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Hello everyone, so today we will study Plane Poiseuille Flow. What is plane Poiseuille 

flow? Plane Poiseuille flow is the flow when a fluid is forced to flow between 2 infinite 

parallel stationary flat plates under constant pressure gradient and 0 gravity. In the last 

class we have already studied plane Coquette flow and we know how we get the fully 

developed flow. 

So, we will have the assumptions of fully developed flow in the case of plane Poiseuille 

flow and we will derive the velocity distribution, shear stress distribution and volume flow 

rate per unit width. 
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So, let us consider two parallel plates these are stationary, which means velocity is 0 and 

the distance between two parallel plates is 2H, we have taken the axis in the mid of this 

plane so this is your center line and x is measured in the axial direction and y is measured 

from the center line. 

https://mail.google.com/mail/u/0/#m_-4186209454446654364_RANGE!A1


We have taken this coordinate here for convenient, because we know that the velocity 

distribution is symmetric about the center line. So, what are the assumptions we are taking? 

We are assuming laminar steady incompressible flow with constant fluid properties, fully 

developed flow that means 
∂u

∂x
 is 0, pressure gradient is constant gravitational acceleration 

in x direction is 0 and we are taking width of the plates along the z direction to be infinitely 

large as compared to its height 2 H. 

So, that there are no gradients of flow variables along the z direction. That means, in z 

direction W velocity is 0 and 
∂()

∂z
 of any flow variables is 0, so obviously as z direction is 

infinite. So, end effects are neglected and we know for the fully developed flow condition 

that from continuity equation putting 
∂u

∂x
 is 0 and W as 0; you can so that b is equal to 0 

everywhere. 

So, with these assumptions you can write the Navier Stokes equations, specially the x 

momentum equation as  

𝜕2𝑢

𝜕𝑦2
=

1

µ

𝜕𝑝

𝜕𝑥
 

 So, we know that u is a function of y only right. So, it is one-dimensional flow because 

we are considering fully developed flow and u is a function of y only. 

So, if you integrate twice you will be able to find the velocity distribution with proper 

boundary conditions. What are the boundary conditions? So, you can see from here that at 

y is called to H as well as at minus H you have velocity 0. 
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So, let us find the velocity distribution from starting from this ordinary differential 

equation. So, our ordinary differential equation is 

𝜕2𝑢

𝜕𝑦2
=

1

µ

𝜕𝑝

𝜕𝑥
 

So, if you integrate this equation you will get  

𝑑𝑢

𝑑𝑦
=

1

µ

𝜕𝑝

𝜕𝑥
𝑦 + 𝐶1 

Again if you integrate then you will get  

𝑢(𝑦) =
1

2µ

𝜕𝑝

𝜕𝑥
𝑦2 + 𝐶1𝑦 + 𝐶2 

So now, let us invoke those 2 boundary conditions because there are 2 unknowns so we 

need 2 boundary conditions and find the integration constants C1 and C2.  

So, boundary conditions are at y is equal to H. So, you can see this will be 0 right velocity 

is 0, u is 0, so you will get  

0 =
1

2µ

𝜕𝑝

𝜕𝑥
𝐻2 + 𝐶1𝐻 + 𝐶2 



And if you invoke the other boundary condition at the rate of y is equal to –H, u is equal 

to 0. So, you will get  

0 =
1

2µ

𝜕𝑝

𝜕𝑥
𝐻2 − 𝐶1𝐻 + 𝐶2 

So if this equation is 1 and if this equation is 2. So, if you subtract these two equations. 

So, if you subtract equation 2 from 1 then you will get, so subtracting equation 2 from 

equation 1. So, if you subtract you can see so these two1 terms are same, so it will get 

cancelled C 2 will get cancelled you will get 2𝐶1𝐻 is equal to 0, that means 𝐶1 is equal to 

0. If you add these 2 equations so you will get adding equation 1 and equation 2. What you 

will get? So, you can see you will get 

2 [
1

2µ

𝜕𝑝

𝜕𝑥
𝐻2 + 𝐶2] = 0 
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Now, let us put these two integration constants C1, C2 in this equation and get the velocity 

profile, so your velocity distribution. What is your velocity distribution after invoking the 

constants? So,  

𝑢(𝑦) =
1

2µ

𝜕𝑝

𝜕𝑥
𝑦2 −

1

2µ

𝜕𝑝

𝜕𝑥
𝐻2 

So, if you rearrange you will get  



=
𝐻2

2µ
(−

𝜕𝑝

𝜕𝑥
) (1 −

𝑦2

𝐻2
) 

So, this is your velocity distribution. So, you know that in this particular case 
𝜕𝑝

𝜕𝑥
 is constant 

and we have favourable pressure gradient. So, if it is favourable pressure gradient, then 

your flow will occur in the positive x direction.  

So, in this case −
𝜕𝑝

𝜕𝑥
 is a positive quantity right. So, in this case −

𝜕𝑝

𝜕𝑥
 is a positive quantity 

for favourable pressure gradient. So now we can see this velocity distribution is parabolic 

ok. Now, if you want to calculate the mean velocity, so first we will calculate the 

volumetric flow rate. 
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So, first, let us calculate the volumetric flow rate per unit width. So, if we consider in the 

z-direction the width is W, then we will calculate the volumetric flow rate Q/W. And how 

we will calculate? So obviously, at any section, you need to calculate the flow area and 

this flow area into the mean velocity will give you the volumetric flow rate. 

So, in this case if you see that at a distance y we have taken one infinitesimal distance dy 

and in z-direction if the width is W, then you will get the flow area as Wdy. So, in this 

particular case now volumetric flow rate Q will be  

𝑄 = ∫
𝐴

𝑢(𝑦) 𝑑𝐴 



And now if you integrate from -H to H, then you will get  

= ∫ 𝑢(𝑦)𝑊𝑑𝑦
𝐻

−𝐻

 

𝑄

𝑊
=  ∫

1

2µ
(−

𝜕𝑝

𝜕𝑥
) (𝐻2 − 𝑦2)𝑑𝑦

𝐻

−𝐻

 

=  ∫
1

2µ
(−

𝜕𝑝

𝜕𝑥
) [𝐻2𝑦 −

𝑦3

3
]

−𝐻

𝐻

 
𝐻

−𝐻

 

=  
1

2µ
(−

𝜕𝑝

𝜕𝑥
) [𝐻3 −

𝐻3

3
+ 𝐻3 −

𝐻3

3
] 

=  
2

3µ
(−

𝜕𝑝

𝜕𝑥
) 𝐻3 

So, this is the volumetric flow rate. So, you can see that the volumetric flow rate is 

proportional to the pressure gradient and inversely proportional to the viscosity. In most 

application the mean velocity is provided in the channel and we are interested to find what 

is the pressure gradient. So, if we want to calculate the mean velocity we will be able to 

calculate from the expression of this volumetric flow rate. 
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So, what is mean velocity? The mean or average velocity is physically an equivalent 

uniform velocity field that could have given rise to the same volume flow rate as that 

induced by the variable velocity field under consideration. 

So, you know that we have already calculated the volume flow rate and this will be your 

mean velocity into the flow area. So, in this case you can see what is the flow area? So, 

flow area is your 2HW. So, it will be  

𝑄 = 𝑢𝑚𝐴 = 𝑢𝑚2𝐻𝑊 

𝑢𝑚 =
𝑄

𝑊
.

1

2𝐻
 

So, if you rearrange it you will get 

=
2

3µ
(−

𝜕𝑝

𝜕𝑥
) 𝐻3

1

2𝐻
  

=
𝐻2

3µ
(−

𝜕𝑝

𝜕𝑥
) 

−
𝜕𝑝

𝜕𝑥
=

3µ𝑢𝑚

𝐻2
 

So, you can see in the right hand side µ is constant and positive quantity um is also positive 

it is a mean velocity H is also dimension. So obviously, right side term is positive hence 

−
𝜕𝑝

𝜕𝑥
 is positive.  

Now, let us calculate the maximum velocity. Where we will get the maximum velocity 

you can see it is a parabolic profile; obviously, due to symmetry at the center line you will 

get the maximum velocity. You can also see that du/dy will be 0 if you put 0, then 

obviously at y is equal to 0 you will get the maximum velocity. 
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So, maximum velocity you will get at y is equal to 0 at y is equal to 0 and you will get 

umax. So, what is the velocity profile your velocity profile 

𝑢(𝑦) =
𝐻2

2µ
(−

𝜕𝑝

𝜕𝑥
) (1 −

𝑦2

𝐻2
)  

𝑢𝑚𝑎𝑥 = 𝑢(𝑦)|𝑦=0 =
𝐻2

2µ
(−

𝜕𝑝

𝜕𝑥
) 

𝑢𝑚 =
𝐻2

2µ
(−

𝜕𝑝

𝜕𝑥
) 

𝑢𝑚𝑎𝑥

𝑢𝑚
=

3

2
 

𝑢𝑚𝑎𝑥 = 1.5𝑢𝑚 

So, if you consider plane Poiseuille flow; that means, flow between two infinite parallel 

plates. 

Then you will get maximum velocity as 1.5 times the mean velocity. So, let us calculate 

the ratio 𝑢(𝑦)/𝑢𝑚. So, you can see this is your mean velocity and this is your velocity 

expression. So, if you divide then you will get  



𝑢(𝑦)

𝑢𝑚
=

3

2
(1 −

𝑦2

𝐻2
) 

And from here you can see that your umax is 
3

2
𝑢𝑚 ; that means, also you can write the 

velocity distribution 

𝑢(𝑦) = 𝑢𝑚𝑎𝑥 (1 −
𝑦2

𝐻2
) 

So, now we want to find what is the shear stress distribution inside the flow domain as 

well as what is the wall shear stress. So, you know in the case of fully developed flow your 

shear stress τyx will be just µdu/dy. 
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So, shear stress τyx you will get only 𝜇
𝑑𝑢

𝑑𝑦
. So, you know the velocity distribution. So, if 

you put the values you will get actually this as 
𝜕𝑝

𝜕𝑥
𝑦 and we have already found that 

−
𝜕𝑝

𝜕𝑥
=

3µ𝑢𝑚

𝐻2
 

So, you are going to get  

𝜏𝑦𝑥 = −
3µ𝑢𝑚

𝐻2
𝑦 



So, you can see from this expression that τyx will vary inside the flow domain linearly from 

y is equal to -H to H, because it is a function of y, so linear function of y.  

So if you want to find the wall shear stress τW, so obviously this will be 

𝜏𝑤 = −𝜏𝑦𝑥|𝑦=𝐻 =
3µ𝑢𝑚

𝐻2
𝐻 =

3µ𝑢𝑚

𝐻
 

So, you can see the how your velocity distribution will look like as we have seen that  

𝑢(𝑦) =
3

2
𝑢𝑚 (1 −

𝑦2

𝐻2
) 

So obviously at y is equal to -H you can see this will be 0, y is equal to plus H velocity 

will be 0 and we have seen that at y is equal to 0 you will get maximum velocity and it is 

a parabolic in nature and shear stress distribution linearly it varies.  

So now, we will find the skin friction coefficient, so the skin friction coefficient is the 

dimension less representation of wall shear stress. 
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So, you can see that we can define skin friction coefficient Cf as  

𝐶𝑓 =
|𝜏𝑤|

1
2 𝜌𝑢𝑚

2
=

3µ𝑢𝑚

𝐻
 

2

𝜌𝑢𝑚
2

 



So, if you rearrange it  you will get 

𝐶𝑓 =
12µ

𝜌𝑢𝑚(2𝐻)
 

So now, we will define Reynolds number based on 2H. So, you know Reynolds number is 

the ratio of inertia force to the viscous force. So, Reynolds number based on twice H we 

are writing as 

𝑅𝑒2𝐻 =
𝜌𝑢𝑚(2𝐻)

µ
 

 ρ into mean velocity into twice H divided by µ. So, you can see you can write  

𝐶𝑓 =
12

𝑅𝑒2𝐻
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Similarly, we can represent the dimensionless pressure gradient in terms of Friction factor. 

So, we can define friction factor as 

𝑓 =
(−

𝜕𝑝
𝜕𝑥

) (2𝐻)

1
2 𝜌𝑢𝑚

2
 

 



So, this is the expression in terms of mean velocity. 

𝑓 =
3µ𝑢𝑚

𝐻
2𝐻 

2

𝜌𝑢𝑚
2

 

=
24µ

𝜌𝑢𝑚(2𝐻)
 

=
24

𝑅𝑒2𝐻
 

So, hence you can write 

𝑓 = 2𝐶𝑓 

Now, we will consider another case that is your plane Poiseuille flow between inclined 

plates. 
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So, we let us consider two parallel plates which are inclined with the horizontal with angle 

θ. In this case the plates separated by a distance 2H and along the center line we are 

measuring x and y is measured from the center line. So, these are stationary plates now 

you can see in this particular case your gravity g is acting in this direction. It will have two 

components one is in this direction and other is in this direction.  



So obviously, you can see this is your θ, so you will get gcosθ in this direction and gsinθ 

in axial direction x  

So, when we will write the governing equation you can see obviously in the x-direction x 

momentum equation the gravity factor will be gsinθ and in y component of the momentum 

equation, your gravity will be gcosθ. That means, gx is your gsinθ and this is in the positive 

x direction. However, gy will be -gcosθ ok.  

So, when you are considering Poiseuille flow between two inclined parallel plates, then 

obviously as you have considered x as the axial direction. So, our governing equation will 

remain same only we are not neglecting the gravitational acceleration ok. 

So, we can write the governing equation  

𝜕2𝑢

𝜕𝑦2
=

1

µ
(

𝜕𝑝

𝜕𝑥
− 𝜌𝑔𝑥) 

𝜕2𝑢

𝜕𝑦2
=

1

µ
(

𝜕𝑝

𝜕𝑥
− 𝜌𝑔 sin 𝜃) 

S So obviously you can see if we integrate twice then you will get the velocity distribution. 

So, the velocity distribution u which is a function of y you can write it as  

𝑢(𝑦) =
1

2µ
(

𝜕𝑝

𝜕𝑥
− 𝜌𝑔 sin 𝜃) 𝑦2 + 𝐶1𝑦 + 𝐶2 

So, you can see the boundary conditions. So, boundary conditions are at y is equal to H 

and -H your u is equal to 0. So, if u is equal to 0 you put it here and you will get the 

constants C1 and C2. So, C1 you will get as 0 as earlier and C2 you will get  

𝐶2 = −
1

2µ
(

𝜕𝑝

𝜕𝑥
− 𝜌𝑔 sin 𝜃) 𝐻2 

So, if you put this C2 and C1 values here you will get the velocity distribution,  

𝑢(𝑦) =
𝐻2

2µ
(−

𝜕𝑝

𝜕𝑥
+ 𝜌𝑔 sin 𝜃) (1 −

𝑦2

𝐻2
)   
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And now if you want to calculate the volumetric flow rate and the shear stress it will be 

similar to the plane Poiseuille flow except your −
𝜕𝑝

𝜕𝑥
 will be replaced with −

𝜕𝑝

𝜕𝑥
+ 𝜌𝑔 sin 𝜃. 

So, your volumetric flow rate will be  

𝑄

𝑊
=  

2𝐻3

3µ
(−

𝜕𝑝

𝜕𝑥
+ 𝜌𝑔 sin 𝜃) 

Here you can see that 𝜌𝑔 sin 𝜃 is constant; because ρ is density and it is constant for 

incompressible flow g is the gravitational acceleration. So, all these quantities are constant. 

So, −
𝜕𝑝

𝜕𝑥
  is also constant. So, these two terms actually are constant. So, you will get the 

similar expression . 

In place of −
𝜕𝑝

𝜕𝑥
 for in case of plane Poiseuille flow we are substituting here. So, in this 

particular case we are writing −
𝜕𝑝

𝜕𝑥
+ 𝜌𝑔 sin 𝜃 in place of −

𝜕𝑝

𝜕𝑥
 for this plane Poiseuille 

flow. So, similarly you can find the mean velocity um as 

𝑢𝑚 =
𝐻2

3µ
(−

𝜕𝑝

𝜕𝑥
+ 𝜌𝑔 sin 𝜃) 

 



 And the shear stress distribution you will get  

𝜏𝑦𝑥 = (
𝜕𝑝

𝜕𝑥
− 𝜌𝑔 sin 𝜃) 𝑦 

And you can see here also you will get the linear profile and if you put the expression of 

−
𝜕𝑝

𝜕𝑥
+ 𝜌𝑔 sin 𝜃, then you can write  

𝜏𝑦𝑥 = −
3µ𝑢𝑚

𝐻2
𝑦 

And this is the same expression as in case of plane Poiseuille flow. So, you can write the 

velocity distribution 

𝑢(𝑦) =
3𝑢𝑚

2
 (1 −

𝑦2

𝐻2
)   

And in this case also you will get 

𝑢𝑚𝑎𝑥 = 1.5𝑢𝑚 

 So obviously  

𝑢(𝑦) = 𝑢𝑚𝑎𝑥 (1 −
𝑦2

𝐻2
) 
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So, if you put the gravitational acceleration in the y momentum equation, then obviously 

you know that v is equal to 0, y momentum equation will boils down to 

𝜕𝑝

𝜕𝑦
= −𝜌𝑔 cos 𝜃 

 So obviously 
𝜕𝑝

𝜕𝑦
  you can see this is your constant and this is nothing but the hydrostatic 

pressure right. We know that p is function of x y and z, so we can write  

𝑑𝑝 =
𝜕𝑝

𝜕𝑥
𝑑𝑥 +

𝜕𝑝

𝜕𝑦
𝑑𝑦 +

𝜕𝑝

𝜕𝑧
𝑑𝑧 

So, you can see that 
𝜕()

𝜕𝑧
 of any flow variable is 0 because we consider z direction is infinite. 

So, this will be 0 and 
𝜕𝑝

𝜕𝑦
  is constant this is the expression and 

𝜕𝑝

𝜕𝑥
 also is constant for 

Poiseuille flow. 

So, you can see that dp will be 

𝑑𝑝 =
𝜕𝑝

𝜕𝑥
𝑑𝑥 − 𝜌𝑔 cos 𝜃𝑑𝑦 

So, if we integrate it you will get the pressure distribution as 

𝑝(𝑥, 𝑦) =
𝜕𝑝

𝜕𝑥
𝑥 − 𝜌𝑔 cos 𝜃 𝑦 + 𝐶 

 So, this integration constant can be found just by putting a value of pressure at any location 

you can find the constant C. So, in today’s class we considered plane Poiseuille flow which 

is the flow between 2 parallel plates and with a constant pressure gradient. 

So, in that case we have found the velocity distribution and we have shown that it is 

parabolic. Then we calculated the volumetric flow rate and we have seen that Q is 

proportional to the pressure gradient and inversely proportional to the viscosity of the fluid. 

Then we calculated the mean velocity and we have shown that your pressure gradient −
𝜕𝑝

𝜕𝑥
  

is a positive quantity. 

And we have represented in terms of mean velocity then we have shown that your 

maximum velocity will occur at center line and this is equal to 1.5 times the mean velocity. 



Then we calculated the shear stress and shear stress distribution is linear inside the flow 

domain. 

And from there we have expressed the dimensionless shear stress which is your skin 

friction coefficient and we have also expressed the pressure gradient in terms of non 

dimensional quantity and that is known as friction factor. And we have shown that friction 

factor is twice the skin friction coefficient. Later we considered Poiseuille flow inside 

inclined parallel plates and in this case your gravity in the x direction is ρgsinθ. 

So, in this case your pressure gradient will be −
𝜕𝑝

𝜕𝑥
+ 𝜌𝑔 cos 𝜃 will be added. And velocity 

distribution is again parabolic in this particular case and it will be the similar profile which 

you get in the plane Poiseuille flow, only the pressure will differ because −
𝜕𝑝

𝜕𝑥
 is replaced 

with −
𝜕𝑝

𝜕𝑥
+ 𝜌𝑔 sin 𝜃 ok. 

So, but your velocity distribution will be similar as the horizontal case, where θ is equal to 

0. And then we have expressed the mean velocity and the shear stress distribution and also 

we have calculated the pressure distribution inside the flow domain. 

Thank you. 


