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Hello everyone. So, in the last few lectures of this module, we have solved some exact 

solutions of Navier-Stokes equations. You know the assumptions and how to write the 

ordinary differential equation from the partial differential equations and invoking the 

boundary conditions, how you can derive the velocity distribution and the volumetric flow 

rate.  

So, today we will solve some example problems from the knowledge of whatever you have 

already carried out in this lecture. 
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So, let us take the first problem, two viscous incompressible, immiscible fluids of different 

viscosity and density flow in separate layers between two infinite parallel plates. The flow 

is driven by a constant favorable pressure gradient. Derive the expressions for the velocity 

profiles in the two layers and find the volume flow rate per unit width. 



This is the problem; so we have two parallel plates; stationary parallel plates, where you 

have velocity is 0. And two layers; one is fluid A, whose viscosity is µA, and fluid B, whose 

viscosity is µB. For convenience, we have taken the axis from this interface of these two 

layers. So, y is measured from this interface and x is the axial direction and these are the 

height of these layers HA and HB. 

So, you can see this is a similar problem which we have already solved in two layers quite 

flow; but in this particular case, a top boundary is stationary, velocity is 0. And we have 

taken the axis in the interface of these two layers. So, we will start from the ordinary 

differential equation. 

For this particular case you know, what is the ordinary differential equation, obviously it 

is a pressure-driven flow. So, you can write the ordinary differential equation neglecting 

the gravity as 

𝑑2𝑢𝐴

𝑑𝑦2
=

1

µ𝐴

𝜕𝑝

𝜕𝑥
 

𝜕𝑝

𝜕𝑥
 is a constant rate. 

So, for this fluid A layer, you can write the velocity distribution, which is y in between -H 

to 0. So, this you can write as 

𝑑𝑢𝐴

𝑑𝑦
=

1

µ𝐴

𝜕𝑝

𝜕𝑥
𝑦 + 𝐶1𝐴 

And  

𝑢𝐴 =
1

2µ𝐴

𝜕𝑝

𝜕𝑥
𝑦2 + 𝐶1𝐴𝑦 + 𝐶2𝐴 

So, we have the boundary conditions at y is equal to -HA, u is equal to 0. So, you can see 

if you put it here, you will get  

0 =
1

2µ𝐴

𝜕𝑝

𝜕𝑥
𝐻𝐴

2 − 𝐶1𝐴𝐻𝐴 + 𝐶2𝐴 

 



So, you can express it as 

𝐶2𝐴 = 𝐶1𝐴𝐻𝐴 −
𝐻𝐴

2

2µ𝐴

𝜕𝑝

𝜕𝑥
 

So now, if you put it in this expression of this velocity distribution in the fluid a domain; 

so you can write  

𝑢𝐴 =
1

2µ𝐴
(−

𝜕𝑝

𝜕𝑥
) (𝐻𝐴

2 − 𝑦2) + 𝐶1𝐴(𝑦 + 𝐻𝐴) 

Now, similarly let us find the velocity distribution in layer fluid B.  
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So, in the range of y 0 to HB, we have the equation  

𝑑2𝑢𝐵

𝑑𝑦2
=

1

µ𝐵

𝜕𝑝

𝜕𝑥
 

So, integrating twice, you will get  

𝑑𝑢𝐵

𝑑𝑦
=

1

µ𝐵

𝜕𝑝

𝜕𝑥
𝑦 + 𝐶1𝐵 

𝑢𝐵 =
1

2µ𝐵

𝜕𝑝

𝜕𝑥
𝑦2 + 𝐶1𝐵𝑦 + 𝐶2𝐵 



Again we have the boundary condition at y is equal to HB, uB is equal to 0. So, from this 

expression, you can write  

𝐶2𝐵 = −  (𝐶1𝐵𝐻𝐵 +
𝐻𝐵

2

2µ𝐵

𝜕𝑝

𝜕𝑥
)    

Then you can write 

𝑢𝐵 =
1

2µ𝐵
(−

𝜕𝑝

𝜕𝑥
) (𝐻𝐵

2 − 𝑦2) + 𝐶1𝐵(𝑦 − 𝐻𝐵) 

Now, we need two boundary conditions. For this, we will use the interface conditions. So, 

at the interface you know that velocity is continuous as well as shear stress is continuous. 

So, from these two conditions, we will be able to find these two constants. So, at the 

interface of two layers ok, velocity is continuous and shear stress is also continuous. 

So, if velocity is continuous, then you can write. So, this is at y is equal to 0 right; at the 

interface means, at y is equal to 0. So, we can write 

𝑢𝐴|𝑦=0 = 𝑢𝐵|𝑦=0 

So, at y is equal to 0;  you will get C2A is equals to C2B. And if shear stress is continuous, 

then you can write  

𝜏𝐴|𝑦=0 = 𝜏𝐵|𝑦=0 

µ𝐴

𝑑𝑢𝐴

𝑑𝑦
|

𝑦=0

= µ𝐵

𝑑𝑢𝐵

𝑑𝑦
|

𝑦=0

 

µ𝐴𝐶1𝐴 = µ𝐵𝐶1𝐵 

𝐶1𝐴𝐻𝐴 −
𝐻𝐴

2

2µ𝐴

𝜕𝑝

𝜕𝑥
= −𝐶1𝐵𝐻𝐵 −

𝐻𝐵
2

2µ𝐵

𝜕𝑝

𝜕𝑥
 

So, now you can write  

𝐶1𝐴 (𝐻𝐴 −
µ𝐴

µ𝐵
𝐻𝐵) =

1

2

𝜕𝑝

𝜕𝑥
(

𝐻𝐴
2

µ𝐴
−

𝐻𝐵
2

µ𝐵
) 

 



𝐶1𝐴 =
1

2

𝜕𝑝

𝜕𝑥

µ𝐵𝐻𝐴
2 − µ𝐴𝐻𝐵

2

(µ𝐵𝐻𝐴 + µ𝐴𝐻𝐵)µ𝐴
 

𝐶1𝐵 =
µ𝐴

µ𝐵  
𝐶1𝐴 =

1

2

𝜕𝑝

𝜕𝑥

µ𝐵𝐻𝐴
2 − µ𝐴𝐻𝐵

2

(µ𝐵𝐻𝐴 + µ𝐴𝐻𝐵)µ𝐵
 

And if you put in the corresponding velocity distribution, you will get the velocity 

distribution in two-fluid layers.  
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So, after putting the expression of these constants in the velocity distribution, let us write 

the final velocity distribution in two different layers. So, in fluid A domain, where y varies 

from -HA to 0; fluid velocity is uA which is 

𝑢𝐴(𝑦) =
1

2µ𝐴
(−

𝜕𝑝

𝜕𝑥
) [(𝐻𝐴

2 − 𝑦2) +
µ𝐴𝐻𝐴

2 − µ𝐵𝐻𝐵
2

µ𝐵𝐻𝐴 + µ𝐴𝐻𝐵
(𝑦 + 𝐻𝐴)] 

Similarly, in fluid B layer, where y varies between 0 and HB; we can write the velocity 

distribution uB as  

𝑢𝐵(𝑦) =
1

2µ𝐵
(−

𝜕𝑝

𝜕𝑥
) [(𝐻𝐵

2 − 𝑦2) +
µ𝐴𝐻𝐵

2 − µ𝐵𝐻𝐴
2

µ𝐵𝐻𝐴 + µ𝐴𝐻𝐵
(𝑦 − 𝐻𝐵)] 

 



So, now, you can see here, what velocity distribution we are found; now at the interface 

obviously, the gradient will change and at the interface the velocity is continuous as well 

as shear stress is continuous. So, how will draw the velocity profile? So, here you can see 

that obviously for this particular case you can see that velocity distribution will look like 

this.  

So, some gradient will be there at the interface. So, this will be θA, ok. And at the wall, it 

is 0. And if you draw from in fluid B; so there will be some velocity distribution maybe 

like this, the velocity distribution will look like this and here you can see the tangent will 

be this one and this is θB.  

So, obviously it depends on how the velocity will look like depending on θA is greater than 

θB or θA is less than θB; it depends on the viscosity µA and µB. So, if µB is less than µA, 

obviously you may get the velocity distribution like this.  

Now, let us take a special case, where you have the same height of the two layers; that 

means HA is equal to HB. So, in this particular case, special case, where HA is equal to HB 

is equal to H; then you can write the velocity profile  

𝑢𝐴(𝑦) =
1

2µ𝐴
(−

𝜕𝑝

𝜕𝑥
) [(𝐻2 − 𝑦2) +

µ𝐴 − µ𝐵

µ𝐴 + µ𝐵
𝐻(𝑦 + 𝐻𝐴)] 

𝑢𝐵(𝑦) =
1

2µ𝐵
(−

𝜕𝑝

𝜕𝑥
) [(𝐻2 − 𝑦2) +

µ𝐴 − µ𝐵

µ𝐴 + µ𝐵
𝐻(𝑦 + 𝐻𝐴)] 

So, you can see that the velocity distribution is given for the equal height of the layers. 

Now, if µB is less than µA. Then at the interface, shear stress is continuous.  

So, τA is equal to τB. So,  

µ𝐴

𝑑𝑢𝐴

𝑑𝑦
|

𝑦=0

= µ𝐵

𝑑𝑢𝐵

𝑑𝑦
|

𝑦=0

 

 So, now, you can see from here that, if µB is less than µA; then obviously  

𝑑𝑢𝐴

𝑑𝑦
|

𝑦=0

>  
𝑑𝑢𝐵

𝑑𝑦
|

𝑦=0

 

 



So, from here you can see 

𝑑𝑦

𝑑𝑢𝐵
|

𝑦=0

<
𝑑𝑦

𝑑𝑢𝐴
|

𝑦=0

 

So, this is the representation at that interface of the gradient, so that is nothing but tan θB 

is less than tan θA. So, hence θB is less than θA. So, obviously, if µB is less than µA; velocity 

distribution will look like this, such that at the interface θB will be less than θA. So, now, 

let us find the volume flow rate per unit width.  
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So, we know the velocity distribution. So, we can integrate it at a particular cross-section 

and we can find the volume flow rate per unit width. So,  

= 𝑢𝑎𝑣𝐴 =  ∫
𝐴

𝑢 𝑑𝐴 

𝑄

𝑊
= ∫ 𝑢𝐴𝑑𝑦 + ∫ 𝑢𝐵𝑑𝑦

𝐻𝐵

0

0

−𝐻𝐴

 

So, if you put the velocity distribution here uA and uB and if you do the integration and 

putting the limits, you will get  

= (−
𝜕𝑝

𝜕𝑥
) [

1

3
(

𝐻𝐴
3

µ𝐴
+

𝐻𝐵
3

µ𝐵
) +

1

4
(

𝐻𝐴
2

µ𝐴
−

𝐻𝐵
2

µ𝐵
) (

µ𝐴𝐻𝐵
2 − µ𝐵𝐻𝐴

2

µ𝐵𝐻𝐴 + µ𝐴𝐻𝐵
)] 



Now, if you take as a special case, where you have a single fluid layer, let us say HA is 

equal to H; then obviously you will get the volume flow rate same as for the plane 

Poiseuille flow, where the distance between two parallel plates is H. So, a special case 

where you have a single fluid layer, where we can put HA is equal to 0 and HB is equal to 

H. 

Then you will get a single fluid layer and it is a representation of plane Poiseuille flow, 

where y is measured from the bottom plate and x is the axial direction and this is H. So, if 

you put HA is equal to 0 here and HB is equal to H, then 

𝑄

𝑊
= (−

𝜕𝑝

𝜕𝑥
) [

1

3

 𝐻3

𝜇
 +

1

4
 (−

 𝐻2

𝜇
) 𝐻] 

=
 𝐻3

12𝜇
(−

𝜕𝑝

𝜕𝑥
) 

So, you can see, this is the same expression as you will get for the plane Poiseuille flow, 

where the distance between two parallel plates is H, and it is 
 𝐻3

12𝜇
(−

𝜕𝑝

𝜕𝑥
). 
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Now, let us take another example problem. Under the influence of gravity, a viscous liquid 

flows down a stationary vertical wall, forming a thin film of constant thickness, H. An up-

flow of air next to the film exerts an upward constant shear stress τo on the surface of the 



liquid layer. The pressure in the flow is uniform. Derive a the film velocity u as a function 

of y and b the shear stress τo  that would result in a zero net volume flow rate in the film.  

So, here you can see, this is the thin liquid film of thickness H and x is in the downward 

direction, y is measured perpendicular to this vertical plate. And in the airside, it is told in 

the question that, it exerts upward constant shear stress is τo. So, at the interface, the τo is 

acting in the upward direction and gravity obviously is acting in the positive x-direction in 

this case. So, this is g.  

So, we have to find the velocity distribution inside the film as well as the shear stress τo 

that would result in a zero net volume flow rate in the film. So, you have to find the τo 

value, such that at any location in the liquid, net volume flow rate will be 0. So, we will 

start from the ordinary differential equation; you can see in this particular case, it is 

gravity-driven flow, there is no imposed pressure gradient.  

And what are the boundary conditions, at y is equal to 0, it is a stationary plate; so u is 

equal to 0 and at the interface, you have the shear stress which is actually equal to -τo. At 

the fluid layer, it will be equal to minus the imposed shear stress from the air side.  

So, in this particular case, it is a balance between the viscous force and the gravity force. 

So, it will be 

𝑑2𝑢

𝑑𝑦2
= −

𝜌𝑔

µ
 

𝑑𝑢

𝑑𝑥
= −

𝜌𝑔

µ
𝑦 + 𝐶1 

𝑢(𝑦) = −
𝜌𝑔𝑦2

2µ
+ 𝐶1𝑦 + 𝐶2 

At y is equal to 0, these are the boundary condition; at u is equal to 0, so that will give C2 

is equal to 0.  

And at y is equal to H, the shear stress in the fluid side will be equal to -τo. So, we can 

write 



µ
𝑑𝑢

𝑑𝑦
|

𝑦=𝐻

= −𝜏𝑜 

So, 

µ (−
𝜌𝑔𝐻

µ
+ 𝐶1) = −𝜏𝑜 

So,  

𝐶1 = −
𝜏𝑜

µ
+

𝜌𝑔𝐻

µ
=

1

µ
(−𝜏𝑜 + 𝜌𝑔𝐻) 

So, final velocity distribution,  

𝑢(𝑦) =
1

µ
 [𝜌𝑔 (

 𝐻3

2
−

𝐻3

6
) −

𝜏𝑜𝐻2

2
] 

. 
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So, this is the velocity distribution. Now, let us calculate the volume flow rate first; then 

we will put the volume flow rate at 0 and we will find the value of shear stress τo. So, the 

volume flow rate per unit width Q/W we can write as  

𝑄 = 0 



 𝜌𝑔𝐻3

3
−

𝜏𝑜𝐻2

2
= 0 

𝜏𝑜 =
2𝜌𝑔𝐻

3
 

Due to gravity there will be a viscous force and that viscous force will be balanced by the 

shear stress on the wall and the net volume flow rate will be 0. Now, let us consider the 

next problem. 
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An oil-filled barge has developed a narrow longitudinal crack in its side which extends a 

distance W in a direction perpendicular to this plane. Oil leaks out the crack and being less 

dense than water runs up the side of the barge inclined at an angle θ from the vertical in a 

thin layer of constant thickness h. 

Upon reaching the air-water interface, it flows laterally away from the barge. The oil 

viscosity is very much greater than that of the water. Calculate the value of volume flow 

rate Q from the barge. So, you can see this is the oil-filled barge; so there is a crack and 

from this crack, this oil is flowing inside. And as water is here, it is forming a thin film of 

thickness h and this oil is going up and here the air is there; so it is flowing over this water 

in this direction. 



So, this plate you can see, it is having this angle θ with the vertical direction. So, we need 

to find what is the Q or volume flow rate of this oil, and the gravity is in this direction. So, 

you can see, we can take the x-axis along this direction, and y we can measure 

perpendicular to this direction. 

So, we will have two components of this g. So, one is this direction and another is in this 

direction. So, obviously you can see, this will be θ and you will get gcosθ in the negative 

x-direction and in the positive y-direction you will get gsinθ. Now, obviously from the y 

component momentum equation, you can write  

𝜕𝑝

𝜕𝑥
= 𝜌𝑔 sin 𝜃 

This is the hydrostatic pressure. 

From the x momentum equation, you will get 

0 = −
𝑑𝑝

𝑑𝑥
− 𝜌𝑔 cos 𝜃 + µ

𝑑2𝑢

𝑑𝑦2
 

Now, if you consider at y is equal to H at the interface; so obviously you can see that you 

will get water is stationery. And at this, you will get  

𝜕𝑝

𝜕𝑥
= −𝜌𝑤𝑔 cos 𝜃 

So, we can denote ρa, ρo as oil density and ρw oil water and µ is the oil viscosity. So, from 

here you can see this we can denote as ρw. So, from here if  
𝜕𝑝

𝜕𝑥
 is acting at the interface and 

it will be imposed inside; because 
𝜕𝑝

𝜕𝑦
 is just constant, so it will be just imposed inside. So, 

𝜕𝑝

𝜕𝑥
 will be the same inside the oil this, inside the thin film.  

So, obviously 
𝜕𝑝

𝜕𝑥
  value we can put it here as -ρwgcosθ. So, we can write  

𝑑2𝑢

𝑑𝑦2
= −

𝜌𝑤 − 𝜌𝑜

µ𝑜
𝑔 cos 𝜃 



So, now this ordinary differential equation, you integrate twice; find the velocity 

distribution inside the thin film and from there, we can calculate the volume flow rate. So, 

if you integrate twice, you will get velocity distribution 

𝑢(𝑦) = −
(𝜌𝑤 − 𝜌𝑜)

2µ𝑜
𝑔 cos 𝜃 𝑦2 + 𝐶1𝑦 + 𝐶2 

And boundary conditions are at y is equal to 0, it is a stationary plate, so u is equal to 0. 

So, from here you will get C2 is equal to 0. And at y is equal to H; you can see here it is 

written that the oil viscosity is very much greater than that of the water. So, using that and 

at the interface obviously, the shear stress du/dy will be 0; that we have already discussed 

earlier. So, du/dy is 0; so 

𝐶1 =
(𝜌𝑤 − 𝜌𝑜)

µ𝑜
𝑔 cos 𝜃  ℎ 
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So, now if you put these constants in this expression, we will get  

𝑢(𝑦) =
(𝜌𝑤 − 𝜌𝑜)𝑔 cos 𝜃

µ𝑜
 (ℎ −

𝑦

2
) 

 

Now,  



𝑄

𝑊
= ∫ 𝑢𝑑𝑦

𝐻

0

 

=
(𝜌𝑤 − 𝜌𝑜)𝑔 cos 𝜃

µ𝑜
 [ℎ

𝑦2

2
−

𝑦3

2.3
]

0

𝐻

 

=
(𝜌𝑤 − 𝜌𝑜)𝑔 cos 𝜃 𝐻3

3µ𝑜
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. 

Now, let us consider another problem, viscous oil leaks at a volumetric flow Q to the 

atmosphere through a crack of height ho onto a horizontal surface, where it continues to 

flow horizontally, but with diminishing thickness h which is a function of x. The crack 

width W in the direction normal to the plane of the flow is much greater than ho. Assuming 

that the initial thickness of the layer at x equal to 0 is equal to ho, derive an expression of 

h(x). 

So, you can see a viscous oil it is leaking into the atmosphere through this crack. And the 

initial height of this liquid is ho and y is measured from the bottom and x is in this axial 

direction and obviously, the plate is stationary. So, u is equal to 0; but the thickness is a 

function of x from here. 

So, you can see, if you measure x from here. So, at x equal to 0, you can put h is equal to 

ho. So, h is measured from this place. So, at the interface how you can see the flow as half 



of the plane Poiseuille flow. So, if you have a plane Poiseuille flow of height h; then 

obviously at h/2 this is the interface and the shear stress we can put as 0. 

So, we have a constant pressure gradient. So,  

𝜕𝑝

𝜕𝑦
= −ρ𝑔 

So, g is acting in this direction and the pressure if you integrate it, you will get atmospheric 

pressure. So, this is your pa, then you can write  

𝑝 = 𝑝𝑎 + ρ𝑔(ℎ − 𝑦) 

So, from here you can see that 

𝜕𝑝

𝜕𝑥
= ρ𝑔

𝑑ℎ

𝑑𝑥
 

So, the velocity distribution in this layer will be the same as that in the lower half of the 

plane Poiseuille flow in a channel of height 2h, where there is 0 shear stress at the mid-

distance h above the lower surface, ok. So, we can write for plane Poiseuille flow, we 

know the volume flow rate, plane Poiseuille flow of a channel of height H. 

So, we know that  

𝑄

𝑊
=

 𝐻3

12µ
(−

𝜕𝑝

𝜕𝑥
) 

So, now, this thickness we are considering as half-width of the or half-thickness of the 

plane Poiseuille flow. So, obviously in this case then H will be of 2H and volume flow 

rate, obviously, it is it will be half.  

So, for this problem, we can write 

𝑄

𝑊
=

1

2

 (2ℎ)3

12µ
(−

𝜕𝑝

𝜕𝑥
) = −

𝜌𝑔ℎ3

3µ

𝑑ℎ

𝑑𝑥
  

So, h is function of x, so dh/dx. So, now using this expression, you can integrate it and 

after putting this boundary condition at x is equal to 0, the height is ho.  



So, you can find the, this height in as a function of x. If you rearrange it, so you will get  

−ℎ3 𝑑ℎ =
3µ

𝜌𝑔

𝑄

𝑤
 𝑑𝑥   
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Now, if you integrate it  

∫ −ℎ3 𝑑ℎ = ∫
3µ

𝜌𝑔

𝑄

𝑤
 𝑑𝑥

𝑥

0

ℎ

ℎ𝑜

 

ℎ𝑜
4 − ℎ4

4
=

3µ𝑥

𝜌𝑔

𝑄

𝑤
 

ℎ(𝑥) = ℎ𝑜 [1 −
12µ𝑥

𝜌𝑔ℎ𝑜
4

𝑄

𝑤
] 

So, in today’s lecture, we have solved several problems, where we used the knowledge of 

this exact solution of Navier Stokes equations, which we have already learned in this 

module. We have seen how the engineering problems can be solved using the knowledge 

of this Viscous Fluid Flow. You can solve several problems from any viscous fluid flow 

book, which we have already referred to in this course. 

Thank you. 


