing in this direction. So, let us use a new symbol x1 which is opposite to the direction 
of x, and on the other hand, if you fix origin here, you name this coordinate system x2, ok. 

So, this is just to ensure that we have taken two opposing directions; as the independent 
coordinate to analyze the ∆𝑛𝑝(𝑥) and ∆𝑝𝑛(𝑥) in a similar fashion; otherwise, we always have 

to bother about the sign. So, here the difference between x1 and x2, it is ensuring that as x1 or 
x2 go up in magnitude, the ∆𝑛𝑝 or ∆𝑝𝑛 also I mean, it goes down ok; that kind of assurance is 

obtained if we have a different coordinate system. That is the only reason; why we are 
choosing x1 and x2, instead of a single x ok. 

So, now, in this new coordinate system, what can we write? So, for the new coordinate 
system; what we can write is ∆𝑛𝑝, now x1, you note that we did not use x, but we have used 

x1; this is  

558



∆𝑛𝑝(𝑥) = 𝑛𝑝𝑜 (𝑒
𝑞𝑉
𝐾𝑇 − 1) 𝑒

−𝑥1
𝐿1  

So, please note that x1 is introduced, and you do not have to bother about the sign because 
that is the sign you have used earlier, ok. 

(Refer Slide Time: 24:01) 

 

So, if we put these in the expression of the current due to minority electrons in the x1 
direction, we have this  

𝐽𝑛(𝑥1) = 𝑞𝐷𝑛

𝑑∆𝑛𝑝(𝑥1)

𝑑𝑥1
 

This is the definition of Jn. So, now, we can know the ∆𝑛𝑝 variation with x; we quantifiably 

know. So, what we can write, 

𝐽𝑛(𝑥1) = 𝑞𝐷𝑛

1

−𝐿𝑛
𝑛𝑝𝑜 (𝑒

𝑞𝑉
𝐾𝑇 − 1) 𝑒

−𝑥1
𝐿𝑛  

So, this Ln comes from the differentiation ok. So, we just straightforwardly differentiated 
∆𝑛𝑝(𝑥) expression with respect to x1, ok. 

So, similarly for the other side; that means, for the N side; we get the current due to 
movement of minority holes right, and we can write the similar expression Jp; now, we will 
have x2 right is equal to now, as it has a negative or the expression; the charge is negative for 
holes what value you will get is 

𝐽𝑝(𝑥2) = −𝑞
𝐷𝑝

−𝐿𝑝
𝑃𝑛𝑜 (𝑒

𝑞𝑉
𝐾𝑇 − 1) 𝑒

−𝑥2
𝐿𝑝  

So, you agree to this? We just use the same thing; x1 and x2 are consistent with the current 
direction, ok. So, now, we know the explicit expressions for the minority currents in both the 
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Quasi Neutral regions and that under a certain potential V ok. So, for the forward bias, V is 
positive; for the reverse bias V is negative, but the expressions everything stays just as is. 
Now, that is the expression we obtained for the Quasi Neutral region. 

(Refer Slide Time: 27:34) 

 

Now, what happens to; what happens to the space charge region, right? Because if current 
flows through the diode, it has to pass through the space charge region as well, right; so? 
What happens there? So, the standard assumption is that the recombination does not happen 
in the space charge region. 

Why is it the standard assumption? I mean, why can we take this assumption? Because the 
space charge region is also called depletion region right and depletion region, why? Because 
the minority carriers are less in number in the space charge region so, it is also called depletion 
region because it is depleted of the minority carriers right. 

Why is it depleted of? Because you have a potential there, ξ is not equal to 0, and all the 
minority carriers that will come into that space charge region will be sucked into the other 
side right. So, that is why the depletion it is called the depletion region and that is why; if you 
have less number of or no number of minority carrier, how can the recombination happen? 

So, even the recombination term, you can neglect from the continuity equation. So, now, if 
we look at the continuity equation ok, this ∆n, again we are writing it for the electrons. And 
similar you can write for the hole right this is the form of the continuity equation we have 
used earlier also. 

So, now, we are; we do not have this term which is due to steady-state ok, and we do not 
have this term, due to no light condition ok and this term is also 0, because it is depletion 
region right. So, what we are left with; is just an only single term, and that is equal to 0. So, 

what we have this 
ծ𝐽𝑛

ծ𝑥
= 0, what does that mean? That Jn is constant in the space charge 

region, is not it? So, we get a very simple expression; it is constant, and what constant is it? 
That is very easy to find as we see next. 
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Now, you think of the Pn junction diode like this, ok. Let us say in this axis we are just plotting 
J and that J may be due to and J is for the minority current ok; minority carriers, so we will see 
that right now. 

So, let us draw the space charge region here, ok, and this is the direction where x is plotted 
ok. So, here again, just like earlier, this is −𝑥𝑝, this is 𝑥𝑛 and we have seen that we have used 

x1 in this direction and x2 in this direction, ok. So, from the given expression that we obtained 
after solving all those equations, first the continuity equation, first the governing equation for 
the concentration profile, and then the continuity equation. The current expression that we 
obtained, we can draw in this fashion. 

So, so as the concentration profile flattens, your current will go to 0 right. So, the current is 
going to 0 deep into the P side. So, this is the P side, and this is nothing but the minority carrier 
current, and in this case, the minority carrier is the electron. So this is the electron current. 
What can you write then? You can write it to be Jn right. 

And on the P side, you will have some other value; let us say this, and you will have the same 
thing. So, again it will go to 0; you can extend this axis, and again it will go to 0 as you go deep 
into the quasi-neutral region. In this case, this is N side, ok, and this is the minority current; 
minority carrier current and this case, they are holes; the minority carriers are holes ok. 

Now, the space charge region; we have not touched yet right. So, what will happen? We do 
know that it will be; it will be constant throughout the space charge region. Now, whatever 
constant happens at the edge, we can extend that ok; this will be the constant throughout 
the space charge region, then only the boundary condition is matched right. So, that is the Jn 
in the space charge region as well, and similarly, you can find the same constant value 
corresponding to Jp; so this is Jp, ok. 

So, both Jp and Jn are constant, but they are different constants ok in the space charge region, 
and those constants, they get smaller and smaller as you go deeper into the quasi-neutral 
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region; both for the P side and N side, and that is how the minority current looks like. So, this 
in the above picture is the minority current profile across the P N junction diode right. 

Do you agree to this? Now, if you look at the space charge region only ok; space charge region, 
you have the that is all the carrier you have right; you do not have any other carrier, because 
those have drifted out. So, in the space charge region, the total current would be this 𝐽𝑝 + 𝐽𝑛. 

And more precisely, what we can say Jp at x2 equal to 0; that means the Jp in the minority side 
and Jn, which is x1 equal to 0, and again, that is also minority current right. 

(Refer Slide Time: 36:43) 

 

So, now, if we redraw that thing on a bigger scale and now, I am not using; so let us say that 
this was the or I should I can use this current also. So, this was the case for the electrons in 
the P side right. So, and this was the case for holes in the N side, ok. Now, the total current in 
the space charge region will be the summation of this and that. So, let us say it is somewhere 
here, ok. 

So, if that is the total current and total current cannot be different in the different regions, 
right; it has to be equal everywhere. So, you can extend this line on the P side and on the N 
side to get the total current across the P N junction diode. So, this is total current ok, and 
these are; this is minority current right, and this one is also minority current, here we are 
plotting J, and different plots will give you different J. 

Now, what we are left with is the majority current; majority current does not apply for the 
space charge region right; so, majority current only in the quasi-neutral region. So, what you 
can write here that if you subtract the minority current from the total current in the quasi-
neutral region, you will get the majority carrier current, ok. So, this will be ok; this is the 
majority carrier current because this is now on the N side, ok. And similarly, we can draw that 
for the holes ok, so this is the majority carrier current in the P side. 

So, that gives us a complete picture of how different carriers are contributing to the total 
current across the P N junction diode. So, on the left-hand side, you can see the majority 
carrier is shown by this blue plot ok and in the this is the P side; let me explicitly write it, this 
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is P side, this is N side, and this is space charge region ok. So, the majority carrier is important, 
and it is carrying the maximum amount of charge, and on the P side, it is hole ok, and electron 
is the minority carrier on the P side. 

In the space charge region, that minority carrier contribution or majority carrier contribution 
does not exist. So, minority carrier contribution just stays the same ok, and from there, we 
continue in the other side of the quasi-neutral region ok. So, now, if we; so that is the 
qualitative picture we obtained. 

(Refer Slide Time: 41:24) 

 

Now, let us get back to the single independent axis in a sense no, x1 and x2, but only one x. So, 
for that, we need to make a little bit of adjustment in terms of coordinate transformation 
right. So, what we can write; that J total is equal to Jp at x 2 equal to 0, and we have to use 
minus for x1 because now, x1 and x are opposite to each other. 

So, basically, what we did? We have used a single x here, ok. So, this single x is giving us this 
adjustment of the minus sign, ok. So, this is for coordinate transformation from x1 to x ok, 
nothing else. And we have obtained the expression for Jn and Jp. Now, if we put those values, 
what we get? We can simplify. So,  

𝐽𝑡𝑜𝑡𝑎𝑙 = 𝑞(
𝐷𝑝

𝐿𝑝
𝑝𝑛0 +

𝐷𝑛

𝐿𝑛
𝑛𝑝𝑜)(𝑒

𝑞𝑉
𝐾𝑇 − 1) 

Do you agree to this? I mean, please do the algebra by yourself and make sure that you get 

this expression, ok. Now, this j total is nothing but your current density, right. So 
𝐼

𝐴
= 𝐽𝑡𝑜𝑡𝑎𝑙  

(Refer Slide Time: 44:09) 
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Now, earlier we have obtained; earlier we obtained that 𝐼 = 𝐼𝑜(𝑒
𝑞𝑉

𝐾𝑇 − 1), this we obtained 
before going quantitative analysis gave us this right. So, now, what we got?  

𝐼

𝐴
= 𝑞(

𝐷𝑝

𝐿𝑝
𝑝𝑛0 +

𝐷𝑛

𝐿𝑛
𝑛𝑝𝑜)(𝑒

𝑞𝑉
𝐾𝑇 − 1) 

 

Now, if you compare, so if you compare what you get? Io is nothing,  

𝐼𝑜 = 𝑞𝐴(
𝐷𝑝

𝐿𝑝
𝑝𝑛0 +

𝐷𝑛

𝐿𝑛
𝑛𝑝𝑜) 

You can further write in terms of the concentrations ok; npo and pno can be written in terms 
of concentration ok; of dopant. 

What I mean is npo is nothing but the intrinsic carrier concentration squared divided by the 

concentration of acceptor elements ok and pno is 
𝑛𝑖

2

𝑁𝐷  
 which is the dopant concentration ok. 

(Refer Slide Time: 46:27) 

564



 

So, if we replace those values, what can we get? This Io 

𝐼𝑜 = 𝑞𝐴(
𝐷𝑛

𝐿𝑛

𝑛𝑖
2

𝑁𝐴
+

𝐷𝑝

𝐿𝑝

𝑛𝑖
2

𝑁𝐷
) 

Now, we have it, so we get the expression of 𝐼𝑜 which we could not obtain by qualitative 
analysis right. 

So, now, we have obtained in terms of material properties; so what I mean by material 
properties? Because all these Dn, which is the diffusivity or diffusion coefficient of electrons 
in the material ok; if it is silicon, then silicon so, that is the diffusion coefficient of the electron.  

Dp is the diffusion coefficient of holes ok; Dp and Dn; they are diffusion coefficient for electrons 
and holes right. And Ln and Lp are called the diffusion length, which has the diffusion 
coefficient and characteristic time of; characteristic time of the recombination right, which is 
also called life span. 

So, the diffusion length takes into account that information. So, Ln and Lp; are also material 
property; so this is a material property, these are also material property, and ni is, of course, 
the intrinsic carrier concentration; intrinsic carrier concentration that is also a material 
property, is not it? And NA, ND are also material property in terms of those are; those you can 
control ok. 

The amount of dopant that you put in P side or N sides; those are controlled. So, these are 
dopant concentration, controllable parameter, and q is the charge of the electron, A is the 
area; the area is, of course, controllable that gives you Io. So, there is a complete skeleton; 
how we can obtain this Io is obtained now. 

(Refer Slide Time: 50:39) 
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And this Io is nothing but the reverse saturation current right. So, it is fixed for a; fixed P N 
junction diode. So, the P N junction diode, I mean the P and N part, is obtained by a particular 
dopant by doping those elements. So, once you have fixed those dopants, there is no way you 
can change this reverse saturation current. That is all it depends on, ok. 

And this particular expression; is called the dark I V equation. I V is for the current-voltage 
equation; for any device, any electronic or electrical device, this V I characteristic curve is very 
important. So, we are trying to get there, and this V I equation is only applicable; when there 
is no generation or any light falling on that diode, right. So, that is why it is called dark, under 
no light conditions. 

So, if you follow how we proceeded, we proceeded with first understanding the equilibrium 
where there is no voltage. If you just bring them P and N together, what happens inside the 
band structure and all, and that is how we got the equilibrium. Now, once you get the voltage 
applied, so forward bias, reverse bias; how does that affect? That is what we got, and this is 
the pinnacle of that analysis which gives us the dark I V equation. 

And in the next class, we look at when you apply light, how the photovoltaic effect generates, 
and how you get some current. So, let us stop here in this class and continue from here in the 
next class. 

Thank you very much. 
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