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Hello everyone, today we will continue with the exact solutions of Navier-Stoke equations 

in Cartesian coordinates. In today’s lecture, we will consider first Plane Poiseuille Flow 

with a Slip at the wall and then we will consider plane Poiseuille flow. First, we will start 

with plane Poiseuille flow with slip and we will consider the same slip in both the plates. 
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So, we have the assumptions of laminar, steady, incompressible flow with constant fluid 

properties. Fully developed flow, so 
𝜕𝑢

𝜕𝑥
 will be 0, pressure gradient is constant, 

gravitational acceleration in x-direction, gx is 0 and assume that same slip occurs in both 

the plates, so the flow is symmetric with respect to the centerline.  

So, these are the 2 plates infinite parallel plates, this is the x-direction and y is measured 

from the center line and the distance between 2 parallel plates is 2H and slip is there in 

both the walls. The slip occurs along with the 2 plates according to the slip law, τw which 

is your wall shear stress is equal to βuw at y is equal to H and -H; that means, at walls. 



Where, β is known as the material slip parameter, material slip parameter uw is your slip 

velocity at the wall. 

So, you can see your material slip parameter is inversely proportional to the slip velocity 

uw and τw is your shear stress, exerted by the fluid on the plate. Obviously, τw then will be 

just negative of τyx at y is equal H or -H. So, you can see that we can apply now the 

boundary condition either at y is equal to H or -H, u is equal to uw or you can apply this 

shear stress star w in terms of β and uw. 
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So, considering this fully developed flow with other assumptions we can write the 

governing equation as;  

𝜕2𝑢

𝜕𝑦2
=

1

µ

𝜕𝑝

𝜕𝑥
 

𝜕𝑢

𝜕𝑦
=

1

µ

𝜕𝑝

𝜕𝑥
𝑦 + 𝐶1 

If you integrate then you will get the velocity profile which is your  

𝑢(𝑦) =
1

2µ

𝜕𝑝

𝜕𝑥
𝑦2 + 𝐶1𝑦 + 𝐶2 

 



You see at y is equal to 0 we have assumed that it is symmetric because if you have a slip 

at both walls is same then you can use symmetry boundary condition at y is equal to 0 and 

that will give 
𝜕𝑢

𝜕𝑦
  is equal to 0. And at y is equal to H, you can apply the wall shear stress 

τw is equal to βuw. 

So, now you can see if you apply this boundary condition at y is equal to 0, du/dy is equal 

to 0 from the first expression you can get c1 is equal to 0; so that will give c1 is equal to 0. 

Now, let us find the shear stress 

𝜏𝑦𝑥 = µ
𝜕𝑢

𝜕𝑦
=

𝜕𝑝

𝜕𝑥
𝑦 

Now, you can calculate the wall shear stress τw is equal to -τyx and then we will apply the 

second boundary condition. So,  

𝜏𝑤 = 𝜏𝑦𝑥|𝑦=𝐻 = −
𝜕𝑝

𝜕𝑥
𝐻 

So, now, apply this boundary condition at y is equal to H, 

𝑢𝑤 =
1

𝛽
𝜏𝑤 = −

𝐻

𝛽

𝜕𝑝

𝜕𝑥
 

So, this uw expression you can put it here and find the other constant C2; C1 is 0 anyway. 
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So, if you put in the left hand side uw expression then it is  

−
𝐻

𝛽

𝜕𝑝

𝜕𝑥
=

1

2µ

𝜕𝑝

𝜕𝑥
𝐻2 + 𝐶2 

So, from here you can find the value of C2 as 

=
1

2µ

𝜕𝑝

𝜕𝑥
(𝐻2 +

2µ𝐻

𝛽
) 

So, if you substitute this constant C2 in the expression of velocity then you will get the 

velocity profile, velocity distribution u(y) is  

𝑢(𝑦) = −
1

2µ

𝜕𝑝

𝜕𝑥
(𝐻2 +

2µ𝐻

𝛽
− 𝑦2) 

𝑢(𝑦) = 𝑢𝑤 +
1

2µ
(−

𝜕𝑝

𝜕𝑥
) (𝐻2 − 𝑦2) 

So, you can see here that u is just the superposition of velocity uw and the velocity from 

the plane Poiseuille flow without slip. 

So, uw is your slip velocity and this is the velocity profile of plane Poiseuille flow without 

slip. So, this is the superposition of these two. So, what will be the velocity profile? So, 

obviously you can see it is parabolic. You have this from plane Poiseuille flow whatever 

solution you are getting so that is your parabolic in nature with a constant velocity uw at 

the wall. 

So, you can see that at the wall you have uw and this is your velocity profile which is 

function of y.  
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Now, let us calculate the volume flow rate. So, volume flow rate you can calculate Q as  

𝑄 = ∫
𝐴

𝑢(𝑦) 𝑑𝐴 = ∫ 𝑢𝑊𝑑𝑦
𝐻

−𝐻

 

𝑄

𝑊
=  2 ∫ [𝑢𝑤 +

1

2µ
(−

𝜕𝑝

𝜕𝑥
)

𝐻

0

(𝐻2 − 𝑦2)] 𝑑𝑦 

=  2 [𝑢𝑤𝐻 +
1

2µ
(−

𝜕𝑝

𝜕𝑥
) (𝐻2𝐻 −

𝐻3

3
)] 

=  2𝑢𝑤𝐻 +
2𝐻3

3µ
(−

𝜕𝑝

𝜕𝑥
) 

𝑢𝑤 = −
1

𝛽

𝜕𝑝

𝜕𝑥
𝐻 

𝑄

𝑊
=

2𝐻3

3µ
(−

𝜕𝑝

𝜕𝑥
) (1 +

3µ

𝛽𝐻
) 

Now, we want to find the average velocity or mean velocity and from the volume flow rate 

easily you can calculate it because if you divide the flow area then you will get the mean 

velocity. 



So, mean velocity um you will get Q/A, where A is the flow area. In this case, you have W 

and flow area is 2H. So, from here you will get average velocity as  

𝑢𝑚 =
𝑄

𝐴
=

𝑄

𝑊(2𝐻)
=

𝐻2

3µ
(−

𝜕𝑝

𝜕𝑥
) (1 +

3µ

𝛽𝐻
) 

So, in the flow situation if average velocity is given then the pressure gradient you can 

find from this expression or if pressure gradient is provided then you can find the average 

velocity. So, the pressure gradient will be 

−
𝜕𝑝

𝜕𝑥
=

3µ𝑢𝑚

𝐻2 (1 +
3µ
𝛽𝐻

)
 

So, here you can see that mean velocity is positive, other quantities are positive so; 

obviously, −
𝜕𝑝

𝜕𝑥
  is greater than 0.  
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Now, let us find the shear stress distribution inside the wall and from there you will be 

able to calculate the wall shear stress and if you are interested you can find what is the 

force acting on the flat wall. So, shear stress τyx you will just find as 

𝜏𝑦𝑥 = µ
𝜕𝑢

𝜕𝑦
=

𝜕𝑝

𝜕𝑥
𝑦 



𝜏𝑦𝑥 = −
3µ𝑢𝑚

𝐻2 (1 +
3µ
𝛽𝐻

)
𝑦 

 

So, at y is equal to H, your τyx will be   

𝜏𝑦𝑥|𝑦=𝐻 = −
3µ𝑢𝑚

𝐻2 (1 +
3µ
𝛽𝐻

)
 

At y is equal to –H τyx will be   

𝜏𝑦𝑥|𝑦=−𝐻 =
3µ𝑢𝑚

𝐻2 (1 +
3µ
𝛽𝐻

)
 

So, how it will vary inside the flow domain? So, y is equal to -H you have a positive value. 

So, on the top wall, you have a negative value of τyx and it linearly varies. 

So, from here to here it linearly varies; obviously, at the center we have already assumed 

that shear stress is 0 due to symmetry, so τ is equal to 0 at the center. And, if you want to 

calculate the wall shear stress at y is equal to H then it will be just -τyx at y is equal to H.  

So, this will be 

𝜏𝑤|𝑦=𝐻 = −𝜏𝑦𝑥|𝑦=𝐻 =
3µ𝑢𝑚

𝐻2 (1 +
3µ
𝛽𝐻

)
 

So, if you are interested to calculate the skin friction coefficient and friction factor. So you 

will be able to do so just using these expressions. Let us consider a fully developed flow 

of a thin film that is flowing in that downward direction. 
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So, if you consider this is an inclined flat plate ok. So, a liquid is just flowing down due to 

gravity in the downward direction. So, in this direction it is going down and the film 

thickness is H and it is very small and we are neglecting the surface tension. So, that your 

surface will be straight; that means, the interface between this air and liquid, this interface 

will be straight and thickness will be constant as it is going down. 

So, we will take for convenience x along the plate, and y is measured perpendicular 

direction from the plate. And at the bottom wall; obviously, u is equal to 0 and the plate is 

inclined with the horizontal with angle θ. So, you can see that gravity will be acting in this 

direction and it will have two components. 

So, one is in this direction, another is along the x-direction and this is your θ so; obviously, 

this is your gsinθ and in this direction you have gcosθ. So, when you will consider the x 

momentum equation you need to consider this gravity gsinθ right. 

So, these are the assumptions we are taking; laminar, steady, incompressible flow with 

constant fluid properties, it is a fully developed flow, so; obviously, 
𝜕𝑢

𝜕𝑥
  will be 0. The 

surface tension of the liquid is negligible and the film thickness H is constant. So, with this 

you can write the governing equation as 

𝜕2𝑢

𝜕𝑦2
= −

𝜌𝑔𝑥

𝜇
 



And here we are not considering the pressure gradient in the x-direction because 
𝜕𝑝

𝜕𝑥
 is 0, 

because outside the film you have the atmosphere, so; obviously, everywhere you have 

pressure p atmosphere and at the free surface if you consider and consider 2 points on the 

free surface. So, you can see at this position or at this position you will have the same 

pressure because it is just the atmospheric pressure. So, 
𝜕𝑝

𝜕𝑥
  will be 0 on the interface.  

If it is 0 now you see 
𝜕𝑝

𝜕𝑦
 is constant, you can see from here that your 

𝜕𝑝

𝜕𝑦
 is nothing but -

gcosθ and it is constant. So, if this is constant then your pressure inside if you take at any 

point ok. So, and at the same distance from the top if you consider, so it will also have the 

same pressure at this location.  

So, if this is distance δ and  if you consider at this point pressure and this point pressure as 

𝜕𝑝

𝜕𝑦
  is equal to -gcosθ and it is nothing but the hydrostatic pressure. So, there will be the 

same pressure at this location.  

So, again you will get 
𝜕𝑝

𝜕𝑥
 is equal to 0 inside fluid domain ok. So, hence we are not 

considering the pressure gradient here because 
𝜕𝑝

𝜕𝑥
  will be 0. And you know the value of 

gx. So, gx is just gsinθ, so we can write 

𝜕2𝑢

𝜕𝑦2
= −

𝜌𝑔𝑥

𝜇
= −

𝜌𝑔 sin 𝜃

𝜇
 

So, if you integrate once you will get 

𝜕𝑢

𝜕𝑦
= −

𝜌𝑔 sin 𝜃

𝜇
𝑦 + 𝐶1 

Another term if you integrate you will get 

𝑢(𝑦) = −
𝜌𝑔 sin 𝜃

𝜇
𝑦2 + 𝐶1𝑦 + 𝐶2 

Now, let us discuss about the boundary conditions.  

One boundary condition is very simple because at the wall you will have the velocity u is 

equal to 0. So, boundary conditions at y is equal to 0, you have u is equal to 0. So, from 



here you can see if you put this in this expression then you will get the integration constant 

c 2 as 0.  

Now, what about the other boundary condition at y is equal to H? So, at y is equal to H we 

can apply the shear stress continuity. So, we will apply shear stress continuity, and if we 

assume that at the air side if it is a stationary fluid then your shear stress at the interface 

will be 0 ok.  

So, let us see it. So at y is equal to H, we are applying shear stress is continuous. So, you 

can write  

µ𝑙

𝜕𝑢

𝜕𝑦
|

𝑙

= µ𝑎

𝜕𝑢

𝜕𝑦
|

𝑎

 

𝜕𝑢

𝜕𝑦
|

𝑙

=
µ𝑎

µ𝑙

𝜕𝑢

𝜕𝑦
|

𝑎

 

In this expression if you assume that air side velocity is 0; that means, it is stationary here 

then obviously, the velocity gradient will be 0 and velocity gradient 0 means just 
𝜕𝑢

𝜕𝑦
 at the 

interface at y is equal to H it will be 0. 

Another way you can explain that liquid side viscosity is much much greater tha air. So, if 

µ𝑙   is much much greater than µ𝑎 then the right-hand side term, obviously, will be much 

much smaller than the left hand side term. So, you can see here so, if air velocity is 0 then 

𝜕𝑢

𝜕𝑦
  in air side it will be 0. 

So, you can see that 
𝜕𝑢

𝜕𝑦
  in the liquid side, it will be 0. Another way you can see that if µ𝑙   

is much much greater than µ𝑎. So, you can see that 
µ𝑎

µ𝑙
 will be much much less than 1; if it 

is so it will be  

𝜕𝑢

𝜕𝑦
|

𝑙

= 0 

So; obviously, from either of these two conditions you can use and you can put the velocity 

gradient is 0; that means, shear stress is 0 on the interface.  
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So, we are using at y is equal to H, shear stress is 0; that means, 
𝜕𝑢

𝜕𝑦
 is equal to 0 ok. So, if 

you put this you will get  

𝐶1 =
𝜌𝑔 sin 𝜃

𝜇
𝐻 

So, if you put these constants in the velocity distribution you will get the velocity 

distribution as 

𝑢(𝑦) =
1

2𝜇
𝜌𝑔 sin 𝜃 (2𝐻𝑦 − 𝑦2) 

So, you can see that the velocity profile is semi parabolic. 

So, you can see; you will get the maximum velocity at y is equal to H. So, if you plot the 

velocity profile so your velocity profile will be semi-parabolic and maximum velocity will 

occur at the interface so you will get a velocity profile like this.  

So, it will cut perpendicularly because 
𝜕𝑢

𝜕𝑦
  is equal to 0 at y is equal to H so, this is your 

velocity profile. So, the maximum velocity you will get at y is equal to H and the value is  

𝑢|𝑦=𝐻 =
𝜌𝑔 sin 𝜃  𝐻2

2𝜇
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Now, let us calculate the volumetric flow rate as well as the average velocity. So,  

𝑄

𝑊
=  ∫ 𝑢

𝐻

0

𝑑𝑦 =
𝜌𝑔 sin 𝜃

2𝜇
∫ (2𝐻𝑦 −

𝐻

0

𝑦2) 𝑑𝑦 

 

𝑄

𝑊
=  

𝜌𝑔 sin 𝜃

2𝜇
[
2𝐻𝐻2

2
−

𝐻3

3
] 

𝑄

𝑊
=  

𝜌𝑔𝐻3 sin 𝜃

3𝜇
 

And from here you will be able to calculate now the average velocity or mean velocity 

over a cross-section of the film as 

𝑢𝑚 =
𝑄

𝑊𝐻
=

𝜌𝑔𝐻2 sin 𝜃

3𝜇
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Now, let us calculate the shear stress distribution inside the flow domain at y is equal to 

H; that means, at the interface already we have invoked the boundary condition shear stress 

as 0. So, shear stress will be 0 at the interface. So, let us find the expression 

𝜏𝑦𝑥 = µ
𝜕𝑢

𝜕𝑦
=

𝜇

2𝜇
𝜌𝑔 sin 𝜃 (2𝐻 − 2𝑦) 

𝜏𝑦𝑥 = 𝜌𝑔 sin 𝜃 (𝐻 − 𝑦) 

So, at y is equal to H, τyx is 0, at y is equal to 0, τyx is equal to 𝜌𝑔𝐻 sin 𝜃 . And, you can 

see from this expression that it will vary linearly, interface it is 0 to a value of 𝜌𝑔𝐻 sin 𝜃 . 

And this is the linear variation.  

So this is your shear stress distribution inside the fluid domain and at the bottom wall if 

you want to calculate the shear stress  it will be 

𝜏𝑤 = −𝜏𝑦𝑥|𝑦=0 = −𝜌𝑔𝐻 sin 𝜃  

Now, let us consider two special cases. One is your horizontal plate; that means θ is equal 

to 0 and vertical plate where θ is equal to 90 degree. So obviously, you can see if it is a 

horizontal plate sinθ will be 0 and if it is a vertical plate then sinθ will be 1 and in that case 

if it is placed horizontally; obviously, velocity will be 0 because sinθ is 0. 



So, special cases; at θ is equal to 0 and θ is equal to 90 degree. So, if θ is equal to 0 then 

sinθ is equal to 0, then you will get u as 0. So, everywhere velocity will be 0 because the 

flow is just driven by the gravity. If it is a horizontal plate then there will be no driving 

force for the fluid flow that’s why u is equal to 0 so, no flow occurs. 

If the film is vertical; the film is vertical; that means, sinθ will be 1. So, velocity 

distribution will be  

𝑢(𝑦) =
𝜌𝑔

2𝜇
sin 𝜃 (2𝐻𝑦 − 𝑦2) 

Volume flow rate per unit width will be 

𝑄

𝑊
=

𝜌𝑔𝐻3

3𝜇
 

And  

𝜏𝑦𝑥 = 𝜌𝑔(𝐻 − 𝑦) 
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Now, let us discuss about the pressure distribution inside the fluid domain; obviously, there 

is no pressure gradient in the axial direction that we have already discussed that 
𝜕𝑝

𝜕𝑥
 is 0. 

And from the y momentum equation, you will get  

𝜕𝑝

𝜕𝑦
= 𝜌𝑔𝑦 = −𝜌𝑔 cos 𝜃 

.And we know that p is a function of x, y and let us say that gz is equal to 0 ok. 
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So, if gz is 0 then from this expression we have already derived  

𝑝 =
𝜕𝑝

𝜕𝑥
𝑑𝑥 + 𝜌𝑔𝑦𝑦 + 𝜌𝑔𝑧𝑧 + 𝑐 

𝑝 = −𝜌𝑔 cos 𝜃  𝑦 + 𝑐 

And from here you can see that at y is equal to H; that means, at the interface p is equal to 

pa ok. So, if you put here then you will get  

𝑝𝑎 = −𝜌𝑔 cos 𝜃  𝐻 + 𝑐 

So, now integration constant c you can find  

 



𝑐 = 𝑝𝑎 + 𝜌𝑔 cos 𝜃  𝐻 

Now you put the value of this in this equation then you will get the pressure distribution 

as  

𝑝 = 𝑝𝑜 + 𝜌𝑔 cos 𝜃  (𝐻 − 𝑦) 

So obviously, this is hydrostatic pressure distribution so it linearly varies. 
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The application of this thin film flow in the vertical direction whatever special case we 

have discussed let us take one example. Let us consider that one belt vertically moving 

upwards in a viscous liquid. So, if you consider here that liquid pool is here and one belt 

is moving upward with a constant velocity u. 

When this belt will move upwards due to the viscous effect this liquid will form a thin film 

over this belt ok. And this thin film let us consider that it is very thin and the thickness is 

H and gravity is acting; obviously, in the downward direction and we are taking the 

coordinates x in vertically upward direction, and y is measured from the belt. 

So, for this case now we assume that a continuous belt passing upward through viscous 

liquid at velocity u and assume fully developed flow and atmosphere produces no shear at 

the outer surface of the film. So; that means, shear stress is 0 at the interface and; 



obviously, you can neglect the surface tension effect, so and assume that the film is 

maintaining a constant thickness H.  

So, whatever we have already discussed in the thin film flow in an inclined plate. So, it is 

a special case, but the plate is moving upward direction in with velocity u. So, our 

governing equation will start with  

𝜕2𝑢

𝜕𝑦2
=

𝜌𝑔

𝜇
 

𝜕𝑢

𝜕𝑦
=

𝜌𝑔

𝜇
𝑦 + 𝐶1 

So, this is your governing equation and if you integrate twice you will get the velocity 

profile then you will get the velocity profile as 

𝑢(𝑦) =
𝜌𝑔𝑦2

2𝜇
+ 𝐶1𝑦 + 𝐶2 

So, the velocity boundary condition at y is equal to 0. So; obviously, it will have the belt 

velocity and belt velocity is u so u is equal to U. So, from here you will get C2 is equal to 

u and at y is equal to H we are assuming that shear stress is 0, so du/dy is equal to 0. So, 

this will give C1 is equal to −
𝜌𝑔

𝜇
𝐻.  

So, from here if we put the integration constants in the expression then velocity distribution 

will be velocity distribution will be 

𝑢(𝑦) = 𝑈 +
𝜌𝑔

2𝜇
(𝑦2 − 2𝐻𝑦) 

If you see this expression it is just a superposition of two velocities one is u which actually 

the belt is moving in the upward direction and this expression with a negative sign you 

have already derived in the earlier case. In that case, actually x was in the opposite 

direction that’s why you are getting this expression with a minus sign. 

So; obviously, from this expression, you will be able to find what is the volume flow rate. 

So, this is the belt and this is the interface, y is measured from the belt, the distance is H 

and velocity at the wall is u. So, velocity distribution so this will be u and it will be like 



this. So, it will cut perpendicularly because du/dy is equal to 0 at y is equal to H. So, this 

is the velocity profile.  

(Refer Slide Time: 42:49) 

 

Now, let us calculate the volume flow rate. So, volume flow rate per unit width per unit 

width will be 

𝑄

𝑊
=  ∫ 𝑢

𝐻

0

𝑑𝑦 = 𝑈𝐻 −
𝜌𝑔𝐻3

3𝜇
 

𝑢𝑚 = 𝑈 −
𝜌𝑔𝐻2

3𝜇
 

𝜏𝑦𝑥 = 𝜇
𝑑𝑢

𝑑𝑦
= 𝜌𝑔(𝑦 − 𝐻) 

At y=0 

𝜏𝑦𝑥|𝑦=0 = −𝜌𝑔𝐻 

And at y=H, 

𝜏𝑦𝑥 = 0 

So, shear stress distribution will look like this. So, it is belt and this is the interface y is 

measured from the belt so shear stress distribution. And, wall shear stress you can write  



𝜏𝑤 = −𝜏𝑦𝑥|𝑦=0 = 𝜌𝑔𝐻 

So, in today’s class first, we considered plane Poiseuille flow with the same slip in both 

the plates. So, with that we took the expression for slip as τw is equal to βuw where uw is 

the slip velocity at the wall then we found the velocity distribution. And you can see that 

velocity distribution is the superimposition of constant velocity uw at the wall plus the 

velocity distribution of the plane Poiseuille flow. 

From there we calculate the volume flow rate per unit width, average velocity then we 

calculate the shear stress distribution. Next, we consider thin-film flow where one liquid 

is draining down due to gravity and neglecting the surface tension effect we assumed that 

the thickness of the film is constant. 

So, in that case, we found the velocity distribution assuming that the outside you have a 

stationary fluid and that is air. Then, we applied the boundary condition that y is equal to 

H at the interface you have the shear stress as 0. Then, we calculated the volume flow rate 

and the average velocity and the shear stress distribution.  

And we took two special cases one is that if it is a horizontal plate then; obviously, velocity 

will be 0 and if it is a vertical plate then, in that case, we found the velocity distribution. 

The second special case again we extended to a problem where one belt is moving upward 

with a constant velocity u.  

And, obviously, when it is moving upward due to the viscous effect some liquid will stick 

to the belt and neglecting the surface tension we assume that the thickness of this thin film 

is constant. And in that case, we found the velocity distribution and volume flow rate and 

the shear stress distribution. 

Thank you. 


