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Hello, everyone. So, in the last class we derived that Navier-Stoke equations. Today, we will 

just write down the differential form of the momentum equations and the shear stresses acting 

on the fluid element in Cartesian coordinate, then we will write down these equations in 

cylindrical and spherical coordinates. Then we will discuss the initial conditions and boundary 

conditions for Viscous Fluid Flow. 
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So, you can see that we have already derived these governing equations for laminar viscous 

fluid flows. So, this is the continuity equation 

𝜕𝜌

𝜕𝑡
+ ∇. (𝜌�⃗� ) = 0 

 and this is the Navier-Stokes equations 

𝜕(𝜌�⃗� )

𝜕𝑡
+ ∇. (𝜌�⃗� �⃗� ) = −∇𝑝 + ∇. (𝜇∇�⃗� ) + 𝜌𝑔  



So, these are written in general form and it is applicable for both incompressible and 

compressible fluid flows. 

And, if you remember that we have also written the Cauchy stress tensor as a summation of 

these hydrostatic stress tensor and the deviatoric stress tensor. So, now if you remember that 

whatever we have written  τij this is the second ordered stress tensor and we can denote this τij 

where this index i is the direction normal of the face on which it is acting. And, index j is the 

direction of action of the state component itself. 

So, if you can see this is one fluid element the stresses acting on the surface x is in this direction, 

this is the y and this is the z-direction. If you consider this surface one where at this point you 

can see that sheer stress acting on the surface normal to the surface is τxx; that means, this the 

first x is for the direction normal of the face on which it is acting. 

So, you can see on this for this surface 1 the normal direction is the x-direction right. So, τxx 

obviously, the fist x is the direction normal of the face on which it is acting and the second x is 

the direction of action of the stress component itself. So, it is acting in the x-direction. So, this 

is τxx. 

Now, if you consider τxy, then x is the direction normal of the face on which it is acting. So, 

this is the normal direction you can see x, and in which direction it is acting? It is acting in the 

y-direction; that means, this y is the direction of xn of stress component itself and similarly τxz 

you can see that z is the in the direction of action of stress component in the z-direction and x 

is normal to this surface. 

So, in other surfaces two and three similarly, these stress components can be defined. If you 

consider incompressible fluid flows then obviously, for constant density incompressible fluid 

flows you can write 
𝜕𝑢𝑘

𝜕𝑥𝑘
  which is nothing but ∇�⃗�  is equal to 0. 
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Now, onwards for convenience, we will denote the deviatoric stress tensor for incompressible 

fluid flows as  

𝜏𝑖𝑗 = 𝜇 (
𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
) 

Earlier as we denoted as 𝜎𝑖𝑗 and for incompressible fluid flows 
𝜕𝑢𝑘

𝜕𝑥𝑘
 is equal to 0. So, these 

deviatoric stress tensor. So, this just in general will say that it is the shear stress acting on the 

fluid element. So, now, you can see that for 3-dimensional fluid flows we can have 9 

components of this shear stress and out of that 6 will be unknown. So, let us write down the 

stress components in terms of the velocity gradient. 

So, first, let us write that in the normal stress which is acting on the surface normal x and in the 

x-direction. So,  

𝜏𝑥𝑥 = 𝜇 (
𝜕𝑢

𝜕𝑥
+

𝜕𝑢

𝜕𝑥
) = 2𝜇

𝜕𝑢

𝜕𝑥
 

So, this is acting normal to the surface. Similarly, 

𝜏𝑦𝑦 = 𝜇 (
𝜕𝑣

𝜕𝑦
+

𝜕𝑣

𝜕𝑦
) = 2𝜇

𝜕𝑣

𝜕𝑦
 

 



Similarly,  

𝜏𝑧𝑧 = 𝜇 (
𝜕𝑤

𝜕𝑧
+

𝜕𝑤

𝜕𝑧
) = 2𝜇

𝜕𝑤

𝜕𝑧
 

So, these are the stresses acting perpendicular to the surface. 

Now,  

𝜏𝑥𝑦 = 𝜇 (
𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥
) = 𝜏𝑦𝑥 

𝜏𝑥𝑧 = 𝜇 (
𝜕𝑢

𝜕𝑧
+

𝜕𝑤

𝜕𝑥
) = 𝜏𝑧𝑥 

𝜏𝑦𝑧 = 𝜇 (
𝜕𝑣

𝜕𝑧
+

𝜕𝑤

𝜕𝑦
) = 𝜏𝑧𝑦 

So, you can see we have 6 components 1, 2, 3, 4, 5, 6 as τxy is equal to τyx, τxz is equal to τzx 

and τyz is equal to τzy. So, there are 9 components. So, we can write  

𝜏𝑖𝑗 = 𝜇 (

𝜏𝑥𝑥 𝜏𝑥𝑦 𝜏𝑥𝑧

𝜏𝑦𝑥 𝜏𝑦𝑦 𝜏𝑦𝑧

𝜏𝑧𝑥 𝜏𝑧𝑦 𝜏𝑧𝑧

) 

And if you can see that τxy is equal to τyx, τxz is equal to τzx and τyz is equal to τzy. 

So, although there are 9 components, 6 are unknown. So, whatever Navier-Stokes equations 

we have derived. So, you have this non-linear term which is your convective term. So, let us 

express this convective term in differential form. 
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So, we have 

𝜕(𝜌�⃗� )

𝜕𝑡
+ ∇. (𝜌�⃗� �⃗� ) = −∇𝑝 + ∇. (𝜇∇�⃗� ) + 𝜌𝑔  

 where  

�⃗� = 𝑢𝑖̂ + 𝑣𝑗̂ + 𝑤�̂� 

∇=
∂

∂x
𝑖̂ +

∂

∂y
𝑗̂ +

∂

∂z
�̂� 

 So, now, if we write this convective term which is your non-linear term so, we can write  

∇. (𝜌�⃗� �⃗� ) = ∇. {𝜌�⃗� ( 𝑢𝑖̂ + 𝑣𝑗̂ + 𝑤�̂�)} 

= ∇. (𝜌�⃗� 𝑢)𝑖̂ + ∇. (𝜌�⃗� 𝑣)𝑗̂ + ∇. (𝜌�⃗� 𝑤)�̂� 

= ∇. {(𝜌( 𝑢𝑖̂ + 𝑣𝑗̂ + 𝑤�̂�)𝑢)𝑖̂ + ∇. (𝜌( 𝑢𝑖̂ + 𝑣𝑗̂ + 𝑤�̂�)𝑣)𝑗̂ + ∇. (𝜌( 𝑢𝑖̂ + 𝑣𝑗̂ + 𝑤�̂�)𝑤)�̂� 

= {
∂

∂x
(𝜌𝑢𝑢) +

∂

∂y
(𝜌𝑣𝑢) +

∂

∂z
(𝜌𝑤𝑢)} 𝑖̂ + {

∂

∂x
(𝜌𝑢𝑣) +

∂

∂y
(𝜌𝑣𝑣) +

∂

∂z
(𝜌𝑤𝑣)} 𝑗̂

+ {
∂

∂x
(𝜌𝑢𝑤) +

∂

∂y
(𝜌𝑣𝑤) +

∂

∂z
(𝜌𝑤𝑤)} �̂� 



So, now you can see that we have written this term now the temporal term whatever you have. 

So, if you write u component of momentum equations so, only x component if you write. So, 

you can see here you can write  

∂(𝜌𝑢)

∂t
+

∂(𝜌𝑢𝑢)

∂x
+

∂(𝜌𝑣𝑢)

∂y
+

∂(𝜌𝑤𝑢)

∂z
= −

∂p

∂x
+ 𝜇∇2𝑢 + 𝜌𝑔𝑧 

𝜌
∂u

∂t
+ 𝑢

∂𝜌

∂t
+ 𝜌𝑢

∂𝑢

∂x
+ 𝑢

∂(𝜌𝑢)

∂x
+ 𝜌𝑣

∂𝑢

∂y
+ 𝑢

∂(𝜌𝑣)

∂y
+ 𝜌𝑤

∂𝑢

∂z
+ 𝑢

∂(𝜌𝑤)

∂y

= − −
∂p

∂x
+ 𝜇∇2𝑢 + 𝜌𝑔𝑧 

Now, what is our continuity equation if you go back and see the continuity equation you can 

see  
𝜕𝜌

𝜕𝑡
+ ∇(ρ �⃗� ) is equal to 0. So,  

𝜌 [
∂u

∂t
+ 𝑢

∂u

∂x
+ 𝑣

∂u

∂y
+ 𝑤

∂𝑢

∂z
] = −

∂p

∂x
+ 𝜇∇2𝑢 + 𝜌𝑔𝑧 

So, you can see this equation actually it is in the non-conservative form we have written ok. 

So, this is the equation in conservative form and this is the equation of x component momentum 

equation in non-conservative form and we have invoked the continuity equation and we have 

written it; that means, we have written you can see these terms. 

So, if you take u common then you will get  

u [
∂𝜌

∂t
+ 𝑢

∂(𝜌𝑢)

∂x
+ 𝑣

∂(𝜌𝑣)

∂y
+ 𝑤

∂(𝜌𝑤)

∂z
] 

So, this is the continuity equation. So, we have invoked this continuity equation has 0 and we 

have written this continuity this x-component of momentum equation in non-conservative 

form. 

So, if you see in the Navier-Stokes equation we have the pressure gradient term as well as the 

body force term. So, can we club this together to get some quantity which is having some 

physical significance? 
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So, whatever pressure get in term is there you can see that we have written 

−∇𝑝∗ = −∇𝑝 + 𝜌𝑔   

So, if we are considering body forced term as the gravitational acceleration, then obviously, 

this 𝑝∗ will denote as the piezometric pressure. So, let us just write the z-component of the 

momentum equation and we considered this pressure gradient term and the body force term 

and let us say that this is the z-direction, this is the y and this is the x-direction and gravity is 

acting in a negative z-direction. 

So, you can see that in x and y components of momentum equation obviously, we do not have 

any component of this gravity. However, in the negative z-direction we have the gravity term 

as g. So, this is the g so, obviously, for z component of momentum equation we can write 

−
𝜕𝑝∗

𝜕𝑧
=

𝜕p

𝜕𝑧
−  𝜌𝑔 

⇒
𝜕𝑝∗

𝜕𝑧
=

𝜕p

𝜕𝑧
+  𝜌𝑔 

So, now, we will integrate it and for constant density incompressible flow. So, rho we can keep 

it as constant. So, we can write 

𝑝∗ = 𝑝 + 𝜌𝑔𝑧 



So, you can see with some constant, but if you put that at z is equal to 0, p is equal to 0, then 

obviously, you will get that constant as 0. So, you can see that in general Navier – Stokes 

equation instead of this pressure gradient and the body force term, we can write in terms of 

some modified pressure which is your piezometric pressure. 

As you are considering the gradient of the pressure in the governing equation, so you can see 

that it does not matter whether it is a modified pressure or it is a thermodynamic pressure or 

mechanical pressure. So, we can actually club together this pressure gradient term and body 

force term and we can write one modified pressure when we considered gravity as the body 

force term then; obviously, it comes down to the piezometric pressure. 

So, we can drop the gravity term and we can deal with the piezometric pressure and as we are 

dealing with the pressure gradient so, it does not matter whether it is piezometric pressure or it 

is thermodynamic pressure. 
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So, you can see that in Cartesian coordinate we can write the governing equation for laminar 

incompressible flow with constant fluid properties. So, you can see this is the continuity 

equation. So, this we have already derived.  

∂u

∂x
+

∂v

∂y
+

∂𝑤

∂z
= 0 



𝜌 [
∂u

∂t
+ 𝑢

∂u

∂x
+ 𝑣

∂u

∂y
+ 𝑤

∂𝑢

∂z
] = −

∂p

∂x
+ 𝜇 (

𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
+

𝜕2𝑢

𝜕𝑧2
) + 𝜌𝑔𝑥 

So, this is the x component momentum equation and similarly y and z component of momentum 

equation you can write like this. 

𝜌 [
∂v

∂t
+ 𝑢

∂v

∂x
+ 𝑣

∂v

∂y
+ 𝑤

∂𝑣

∂z
] = −

∂p

∂y
+ 𝜇 (

𝜕2𝑣

𝜕𝑥2
+

𝜕2𝑣

𝜕𝑦2
+

𝜕2𝑣

𝜕𝑧2
) + 𝜌𝑔𝑦 

 

𝜌 [
∂w

∂t
+ 𝑢

∂w

∂x
+ 𝑣

∂w

∂y
+ 𝑤

∂𝑤

∂z
] = −

∂p

∂z
+ 𝜇 (

𝜕2𝑤

𝜕𝑥2
+

𝜕2𝑤

𝜕𝑦2
+

𝜕2𝑤

𝜕𝑧2
) + 𝜌𝑔𝑧 

So, you can see the this we have written in non-conservative form and in vector form in general 

we can write  

𝜌 [
𝜕(�⃗� )

𝜕𝑡
+ �⃗� . ∇�⃗� ] == −∇𝑝 + 𝜇∇2�⃗� + 𝜌𝑔  

And, a component of viscous stress tensor for the incompressible Newtonian fluid you can see 

that we have already written these expressions. So, these are the normal stresses and these are 

the sheer stresses. 

So, this τ represents obviously, you can see for incompressible fluid flow these the deviatoric 

stresses that we have represented here. 
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Similarly, if you consider a cylindrical coordinate this is the x, y and z. So, at this point it is r, 

θ, z; r is the radius, and θ is measured from here. So, whatever governing equation we have 

derived in Cartesian coordinate and if you use this transformation function because from here 

you can see that x equal to rcosθ, y is equal to rsinθ and z is equal to z. 

So, using this transformation function you can convert these governing equations from 

Cartesian coordinate to cylindrical coordinate. So, you can see this is the continuity equation, 

this is the r component of momentum equation, this is the θ component of momentum equation 

and this is the z component of the momentum equation and corresponding viscous stresses are 

written here. So, these are the normal stresses τrr, τθθ and τzz and these are the shear stresses. 

So, in this case τrθ will be τθr, τrz is equal to τzr and τrθ is equal to τθz where vr is the velocity in 

the radial direction, vθ is the velocity in the tangential direction and vz is the velocity in the z-

direction. 
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Similarly, in spherical coordinate, if you consider this as r, θ, ϕ and θ is the zenith angle it 

varies from 0 to ϕ and ϕ is the azimuth angle. So, it varies from 0 to 2ϕ then if you use this 

transformation function x equal to rsinθ cosϕ and y is equal to rsinθsinϕ and z is equal to rcosθ. 

So, from the Cartesian coordinate governing equations to cylindrical to spherical coordinates 

governing equation you can convert. 

So, these are the continuity equations where vr is the velocity in the r direction, vθ is the velocity 

in θ direction and vϕ is the velocity in ϕ direction. So, similarly, we can write the r component 

of momentum equation, θ component momentum equation and ϕ component of momentum 

equation where this nabla square vi in spherical coordinate is denoted like this. And, the viscous 

stress tensor in spherical coordinates you can write τrr, τθθ, τϕϕ these are the normal stresses and 

these are the shear stresses. 

So, you can see that the governing equation whatever we have derived the Navier-Stokes 

equation we have four independent variables that is x, y, z, and t and four dependent variables 

u, v, w and p. And, we have four scalar equations three component of momentum equations 

and one continuity equation. In general, you can see these Navier-Stokes equations are non-

linear and couple. 

So, the general solution after integrating this equation is very difficult. However, for simplified 

geometry and simplified assumptions, we can have the integral solution of these equations. 



Now, when we solve these equations by integrating and invoking the assumptions we must 

specify the physical conditions to constant the flow at the boundaries. 

So, those are known as boundary conditions and for time-dependent flow we must specify the 

state of the flow at an initial condition and that is known as initial conditions. So, you can see 

that the governing equations whatever we have written so, we have a time derivative. So, these 

are time-dependent governing equations. 

So, if you are solving any time-dependent problem or unsteady problem, then at time t is equal 

to 0 you need to specify the initial condition. So, how do you determine that how many initial 

conditions and how many boundary conditions are required for a particular problem? So, it 

depends on the highest order of the partial differential equation. 

So, we can see in the Navier-Stoke equation we have the first derivative with respect to time. 

So, obviously, one initial condition is required and if you see in the special variable we have 

highest order is second order. So, we need two boundary conditions in each direction ok. So, 

if it is a 3-dimensional flow then in three directions in each direction we need two boundary 

conditions. So, total 6 boundary conditions are required. 
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So, we can see that for an unsteady problem at time t is equal to 0, we need to specify the value 

of any variable at interior domain. So, it may be a function of x, y, z or it may be 0 or it may 

be constant where ϕ represents any variable u, v, w or p ok. 
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Now, in general, we can have three different types of boundary conditions; first is the Dirichlet 

type boundary condition where the value of a dependent variable is specified at the boundary 

ok. So, you can see that we can have this value of ϕ as a function of space and time, ok. 

So, we can see that this ϕ may represent u, v, w or p. So, if you are specifying the values of this 

dependent variable at the boundary then that is known as Dirichlet type boundary condition 

and it may be a function of space only or function of time only or it may be constant or it may 

be 0. 

So, if we can see that if we consider a solid boundary ok; so, in the solid boundary; obviously, 

we invoke the no-slip condition; that means, there will be no relative motion between the 

boundary and the fluid. So, that means, your velocity will be 0 at the solid boundary. So, you 

can see that this is the example of a Dirichlet boundary condition even at the inlet you can 

specify the velocity or at the outlet, you can specify the velocity. So, those will be Dirichlet 

type boundary conditions. 

The next one is Neumann the normal derivative of the dependent variable is specified at the 

boundary. So, for any surface, if that normal derivative let us say if n is normal. So, 
𝜕𝜙

𝜕𝑛
 is 

specified. So, it may be spatially varying or with time it may vary. So, you can see this is the 

Neumann type boundary condition. So, you can see ϕ maybe u, v, w or p and this may be equal 

to 0 or it may be a function of only space or it may be a function of only time or it may be 

constant ok. 



So, generally at outflow boundary condition for the velocities, we specify that 
𝜕𝑢

𝜕𝑥
 is equal to 0, 

where say if you consider any channel flow and if it is fully developed flow at the outlet and if 

this is the x-direction then normal to these boundary you can see 
𝜕𝑢

𝜕𝑥
  will be 0 and similarly, 

𝜕𝑣

𝜕𝑥
 

will be 0 and 
𝜕𝑤

𝜕𝑥
 will be 0. 

So, this is an outflow boundary condition. So, this is one example of Neumann boundary 

condition. Another type of boundary condition we can have Robin or mixed type boundary 

condition which we are having the linear combination of the dependent value and its normal 

derivative is specified at the boundary. 

So, we can write this as 

𝛼𝜙 + 𝛽
𝜕𝜙

𝜕𝑛
= 𝛾 

So, n is normal to the boundary ok. So, where α, 𝛽 and 𝛾 are the known functions; α. So, you 

can see that we have a specified value at ϕ and the normal gradient we have 
𝜕𝜙

𝜕𝑛
  is equal to 𝛾. 
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So, now we will discuss about different boundary conditions which we encounter in fluid flow 

problems. First we will discuss about solid wall boundary condition which we actually apply 

no slip boundary condition at the wall; that means, the fluid sticks to the boundary this 



boundary condition says that the fluid in contact with the wall will have the same velocity of 

the wall. 

So, you can see that if this is the solid wall and the fluid velocity V will have the same velocity 

at the solid. So, obviously, for this stationary wall this solid wall velocity will be 0, so V will 

be 0. So, in this particular case if it is 2-dimensional flow then u will be 0 and v will be 0. So, 

this boundary condition is commonly known as no slip boundary condition. 

Then we will discuss about the permeable wall, if the boundary is permeable then fluid can 

cross the boundary. So, you can see that in this figure we have shown permeable wall where 

suction is taking place; that means, the fluid velocity here normal to this boundary will have 

the velocity minus v; that means, here in this case tangential velocity u is equal to 0 and normal 

velocity. 

So, this is flowing through the wall v not equal to 0 and for this particular case v will be just 

minus v for suction and if it is a blowing then obviously, this v will take place in the positive y 

direction. So, v will be positive V. 
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In some flows there is a plane of symmetry since the velocity field is the same on either side 

of the plane of symmetry the velocity must go through a minimum or maximum at the plane of 

symmetry. 



So, if we consider this channel flow let us say flow inside two infinite parallel plates and x is 

the axial direction in this particular case the flow will be symmetric about this central axis the 

distance between two parallel plates. So, this will be from the centerline if we measure so, it 

will be h and it will be h, then at y is equal to 0, there will be a symmetry plane. 

So, in this case, normal velocity so, v will be 0 and shear stress τyx will be 0 and in this particular 

case obviously, y is measured from the centerline. So, 
𝜕𝑢

𝜕𝑦
   will be 0; that means, the flow will 

be maximum or minimum at this plane of symmetry. 
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Now, another boundary condition we will discuss is free surface. So, you can see there are two 

fluids; fluid 1 and fluid 2 immiscible fluids and there is an interface. So, free surface occurs at 

the interface between two fluids such interfaces require two boundary conditions to be applied. 

So, one is the kinematic boundary condition. 

So, kinematic boundary condition which relates the motion of the free interface to the fluid 

velocities at the free surface. So, if there is any fluid particle sitting on this interface; obviously, 

it will always remain part of this free surface ok. So, if we say that Z is this h, the height from 

the bas,e and it is function of x, y and t then the velocity in z-direction w will be 

𝑤 =
𝜕ℎ

𝜕𝑡
+ 𝑢

𝜕ℎ

𝜕𝑥
+ 𝑣

𝜕ℎ

𝜕𝑦
 



So, in this particular case obviously, you can see u, v, w are the velocities in the x, y and z 

direction respectively. And, if we consider the flow to be steady, then for steady-state flow 

problems obviously, it will not be a function of t. So,  �⃗� . �̂�  is equal to 0 where n is normal to 

the free surface. So, you can see there is no flow through this interface. So, �⃗� . �̂� is equal to 0; 

that means, there will be no flow through this free surface. 
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So, now, we will discuss about the other boundary condition in case of free surface so that is a 

dynamic boundary condition. Dynamic boundary condition requires the stress to be continuous 

across the free surface which separates the two fluids. So, in this case the traction exerted by 

fluid 1 onto the fluid 2 is equal and opposite to the traction exerted by fluid 2 on fluid 1. 

So, that means, in this particular case if we can write the shear stress tensor 

𝜏𝑖𝑗
1 𝑛𝑗 = 𝜏𝑖𝑗

2 𝑛𝑗 

 So, n is the normal to this interface. If you have this curved surface so, in this case surface 

tension can create a pressure jump across the free surface. 

So, the surface tension induced pressure jump is given by  

∆𝑝 = 𝜎𝜅 

where 𝜎 is the surface tension and 𝜅 is the curvature, ok.  



And, we know that the curvature you can calculate as 

𝜅 =
1

𝑅1
+

1

𝑅2
 

Where 𝑅1 and 𝑅2 are principal radii of curvature of the surface. So, if you consider the surface 

tension then this dynamic boundary condition you can write as  

𝜏𝑖𝑗
1 𝑛𝑗 + 𝜎𝜅𝑛𝑗 = 𝜏𝑖𝑗

2 𝑛𝑗 
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Next, we will have another boundary condition fluid-fluid interface. So, similar to whatever 

we have discussed in the last slide, but we neglect the surface tension effect then; obviously, 

you can see at this fluid-fluid interface there will be shear stress continuity and the velocity 

continuity neglecting the effect of the surface tension. 

So, if you have two immiscible fluids then at the interface there will be velocity continuity; 

that means, so, from fluid 1 side velocity �⃗� 1  will be equal to the fluid velocity fluid 2 velocity 

�⃗� 2. So, in this particular case obviously, the velocity at the interface from fluid 1 side and fluid 

2 sides it will be the same and there will be also shear stress continuity at the interface. 

So, in this case, you can see obviously, from the fluid side 𝜏𝑖𝑗
1  will be 𝜏𝑖𝑗

2 . So, in this particular 

case if we say that tangential velocity is Vt at the interface and n is normal to the boundary, 

then we can say that  



𝜇1

𝜕𝑉𝑡1

𝜕𝑛
= 𝜇2

𝜕𝑉𝑡2

𝜕𝑛
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So, this is the shear stress continuity and we can have the inlet boundary condition. So, at the 

inlet, we can specify the value of the variable. So, obviously, in this case, if you consider that 

flow between two infinite parallel plates so, at the inlet you can either specify a constant 

velocity or you can have a fully developed velocity profile you can specify at the inlet. 

So, obviously, the flow is assumed to be constant or fully developed. So, in this case, if x is the 

axial direction, then in this case you can see that velocity u will be either U which is a constant 

velocity and v you can make 0 or you can also give a parabolic profile u which will be a function 

of y. 

So, you can specify at the inlet the condition at the outflow plane now we will discuss. So, you 

can see in this particular case it is the outlet. So, at the outlet generally, we specify pressure is 

equal to 0 and for other variables, we specify that in the flow direction the gradient is 0 of all 

the velocities. 

So, in this particular case, you can see the conditions of the outflow plane are extrapolated from 

within the domain and have no impact on the upstream flow. So, in this particular case, we can 

write if x is the axial direction which is the flow direction. So, we can write  

𝜕𝑢

𝜕𝑥
= 0                

𝜕𝑣

𝜕𝑥
= 0              

𝜕𝑤

𝜕𝑥
= 0    



where x is the flow direction in this particular case ok. So, that means, the gradient of velocities 

in the flow direction is 0. 

For unsteady flow generally, one more appropriate boundary condition is OrLanski boundary 

condition; which you can apply at the outlet for unsteady flow problem. So, this we can write  

𝜕𝑢

𝜕𝑡
+ �⃗� . ∇𝑢 = 0 

Similarly, you can write  

𝜕𝑣

𝜕𝑡
+ �⃗� . ∇𝑣 = 0 

and  

𝜕𝑤

𝜕𝑡
+ �⃗� . ∇𝑤 = 0 

 Where �⃗�  we can take as  

�⃗� = 𝑢𝑖̂ + 𝑣𝑗̂ + 𝑤�̂� 

So, in this particular case we write the average velocity at the outlet. So, we need to calculate 

the average velocity then if the average velocity let us say if it is uav at the outlet, then we can 

write  

𝜕𝑢

𝜕𝑡
+ 𝑢𝑎𝑣

𝜕𝑢

𝜕𝑥
= 0 

𝜕𝑣

𝜕𝑡
+ 𝑢𝑎𝑣

𝜕𝑣

𝜕𝑥
= 0 

𝜕𝑤

𝜕𝑡
+ 𝑢𝑎𝑣

𝜕𝑤

𝜕𝑥
= 0 

 

So, this is known as the OrLanski boundary condition and this is more appropriate for unsteady 

flow problem. 



So, in today’s class, we started with the Navier-Stoke equation in general form and then we 

have invoked the incompressible flow assumptions and we have written the momentum 

equations in differential form and in Cartesian coordinate we have written the continuity 

equation and three components of momentum equations in differential form and in non-

conservative form. 

Also, we have written the shear stresses three components of normal stresses and three 

components of six components of shear stresses and out of these you can see out of nine 

components six are unknown. Next, we have written the governing equations in the cylindrical 

coordinate and spherical coordinate and corresponding viscous stresses also we have written. 

Then we discussed about piezometric pressure. So, we combined the thermodynamic pressure 

or the mechanical pressure plus the body force term in the piezometric pressure. Next, we 

discussed about the initial condition where at time t is equal to 0, we need to specify the value 

of the dependent variable. 

Next we considered different types of boundary conditions Dirichlet, Neumann, and Robin 

boundary conditions and for the dependent variable if the value is specified at the boundary, 

then it is known as Dirichlet type boundary condition; if the normal gradient is specified, then 

it is known as Neumann type boundary condition and if the value of the dependent variable 

and it is normal gradient is specified then it is Robin boundary condition. 

In addition, we have discussed about other boundary conditions like no-slip boundary 

condition, then free slip boundary condition or symmetry boundary condition and also if we 

have two different immiscible fluids at the interface we need to consider the boundary 

condition. So, that also we have discussed. 

Thank you. 


