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Hello, everyone. So, in the last module using the Reynolds transport theorem we derived 

the continuity equation and Navier-Stokes equation. In today’s lecture, we will try to find 

the analytical solution of Navier-Stokes equations for the simplified problem and simple 

geometry. 
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You can see that in the last class we derived the continuity equation for Cartesian 

coordinate. So, this is the continuity equation for laminar incompressible flow with 

constant fluid properties. This is the x - momentum equation,  

𝜌 [
∂u

∂t
+ 𝑢

∂u

∂x
+ 𝑣

∂u

∂y
+ 𝑤

∂𝑢

∂z
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∂p

∂x
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𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
+

𝜕2𝑢

𝜕𝑧2
) + 𝜌𝑔𝑥 

 



this is the temporal term, ρ is the density of the fluid and you can see this is the convective 

term which is non-linear. This is the pressure gradient term, µ is the viscosity of the fluid 

and this is the viscous term and this is the gravity term and which is known as the body 

force term. 

So, similarly, we derived the y-component of momentum equation and z-component of 

momentum equation.  
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+ 𝑤

∂𝑤
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𝜕2𝑤

𝜕𝑥2
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) + 𝜌𝑔𝑧 

So, you can see these equations are coupled and non-linear. You can also find the 

components of viscous stress tensor for an incompressible Newtonian fluid. So, these are 

the normal stresses and these are the shear stresses. Also, you can find the vorticity 

component. So, this is the vorticity factor curl of the velocity vector and these are the 

components of this vorticity 𝜔𝑧, 𝜔𝑦 and 𝜔𝑥. 
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So, what is the exact solution of Navier-Stoke equations? So, that we can see that a solution 

of a differential equation is said to be exact if it satisfies the equation at every point in the 

interior of the flow domain and the prescribed boundary conditions at its surface. 



As we told that only a very limited class of exact solutions exist for flow problems and 

most of these are limited to laminar one and two-dimensional flows with constant 

properties and simple geometry.  

So, you can see that we can have the analytical solution for steady one-dimensional flow. 

So, we can have a one-dimensional rectilinear flow. So, it represents the flow in the 

Cartesian coordinate where axial velocity u is a function of y and other velocity 

components v and w are 0. 

So, the examples are fully developed flow between two infinite parallel plates; which is 

known as plane Poiseuille flow fully developed shear driven flow between two infinite 

parallel plates which is known as plane Couette flow. We can also have the axisymmetric 

rectilinear flow; what is axisymmetric flow? 

In the axisymmetric, the velocity in theta direction is 0 and the gradient of any velocity 

component or pressure in the direction of theta is 0. So, vz is a function of r and vr is 0. So, 

we can have the solution for fully developed flow through a circular pipe which is known 

as Hagen Poiseuille flow and we can also have an axisymmetric torsional flow where vθ is 

a function of r only and vz and vr are 0. So, the example is a fully developed flow between 

the rotating cylinder. 

We can also have the tangent one-dimensional flow where velocity u is a function of one 

space coordinate and time flow near a plate suddenly set in motion is an example of this 

tangent one-dimensional flow and steady two-dimensional flow where velocity is a 

function of two spatial coordinates y and z. So, the examples are flowing inside rectangular 

or elliptical or triangular duct with uniform cross-section. 
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So, now let us consider flow inside two infinite parallel plates. At inlet, we have uniform 

velocity inlet and you know that when it comes into contact with the parallel plates 

obviously, there will be the formation of boundary layer.  

Due to the viscous effect you can see that these hydrogen boundary layers will start 

developing in near to the plate region and the thickness of the boundary layer will grow 

gradually. And, outside this boundary layer near to the central region, the flow will be 

inviscid and there will be no viscous effect. 

So, you can see here this is the flow inside two parallel plates where inlet velocity is u with 

uniform velocity, it is entering and you can see the thickness of this boundary layer is 

gradually growing and this region where the viscous effect is not there that region is known 

as inviscid flow region. And, velocity is a function of x, y inside the boundary layer and 

outside obviously, it is constant. 

And, this is known as core region velocity and you can see this core velocity will increase 

at the different axial locations as you have the boundary layer near to the wall. After a 

certain distance, you can see these boundary layers will merge in the central region and 

after that, there will be no change of the velocity profile in the flow direction. 

So, these region is known as fully developed region, where the velocity profile remains 

the same. It does not vary in the flow direction and if x is the axial direction then in this 



case y is measured from the axis and u is function of y only ok. And, you can see if the 

distance between two parallel plates is 2H, then these maximum hydrodynamic boundary 

layer thickness will be H ok. 

And, this region is known as hydrodynamic entrance region where the thickness of the 

hydrodynamic boundary layer increases and up to the point where it merges. 
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So, you can see here the entrance region is characterized by the following features. The y-

velocity component does not vanish; that means, v not equal to 0, in the hydrodynamic 

entrance region. The streamlines are not parallel. Core velocity, uc, increases with axial 

direction x. So, this is the uc it increases to maintain the conservation of mass at every 

cross-section. 

Pressure decreases with axial direction which means, dp/dx is less than 0; that means, the 

flow takes place from high-pressure region to low pressure region. Velocity boundary 

layer thickness delta is within half-height of the channel; that means, in the hydrodynamic 

entrance region δ will be less than H. 

A fully developed region is characterized by the following features. So, you know that this 

is the fully developed region. The y-velocity component vanishes and v is equal to 0 in the 

fully developed region. The streamlines are parallel. The axial velocity u is invariant with 

the axial direction x; that means, 
𝜕𝑢

𝜕𝑥
 will be 0, because these velocity profiles u is a function 



of y only and it does not change in the direction of the flow. So, 
𝜕𝑢

𝜕𝑥
 will be 0 in the fully 

developed region. 

Pressure decreases with axial direction; that means, 
𝑑𝑝

𝑑𝑥
 will be less than 0 and velocity 

boundary layer thickness δ  is equal to the half-height of the channel; that means, δ will be 

H. So, in the fully developed region, as the parallel plates are separated by a distance 2H, 

so, hydrodynamic boundary layer thickness will be H in the fully developed region. 
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Now, let us consider steady one-dimensional rectilinear flow and now, we will simplify 

the continuity equation and Navier-Stoke equation, so that we can have the exact solutions. 

So, first, we are assuming that it is a steady laminar incompressible fully developed flow. 

So, you can see that we are considering one-dimensional rectilinear flow. And in the third 

direction let us say that in the z-direction it is infinite and w velocity is 0 and the gradient 

of any quantity in the direction of z is 0 ok. So, 
𝜕()

𝜕𝑧
 of any quantity is 0 as it is infinite in 

the z-direction. 

Now, as it is a fully developed flow so, we have 
𝜕𝑢

𝜕𝑥
 is 0. Velocity profile u does not change 

in the direction of the flow. So obviously, you can see that we have 
𝜕𝑢

𝜕𝑥
  is 0 and also 

𝜕𝑤

𝜕𝑧
  is 

0, ok. So, from this continuity equation, you can see we have this is 0, as it is fully 



developed flow, this is 0. So, we have 
𝜕𝑣

𝜕𝑦
 is equal to 0; that means if you integrate it v will 

be constant ok. 

And, as you are considering let us say that flow between two parallel plates so, these are 

non-porous plates. So, if these are non-porous, then v will be 0 at the plate. So, if you can 

see that if v is 0 at the plate and let us say y is measured from here, so, obviously, if v is 0 

at the plates then integration constant will be 0 and v will be 0 everywhere inside the flow 

domain ok. 

And, now we can see that del of del z of any quantity is 0. So, that means, we have 
𝜕𝑢

𝜕𝑥
 is 0 

and we have 
𝜕𝑢

𝜕𝑧
 is equal to 0; because the third direction is infinite and the gradient of any 

quantity is 0 in the z direction. So, obviously, u is not a function of x, u is not function of 

z. So, that means, u is function of y only and at as it is a steady flow, so obviously, it is not 

function of time. So, u is a function of y only. 

Now, let us consider the x component of the momentum equation, and let us simplify this 

equation invoking the assumptions. 

(Refer Slide Time: 13:31) 

 

So, you can see that it is a steady flow. So, 
𝜕𝑢

𝜕𝑡
 is 0 because it is a steady flow it is a fully 

developed flow so, this is 0. We have seen that v is 0, w is 0. So, you can see left hand side 



all terms are 0 and as 
𝜕𝑢

𝜕𝑥
 is 0 everywhere so, 

𝜕2𝑢

𝜕𝑥2
 is 0; 

𝜕𝑢

𝜕𝑧
 is 0 everywhere so, 

𝜕2𝑢

𝜕𝑧2
 also will 

be 0 and already we have shown that u is a function of y only. 

So, now these partial derivatives we can write as ordinary derivative keeping that 
𝜕𝑝

𝜕𝑥
 maybe 

it is constant. So, we can write  

 0 = −
𝜕𝑝

𝜕𝑥
+ µ

𝜕2𝑢

𝜕𝑦2
+ 𝜌𝑔𝑥 

gx is the component of the g in the x direction. So, we can have the governing equation to 

find the velocity profile  

𝜕2𝑢

𝜕𝑦2
=

1

µ
(

𝜕𝑝

𝜕𝑥
− 𝜌𝑔𝑥) 

So, in most of the flows, we get that 
𝜕𝑝

𝜕𝑥
  is constant. So, this is the pressure gradient is 

constant except the pulsatile flow. So, in the right-hand side you can see this will be 

constant so, you can integrate this governing equation and satisfy the boundary condition 

to get the velocity profile. 

Once you find the velocity profile then you will be able to calculate the shear stress. In this 

particular case, when we consider flow inside two infinite parallel plates we will have one 

non-zero shear stress that is τyx because in this case u is a function of y only and the other 

components of velocity is v and w are 0. 
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So, we have shear stress component  

𝜏𝑦𝑥 = 𝜇 (
𝜕𝑣

𝜕𝑥
+

𝜕𝑢

𝜕𝑦
) 

So, in this particular case v is 0. So,  

𝜏𝑦𝑥 = 𝜇
𝜕𝑢

𝜕𝑦
 

Similarly, vorticity you can write one component will be non-zero, 

𝜔𝑧 =
𝜕𝑣

𝜕𝑥
−

𝜕𝑢

𝜕𝑦
 

So, this is 0. So,  

𝜔𝑧 = −
𝜕𝑢

𝜕𝑦
 

So, if you can find the velocity distribution u then obviously, you will be able to calculate 

the shear stress and the vorticity component. 

Now, to find the volume flow rate at a particular cross-section then you can find Q as 

𝑄 = ∫
𝐴

𝑢(𝑦) 𝑑𝐴 



So, once you integrate then you will be able to find the volume flow rate at a particular 

cross-section. 
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Now, for this particular case when we are considering flow inside two infinite parallel 

plates let us simplify y and z-component of momentum equations. So, you can see this is 

the y component of the momentum equation 

𝜌 [
∂v

∂t
+ 𝑢

∂v

∂x
+ 𝑣

∂v

∂y
+ 𝑤

∂𝑣

∂z
] = −

∂p

∂y
+ 𝜇 (

𝜕2𝑣

𝜕𝑥2
+

𝜕2𝑣

𝜕𝑦2
+

𝜕2𝑣

𝜕𝑧2
) + 𝜌𝑔𝑦 

 as it is a steady flow 
∂v

∂t
  is 0; as v is 0, left side all the terms are 0 and we have obviously, 

v is 0 so, all these terms are 0 in the viscous term. 

So, we will have only  

∂p

∂y
= 𝜌𝑔𝑦 

So, obviously, this is nothing but the hydrostatic pressure right. And, similarly, in the z-

component of momentum equation 

𝜌 [
∂w

∂t
+ 𝑢

∂w

∂x
+ 𝑣

∂w

∂y
+ 𝑤

∂𝑤

∂z
] = −

∂p

∂z
+ 𝜇 (

𝜕2𝑤

𝜕𝑥2
+

𝜕2𝑤

𝜕𝑦2
+

𝜕2𝑤

𝜕𝑧2
) + 𝜌𝑔𝑧 



 

∂w

∂t
 is 0 as it is steady state w is 0, so, these terms are 0. The viscous term is also 0 as w is 

0. So, you will get  

∂p

∂z
= 𝜌𝑔𝑧 

So, this is also hydrostatic pressure as w is equal to 0. 
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So, now we know that pressure is function of x, y and z. So, we can write  

𝑑𝑝 =
∂p

∂x
𝑑𝑥 +

∂p

∂y
𝑑𝑦 +

∂p

∂z
𝑑𝑧 

So, we can write  

𝑑𝑝 =
∂p

∂x
𝑑𝑥 + 𝜌𝑔𝑦𝑑𝑦 + 𝜌𝑔𝑧𝑑𝑧 

So, this is constant let us assume. So, if it is not versatile flow, then obviously, 
∂p

∂x
 will be 

constant inside pipe flow. So, you can see now if you integrate it keeping 
∂p

∂x
 is constant, 

we can write p as 



𝑝 =
∂p

∂x
𝑥 + 𝜌𝑔𝑦𝑦 + 𝜌𝑔𝑧𝑧 + 𝑐 

Where c is the integration constant. So, using this expression you will be able to find the 

pressure distribution inside the flow field. So, this is the expression for pressure. 

(Refer Slide Time: 21:09) 

 

Now, let us consider plane Couette flow which is known as shear-driven flow. So, flow 

inside two parallel plates where one plate is moving with respect to the other. So, we are 

assuming steady laminar incompressible fully developed flow and we are assuming for 

this particular case as we are considering plane Couette flow, pressure gradient and gravity 

in the direction of the flow are 0 and it is shear driven flow due to movement of plates. 

So, in general, we are considering two infinite parallel plates separated by a distance H, x 

is the axial direction and y is measured from the bottom plate and let us consider that 

bottom plate is moving with a constant velocity Ub and the upper plate is moving with a 

constant velocity Ut, where t represents top and b represents bottom. 

So, in general, first we will find the velocity distribution and the shear stress distribution 

and then we will calculate the volume flow rate. So, as we have seen that 
∂p

∂x
 is 0 and gx is 

0. So, whatever governing equation we have derived you can see that  

𝜕2𝑢

𝜕𝑦2
=

1

𝜇
(

∂p

∂x
− 𝜌𝑔𝑥) 



So, these are 0 for this particular case. So, we have the governing equation  

𝜕2𝑢

𝜕𝑦2
= 0 

Now, integrating this equation what you will get?  

∂u

∂y
= 𝐶1 

And again if you integrate you will get u which is function of y as  

𝑢(𝑦) = 𝐶1𝑦 + 𝐶2 

Now, let us find these integration constants 𝐶1, 𝐶2 invoking the boundary conditions. So, 

we have the velocities known at bottom and top plates. 

So, what are the boundary conditions boundary conditions? So, we have at y is equal to 0 

u is equal to Ub. So, at y is equal to 0 if you put is u is equal to Ub, this will give 

𝐶2 = 𝑈𝑏 

 And at y is equal to H we have u is equal to Ut. So, this will give  

𝑈𝑡 = 𝐶1𝐻 + 𝑈𝑏 

So, that will give 

𝐶1 =
𝑈𝑡 − 𝑈𝑏

𝐻
  

So, now if we put the values of 𝐶1 and 𝐶2 we will get the velocity profile as 

𝑢(𝑦) =
𝑈𝑡 − 𝑈𝑏

𝐻
𝑦 + 𝑈𝑏 
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Now, let us find the volumetric flow rate. So, we can find  

𝑄 = ∫
𝐴

𝑢(𝑦) 𝑑𝐴 

So, let us consider that W is the width of the plates. So, in the z-direction say let us say 

that we have the width W which is very long and we are considering one elemental strip 

dy at a distance y from the bottom plate. 

So, you can see if you consider these elemental flow areas so, you will get dA as elemental 

flow area as Wdy. So, now, we can write  

𝑄 =  ∫ 𝑢𝑊𝑑𝑦
𝐻

0

 

So, let us calculate the volumetric flow rate per unit width; that means, Q/W. So, it will be 

𝑄

𝑊
=  ∫ (

𝑈𝑡 − 𝑈𝑏

𝐻
𝑦 + 𝑈𝑏) 𝑑𝑦

𝐻

0

 

=
𝑈𝑡 − 𝑈𝑏

𝐻

𝐻2

2
+ 𝑈𝑏𝐻 

= (𝑈𝑡 + 𝑈𝑏)
𝐻

2
 



So, average velocity now you can calculate. So, 

𝑈𝑎𝑣 =
𝑄

𝐻𝑊
=

𝑈𝑡 + 𝑈𝑏

2
 

So, now, let us calculate the shear stress. So, we have  

𝜏𝑦𝑥 = 𝜇
𝑑𝑢

𝑑𝑦
= 𝜇

𝑈𝑡 − 𝑈𝑏

𝐻
 

So, you can see that τyx is constant because 𝑈𝑡, 𝑈𝑏 , H and 𝜇 are constant. So, this is constant 

inside the flow domain. 

So, we have found the velocity profile, the volumetric flow rate and the shear stress, if you 

see the expression for velocity profile you can see it is a linear profile and velocity will 

vary from Ub from the bottom plate to Ut at the top plate and shear stress is constant. So, 

you can see that this is your variation of velocity as a function of y and shear stress will be 

constant. 

Now, we will consider four different cases. The first case we will consider that the bottom 

plate is stationary and the upper plate is moving with a constant velocity u. 
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So, this is the special case where bottom plate is stationary u is equal to 0 and upper plate 

is moving with a constant velocity U. So, we can see whatever expression we have for 



velocity distribution, shear stress and the volumetric flow rate just let us put Ut is equal to 

U and Ub is equal to 0. Then we will get the velocity profile u(y) so,  

𝑢(𝑦) = 𝑈
𝑦

𝐻
 

So, it will vary from 0 at the bottom plate to U at the upper plate. So, this is the velocity 

profile. 

Now, if you calculate the shear stress τyx it will be  

𝜏𝑦𝑥 =
𝜇𝑈

𝐻
 

And 

𝑄

𝑊
=

𝑈𝐻

2
 

And  

𝑢𝑎𝑣 =
𝑈

2
 

 

So, now if we want to calculate the force required to move the upper plate of length L, 

then you can see that if you have an upper plate of width W. 

So, let us say that this is W, top view we are seeing and at a distance x if you take one 

elemental strip of distance dx then the area elemental area dA will be just Wdx over the 

plate. So, obviously, F you can calculate as  

𝐹 = ∫
𝐴

𝜏𝑦𝑥 |𝑦=𝐻𝑑𝐴 = ∫
𝜇𝑈

𝐻
𝑊𝑑𝑥

𝐿

0

 

𝐹

𝑊
=

𝜇𝑈𝐿

𝐻
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Now, let us consider the 2nd case where both the plates are moving with the same velocity 

in the same direction ok. So, that means, Ut and Ub is equal to U. So, now, we are 

considering Ut is equal to U, Ub is equal to U. So, this is known as plug flow because from 

here you can see that your velocity uy; if you put u here so, this will become 0. 

So, it will be just u and τyx obviously, from this expression you can see it will be 0. Q/W 

will be from this expression you can see it will be UH and uav obviously, it will be U. So, 

you can see that the fluid will have the motion as a solid body because the whole fluid will 

move with a constant velocity U and hence there will be no shear stress so, τyx is 0. So, it 

is known as plug flow. 
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The 3rd special case we are considering that the top plate is moving in the x-direction at 

velocity constant velocity U1 and the bottom plate is moving in the opposite direction as  -

U2 ok. So, U is equal to -U2 at the bottom plate and at the top plate U is equal to plus U1. 

So, this is moving in this direction and the upper plate is moving in the positive x-direction. 

So, if you put this expression Ut is equal to U1 and Ub is equal to -U2, the velocity profile 

you will get  

𝑢(𝑦) =
𝑈1 + 𝑈2

𝐻
𝑦 − 𝑈2 

Shear stress τyx will be  

τ𝑦𝑥 =
µ(𝑈1 + 𝑈2)

𝐻
 

𝑄

𝑊
= (𝑈1 − 𝑈2)

𝐻

2
 

and  

𝑢𝑎𝑣 =
(𝑈1 − 𝑈2)

2
 



So, now you can see in this particular case obviously, inside the flow domain somewhere 

the velocity will become 0. So, at what distance y you will get the velocity 0 let us find. 

So, you can see u will be 0. So, from this expression you can see if you put it. So, 

𝑈1 + 𝑈2

𝐻
𝑦|𝑢=0 − 𝑈2 = 0 

So, that will give  

𝑦|𝑢=0 =
𝑈2𝐻

𝑈1 + 𝑈2
 

So, you can see the velocity distribution will look like this it is a linear profile and at this 

distance the velocity will become 0 at this distance. 
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Next let us consider that top and bottom plates are moving with a same velocity, but in 

opposite direction ok. So, we can see that it is moving with minus U, so that means, in this 

direction and u is equal to U in this direction. So, obviously, the velocity profile u(y) will 

be 

𝑢(𝑦) =
2𝑈

𝐻
𝑦 − 𝑈 

τ𝑦𝑥 =
2𝑈µ

𝐻
 



𝑄

𝑊
= 0 

𝑢𝑎𝑣 = 0 

So, from here you can see that u will be 0, when 

2𝑈

𝐻
𝑦|𝑢=0 − 𝑈 = 0 

So,  

𝑦|𝑢=0 =
𝐻

2
 

So, this is the velocity profile and as you can see that you have from the here upper side 

you have velocity in the positive direction and the bottom side it is in the negative direction 

and you will get average velocity as 0. 
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Now, let us consider two-layer Couette flow where we have two different fluids inside 

these two parallel plates where upper plate is moving with respect to the bottom plate these 

two fluids are immiscible and having different viscosity. 

So, if you consider here x is the axial direction, y is measured from the bottom plate; the 

bottom plate is stationary, the upper plate is moving with a constant velocity u in the 



positive x-direction. And, this is fluid A where viscosity is µA, this is fluid B where 

viscosity is µB and these fluids are immiscible. So, the interface is located at a distance HA 

from bottom plate and at a distance HB from the top plate. 

Now, we are considering steady incompressible fluid flow. So, we have the same 

governing equations. So,  

𝜕2𝑢

𝜕𝑦2
= 0 

So, for fluid A just we will write this equation as  

𝜕2𝑢𝐴

𝜕𝑦2
= 0 

This is in the range 0 to HA and you will get the uA as  

𝑢𝐴 = 𝐶1𝐴𝑦 + 𝐶2𝐴 

So, if you put boundary condition at y is equal to 0, uA is equal to 0. So, that will give C2A 

is equal to 0 hence you will get  

𝑢𝐴(𝑦) = 𝐶1𝐴𝑦 

Now, for fluid B, we can write the same governing equation where UB is the velocity 

profile inside the domain for fluid B. So, 

𝜕2𝑢𝐵

𝜕𝑦2
= 0 

And this is valid in the range HA to HA+HB. So, we will get the velocity profile uB as 

𝑢𝐴 = 𝐶1𝐵𝑦 + 𝐶2𝐵 

 Now, we will apply the boundary condition at y is equal to HA+HB , uB is equal to U. So, 

that will give 

𝐶2𝐵 = 𝑈 − 𝐶1𝐵(𝐻𝐴 + 𝐻𝐵) 

So, if you put these value in this expression so, the velocity profile uB we will get as  



𝑢𝐵(𝑦) = 𝑈 − 𝐶1𝐵(𝐻𝐴 + 𝐻𝐵 − 𝑦) 

So, now, at the interface we will apply the interface condition ok. So, at the interface you 

know that velocity is continuous velocity will be the same and the shear stress is 

continuous ok. So, at the interface, 

𝑢𝐴 = 𝑢𝐵 at 𝑦 = 𝐻𝐴 

 So, if you put it so, from this expression you can see 

𝐶1𝐴𝐻𝐴 = 𝑈 − 𝐶1𝐵(𝐻𝐴 + 𝐻𝐵 − 𝐻𝐴) 

So, we will get 

𝐶1𝐴 =
𝑈 − 𝐶1𝐵𝐻𝐵

𝐻𝐴
 

Now, let us write at interface that shear stress is continuous. So, at y is equal to HA; that 

means, at interface we have shear stress is continuous shear stress is continuous. 
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So, you can see that at this point the stress from side fluid A will be equal to the stress 

from fluid side B. So, τyx from fluid A will be equal to shear stress from fluid B at y is 

equal to HA; that means, at the interface. 

So, you can see  



𝜇𝐴

𝑑𝑢𝐴

𝑑𝑦
|
𝐴

= 𝜇𝐵

𝑑𝑢𝐵

𝑑𝑦
|

𝐵

 

So, you will get 

𝜇𝐴𝐶1𝐴 = 𝜇𝐵𝐶1𝐵 

So, you can write that  

𝜇𝐴

𝑈 − 𝐶1𝐵𝐻𝐵

𝐻𝐴
= 𝜇𝐵𝐶1𝐵 

𝐶1𝐵 =
𝜇𝐴𝑈

𝜇𝐵𝐻𝐴 + 𝜇𝐴𝐻𝐵
 

So,  

𝐶1𝐴 =
𝜇𝐵

𝜇𝐴
𝐶1𝐵 =

𝜇𝐵𝑈

𝜇𝐵𝐻𝐴 + 𝜇𝐴𝐻𝐵
 

So, the velocity profile in the two layers we will get  

𝑢𝐴(𝑦) = 𝐶1𝐴𝑦 =
𝜇𝐵𝑈

𝜇𝐵𝐻𝐴 + 𝜇𝐴𝐻𝐵
𝑦 

In the range y between 0 and HA. 

Similarly,  

𝑢𝐵(𝑦) = 𝑈 − 𝐶1𝐵(𝐻𝐴 + 𝐻𝐵 − 𝑦) = 𝑈 −
𝜇𝐵𝑈

𝜇𝐵𝐻𝐴 + 𝜇𝐴𝐻𝐵

(𝐻𝐴 + 𝐻𝐵 − 𝑦) 

In the range of y HA less than equal to y less than equal to HA+HB. 
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Now, let us find the shear stress distribution in the fluid domain A and B. So, shear stress 

you can find 

𝜏𝑦𝑥𝐴
= 𝜇𝐴

𝑑𝑢𝐴

𝑑𝑦
= 𝜇𝐴𝐶1𝐴 =

𝜇𝐴𝜇𝐵𝑈

𝜇𝐵𝐻𝐴 + 𝜇𝐴𝐻𝐵
 

 In fluid domain b you will get 

𝜏𝑦𝑥𝐵
= 𝜇𝐵

𝑑𝑢𝐵

𝑑𝑦
= 𝜇𝐵𝐶1𝐵 =

𝜇𝐴𝜇𝐵𝑈

𝜇𝐵𝐻𝐴 + 𝜇𝐴𝐻𝐵
 

So, if we look into the expression you can see that τyx in the fluid A and fluid B are same 

and constant; that means, the shear stress will be constant and same value in entire fluid 

domain . So, that means,  

𝜏𝑦𝑥|𝐴 = 𝜏𝑦𝑥|𝐵 

So, now from this expression you can see the if you want to compare the velocity gradient 

say  

𝑑𝑢𝐵

𝑑𝑦
𝑑𝑢𝐴

𝑑𝑦

=
𝐶1𝐵

𝐶1𝐴
= 𝜇𝐴/𝜇𝐵   



So, if you consider that the viscosity in fluid domain A is greater than the viscosity in the 

fluid domain B. So, what will happen? So, from this expression you can say that 𝜇𝐴  if it 

is greater than 𝜇𝐵 then obviously, 
𝑑𝑢𝐵

𝑑𝑦
 will be greater than 

𝑑𝑢𝐴

𝑑𝑦
 . So, obviously, you can see 

that the fluid velocity is linear inside domain fluid domain. So, obviously, this will be 

constant in the entire fluid domain. 

So, obviously, you can write  

𝑑𝑦

𝑑𝑢𝐵
<

𝑑𝑦

𝑑𝑢𝐴
 

\ So, if your velocity is varying linearly so, you can see that this is your dy and this is your 

du. And, if this is the angle θ so, you can see you can write dy/du as tan θ  ok. So, you can 

see 
𝑑𝑦

𝑑𝑢𝐵
 will be just tanθB will be less than tanθA; that means, θB will be less than θA. 

So, depending on the values of 𝜇𝐴 and 𝜇𝐵 you can see that if 𝜇𝐴 is greater than 𝜇𝐵, you 

will get θB as less than θA. 
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So, now, let us plot the velocity profile for two different conditions. So, we have already 

found that if 𝜇𝐴 is greater than 𝜇𝐵 then θA will be greater than θB and obviously, you can 

see that this is the angle for the velocity profile in fluid domain A. So, this will be θA and 

this is θB. So, θA will be greater than θB. 



So, you can see that velocity is linearly varying in the fluid domain A after that. So, θB 

will be less than θA. So, your velocity profile will look like this uB in the fluid domain B 

and if you consider that 𝜇𝐴  less than 𝜇𝐵 . So, then you can so that θA will be less than θB. 

So, you can see this is θA and this is θB. So, θA obviously, is less than θB. So, your velocity 

profile will be like this after that θB will be greater than θA. So, uB velocity profile will 

look like this. So, in this way you can plot the velocities in the two different fluid domains. 
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Now, let us find what is the volumetric flow rate for these two layer Couette flow. So, in 

each fluid domain we need to integrate this integral udA to find the Q. So,  

𝑄

𝑊
= ∫ 𝑢𝐴

𝐻𝐴

0

𝑑𝑦 + ∫ 𝑢𝐵

𝐻𝐴+𝐻𝐵

𝐻𝐴

𝑑𝑦 

=
𝜇𝐵 𝑈

𝜇𝐴𝐻𝐵 + 𝜇𝐵𝐻𝐴
∫ 𝑦

𝐻𝐴

0

𝑑𝑦 + ∫ {𝑈 −
𝜇𝐴 𝑈

𝜇𝐴𝐻𝐵 + 𝜇𝐵𝐻𝐴
(𝐻𝐴 + 𝐻𝐵 − 𝑦)}

𝐻𝐴+𝐻𝐵

𝐻𝐴

𝑑𝑦 

So, now if you integrate it, it will be 

=
𝜇𝐵 𝑈

𝜇𝐴𝐻𝐵 + 𝜇𝐵𝐻𝐴

𝐻𝐴
2

2
+ 𝑈𝐻𝐵 −

𝜇𝐴 𝑈

𝜇𝐴𝐻𝐵 + 𝜇𝐵𝐻𝐴

{(𝐻𝐴 + 𝐻𝐵)𝐻𝐵} −
1

2
(𝐻𝐵

2 + 2𝐻𝐴𝐻𝐵) 

= 𝑈𝐻𝐵 +
𝜇𝐵 𝑈𝐻𝐴

2

2(𝜇𝐴𝐻𝐵 + 𝜇𝐵𝐻𝐴)
−

𝜇𝐴 𝑈

𝜇𝐴𝐻𝐵 + 𝜇𝐵𝐻𝐴
{𝐻𝐵

2 −
𝐻𝐵

2

2
} 



= 𝑈𝐻𝐵 +
𝑈

2(𝜇𝐴𝐻𝐵 + 𝜇𝐵𝐻𝐴)
(𝜇𝐵𝐻𝐴

2 − 𝜇𝐴𝐻𝐵
2) 

So, this is the expression for volumetric flow rate per unit width for two layer plane Couette 

flow. 
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Now, let us see the special case where we have 𝜇𝐴 is equal to 𝜇𝐵 is equal to µ; that means, 

we have same fluid in region A and B. So, in this case you will get obviously, you can see  

𝑢𝐴 = 𝑢𝐵 = 𝑢(𝑦) =
𝑈𝑦

𝐻𝐴 + 𝐻𝐵
 

and  

𝑄

𝑊
= 𝑈𝐻𝐵 +

𝑈

2
(𝐻𝐴 − 𝐻𝐵) =

𝑈

2
(𝐻𝐴 + 𝐻𝐵) 

And, let us say that HB is equal to 0 and HA is equal to H then you will get plane Couette 

flow. So, you see the velocity profile will be same as the plane Couette flow whatever we 

have derived 

𝑢(𝑦) =
𝑈𝑦

𝐻
 

 And 



𝑄

𝑊
=

𝑈𝐻

2
 

So, in today’s class first, we simplified the Navier-Stoke equation invoking the 

assumptions so that we can have the analytical solution. So, what we did? We converted 

the partial differential equation to an ordinary differential equation invoking the 

assumptions. Then, we derived the velocity profile, shear stress distribution, the volume 

flow rate and the average velocity for plane Couette flow considering different cases. 

Then we considered two-layer Couette flow where we have two immiscible fluids of 

different viscosities 𝜇𝐴 and 𝜇𝐵. In this particular case, we found the velocity distribution 

in fluid layer A and fluid layer B.  

Then, we calculated the shear stress distribution and as we have the interface condition 

that shear stress is continuous at the interface and in each fluid layer the shear stress is 

constant, hence the shear stress is the same and constant for the whole fluid domain. Then 

we calculated the volumetric flow rate inside the flow domain for two-layer Couette flow. 

Thank you. 


