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Free Shear Layer Between Two Different Streams

Hello everyone. So, we will continue with the Laminar Free Shear Flows. Today, we will

consider Free Shear Layer Between Two Streams. 
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So, we can consider that two different streams are coming with different velocities; U 1 and U

2 and at x equal to 0, they are meeting and obviously, when it will go further in the axial

direction, so there will be a velocity gradient. So, you can see that u 1 is the velocity which is



function of x and y in the fluid stream 1, whose properties are density rho 1 and viscosity mu

1 and in fluid 2 domain, the velocity is u 2 which is function of x and y and the fluid

properties are rho 2 and mu 2.

So, scientist Lock fist solved this problem using similar similarity variable used by Blasius.

So, he used a different similarity variable for two different streams. So, let us write down the

similarity variable this eta j. Similarity variable eta j is equal to y root U 1 divided by twice x

nu j, so, where j is equal to 1 and 2. So, 1 is for fluid 1 in the upper layer and j is equal to 2 is

the fluid layer 2 which is lower layer.

So, two different similarity variables were used for two streams and f prime j which is the

representation of the velocity u, so that is u j by u 1 ok; where, u 1 is the scale of this velocity

of first fluid layer or upper fluid layer. So, here you can see obviously for two different layers

j is equal to 1 and 2, you will get different f j prime. So, this equation also we can write the

boundary layer equation and we need to solve using these similarity variable.
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So, our governing equation that is your boundary layer equation is u del u by del x plus v del

u by del y is equal to nu del 2 u y del y square ok. So, if we use those similarity variable and

using similar approach made in the Blasius equation, we can write the Blasius type equation

for each layer as f j triple prime plus f j f j double prime is equal to 0 ok; where, j is equal to 1

for fluid layer 1 and j is equal to 2 for fluid layer 2. 

So, you can see that this is the ordinary differential equation; third order ordinary differential

equation and this is non-linear. So, now, let us discuss about the boundary conditions. So, for

each layer, we will have the boundary condition as well as we will have interface condition. 

So, boundary conditions. So, to solve this ordinary differential equation, we will use these

boundary conditions. First one is asymptotic approach to the two stream velocities ok. So,

you can see that as eta j tends to infinity ok. So, that means, in the positive y direction. So, y



tends to infinity. So, obviously, f 1 prime will be 1 because f j prime, we have defined at u j

by U 1 right. So, at y tends to infinity, we have velocity e 1. 

So, f 1 prime will become 1 and eta j tends to minus infinity. So, for j is equal to 2, you can

see f 2 prime we can write as; so, u j will be U 2, so it will be U 2 by U 1 ok. So, there should

be some kinematic equality. So, if you use kinematic equality, then we can write that velocity

at the interface will be same for both the stream ok. So, at interface, we have ok. So, u 1

should be u 2 and v 1 should be v 2.

So, u 1 is equal to u 2 if you see, that you will get f 1 prime ok and the interface you can see

that we have at y is equal to 0. So, f 1 at y is equal to 0 will be f 2 prime at y is equal to 0 ok.

So, velocity continuity we have and also from v 1 is equal to v 2, you can see that it will be f

1 0 should be f 2 0 ok. So, these are the velocity continuity at the interface. Similarly, we will

have the shear continuity at the interface.
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So, if you write that boundary condition, then we will get shear stress continuity at interface

ok. So, at y is equal to 0 ok, so that means, eta is equal to 0. So, tau 1 at eta is equal to 0

should be tau 2 at eta is equal to 0. So, that means, mu 1 del u 1 by del y, so at y is equal to 0

ok; at y is equal to 0 should be mu 2 del u 2 by del y at y is equal to 0. 

So, if you write in terms of f, then you can write mu 1 del f 1 prime by del y at y is equal to 0

should be equal to mu 2 del f 2 prime by del y at y is equal to 0. So, now, this velocity

gradient let us write this derivative with respect to eta. So, if you write that, then we will get

mu 1 d f 1 prime by d eta del eta by del y at eta is equal to 0 is equal to mu 2 d f 2 prime by d

eta del eta by del y at eta is equal to 0 ok. 

So, you can see you can write this as mu 1 and del eta by del y which will be root U 1 divided

by twice x nu 1. So, del f 1 prime by del eta, we will write just f 1 double prime at eta is equal



to 0 is equal to mu 2 del eta by del y at eta is equal to 0. So, this will be. So, here 1 U 1 will

be there and here, U 1 root U 1 by twice x nu 2 f 2 double prime at eta is equal to 0. So, if you

rearrange it. So, you can write as f 1 double prime at eta is equal to 0 as.

So, you can see root U 1 by 2 x all this will get cancelled and we will have just mu 2 by mu 1

and we will have root nu 1 by nu 2 f 2 double prime 0. So, if you take it inside and do the

simplification, you will get f double prime at eta is equal to 0 will be just root mu 2 rho 2 by

mu 1 rho 1 into f 2 double prime 0 ok. Let us represent K is equal 2 mu 2 rho 2 divided by mu

1 rho 1. So, we can write it as f double prime 0 is equal to root K f 2 double prime 0.

So, now, let us consider few extreme cases. So, one case we will consider that lower layer

velocity is very very small compared to the upper layer. So, in that case, we can consider that

U 2 by U 1 is equal to 0 ok. So, U 2 is very very small compared to U 1.
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So, in that case, you can see that one case we can consider, where U 2 by U 1 is equal to 0

and another case we will consider U 2 by U 1 is equal to 0.5 ok and the value of K. So, K is

equal to rho 2 mu 2 by rho 1 mu 1 ok. So, now, if you consider the identical fluid in both the

streams ok same fluid; then obviously, properties will be same. So, K will become 1 ok. 

So, we can write for identical fluids, so these fluid properties will be same; so, K is equal to

1. And if you consider gas flowing over a liquid, so obviously, liquid this mu 2 rho 2 will be

very high right and compared to rho 1 mu 1. So, you can write that K is much much greater

than 1.

So, for example, you can see for air-water interface K value is 60,000 ok. So, that means, root

K will be almost 245. So, for this U 2 by U 1 is equal to 0 we will consider different K value.

So, if K is equal to infinity that means, it is a Blasius equation which we have already solved

and K 60,000, then air-water and if K is equal to 1, then identical fluids. So, you can see these

are the velocity distribution u by U 1 and this is eta 1 and eta 2 ok. So, this is eta is equal to 0.

So, you can see that when you consider K is equal to infinity; that means, it is flow over a flat

plate case and this is the case ok. So, this is the Blasius profile and if you consider K is equal

to 1; that means, it is identical fluids, so you can see this is the velocity profile ok. So, you

can see that in this case obviously, the interface velocity is greater than 0.5 ok. 

So, u by U 1 this interface velocity is greater than 0.5 ok. It is due to that we have different

convective deceleration in two streams. So, we will get this interface velocity u by U 1 greater

than 0.5. When you consider K is equal to 1 and U 2 by U 1 is equal to 0.5, so this is the

velocity profile.

So, this actually the scientist Lock computed and plotted for different values of K. Till now,

we have used analytical method to solve the boundary layer equations. Another way to solve

this boundary layer equation is using numerical method. So, you can use different

discretization scheme like finite difference method, finite volume method or finite element

method; but for flow over a flat plate, we will use finite difference method. 



When we use finite difference discretization method, we need to divide the domain into grid

so that we can solve this discretize equation at each grid point. So, first let us write down the

boundary layer equation in general and we will use suitable discretization scheme to write the

final algebraic equation and then, we will discuss about the boundary conditions. If you look

into this boundary layer equation, it is parabolic in nature. 

So, it is actually marching in x direction. So, if you know the inlet velocity at x equal to 0

which is your free stream velocity U infinity, then you can march in x direction and next level

where say next downstream level, you can compute the velocities from the known velocity in

the at inlet.
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So, let us write the governing equation first. So, our governing equation is continuity

equation; del u by del x plus del v by del y is equal to 0 and we have boundary layer equation,



u del u by del x plus v del u by del y is equal to this. We will also discretize this term which is

your pressure gradient term although for flow over flat plate it is 0; but you can use it for any

cylinder body plus nu del 2 u by del y square. 

So, when we need to use this numerical method, so this is the flat plate and you know that

boundary layer will grow like this. So, you take a domain which is larger than this boundary

layer thickness and you can see we have represented the computational domain with this

green colour boundary.

Now, you need to divide the domain ok into grid. So, we will have in x direction, the grid size

delta x and in y direction, we will have the grid size delta y and indices will use in the x

direction i and in y direction j. So, if you use that at these point, we need to discretize this

equation, then we will give the indices at i j and we will have the neighbour points as this will

be i plus 1 j; this is i minus 1 j and this is i j plus 1 and this is i j minus 1. 

So, we will discretize this momentum equation in this grid point I, j and we will use explicit

method ok. So, we will find the value of i plus 1 from the known value of i j ok. So, this

equation now we will use forward difference for this convective term. So, you can write.

So, if you discretize using finite difference method ok; so using Taylor series expansion, you

can express this gradient in terms of the discreet point values. So, using finite difference

method and we will use explicit method. So, we can discretize this equation as u i, j. So, at

this point we are discretizing. 

So, this gradient del u by del x if you use forward difference, then we will can write as u i

plus 1 j minus u i j divided by delta x and this we can write plus v i j u i j plus 1. So, this

convective term del u by del y, we will use central difference ok. So, in the y direction, we

will use central difference. This we are using forward difference because you are using

explicit method so that u i plus 1 j, we can find from the known values of u i j and other

neighbours.



So, this we will use del u by del y central difference, so we can write u i j plus 1 minus u i j

minus 1 and you can see the difference between these two points is 2 delta y. So, you can see

that this is delta y, this is also delta y ok and the distance between these two grid points is

delta x and also this is delta x. So, these are the grid size. 

So, obviously, you can see when you are writing u i j plus 1 minus u i j minus 1, so it will be

divided by 2 delta y. This we can write as half d u square by d x ok. So, if you discretize that,

then we can write u i plus 1 square minus u i square divided by 2 delta x because u may be

function of x, so we are using forward difference plus nu. So, this we will use central

difference.

So, we will use from the known value at point i ok. So, u i j plus 1 minus 2 u i j plus u i j

minus 1 divided by delta y square. So, you can see that as this boundary layer equation is

parabolic, so we are marching in x and explicit method, we are telling as we are finding the

value of velocity that i plus 1 location from the values of i location ok. 

So, now, if you simplify this, then we can write u i plus 1 j. So, that is unknown. So, you can

take it left hand side. We have this coefficient u i j by delta x. So, this is an unknown

parameter and all are known from the ith point ok. So, you can see i plus 1 j we are finding

from the these values, known values ok. That way we were marching in x direction.

So, in right and side now u i j plus 1 coefficient if you see, so it will be nu by delta y square

minus v i j divided by 2 delta y into u i j plus 1; then u i j coefficient if you see, so it will be u

i j divided by delta x minus twice nu divided by delta y square into u i j. And we have nu by

delta y square plus v i j divided by 2 delta y and coefficient this is the coefficient of u i j

minus 1 and we have this term u i plus 1 square minus u i square divided by 2 delta x. 

So, now, we can find the value of u at i plus 1 j, you can find from the known values of i j i j

minus 1 i j plus 1 and i minus 1 j.
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So, we can write now the velocity u i plus 1 j is equal to nu delta x by u i j delta y square

minus v i j delta x divided by 2 u i j delta y u i j plus 1 plus 1 minus twice nu delta x divided

by u i j delta y square u i j plus nu delta x divided by u i j delta y square plus v i j delta x by 2

u i j delta y u i j minus 1 plus u i plus 1 square minus u i square divided by twice u i j. 

So, we can write so, this is the discretized equation right. So, we can write in this form; u i

plus 1 j is equal to alpha minus beta u i j plus 1 plus 1 minus 2 alpha u i j plus alpha plus beta

u i j minus 1 plus source term S. So, where, alpha is nu delta x by u i j delta y square; beta is v

i j delta x divided by u i j delta y and there will be 2 and the source term S is equal to u i plus

1 square minus u i square divide by 2 u i j. 

So, you can see that this equation for every i j if you right, then you will get system of

algebraic equations and that you need to solve using suitable iterative method. So, as we used



explicit method. So, if you do the Von Neumann stability analysis. So, there will be

restriction to choose the value of delta x ok.
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So, if you do the Von Neumann stability analysis, then based on the stability criteria, we can

write that for stability, we can write that alpha should be less than equal to half and beta

should be less than alpha ok. So, alpha is nu delta x by u i j delta y square should be less than

equal to half and delta x, you can choose as you can see that it will be u minimum in the

domain delta y square divided by twice nu ok. 

So, you have to choose delta x based on the minimum velocity in the domain, then the y gets

a delta y and the fluid property nu ok and beta is less than alpha. So, you can see that v i j

delta x divided by twice u i j delta y should be less than nu delta x divided by u i j delta y

square.



So, this you can find that delta y should be less than twice nu divided by maximum velocity v

max ok because here v is there, so it should be v max so that delta will be the minimum value

you can take. So, we use the explicit method to discretize the boundary layer equation and we

have seen that there is a restriction to choose the value of delta x. 

But if we use some suitable implicit method, then there will be no restriction to choose the

value of delta x. Because we can see using the Von Neumann stability analysis that that the

scheme will be unconditionally stable. 
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So, let us use this implicit finite difference model. So, here we will use del 2 u by del y square

will discretize like u i plus 1 j plus 1 minus 2 u i plus 1 j plus 2 u i plus 1 j minus 1 divided by

delta y square. So, if you can see that we have used. So, this is i j; this i plus 1 j; this point is i



plus 1 j plus 1 and this is i plus 1 j minus 1 and this is i j minus 1 and this is i j plus 1 and this

is i minus 1 j. 

So, we have discretized this gradient del 2 u by del y square at this point i plus 1 j so that we

will write u i plus 1 j plus 1 minus 2 u i plus 1 j plus u i plus 1 j minus 1 divided by delta y

square. So, you can see that we have more than 1 unknown of u at point i plus 1. 

So, if you discretize this, then write the final discretize equation as minus alpha u i plus 1 j

plus 1 plus 1 plus 2 alpha u i plus 1 j minus alpha u i plus 1 j minus 1 is equal to u i j minus

beta u i j plus 1 minus u i j minus 1 plus u i plus 1 square minus u i square divided by twice u

i j; where alpha is equal to nu delta x by u i j delta y square and beta is v i j delta x divided by

twice u i j delta y. 

So, if you do the Von Neumann stability analysis, this is unconditionally stable. So, if you see

the discretize equation, so in the left hand side, we have more unknown terms ok. So, we

have u i plus 1 j plus 1, u i plus 1 j, u i plus 1 j minus 1. So, for each grid point, if you write

this equation, so you will get a system of linear equations and that you need to solve using

some suitable iterative method. 

So, you can use like Gauss iterative method or some other advance solver like Conjugate

gradient method or Bi-conjugate gradient method, you can use to solve this implicit equation.

So, regarding the boundary condition, obviously, it is easy because you know that at the valve

we have velocity 0. So, you can make velocities at the boundaries 0. At inlet, obviously, we

have the pristine velocity ok. So, you need to give that u is equal to the free stream velocity U

infinity and v should be 0.

At the upper boundary obviously, it will be free stream velocity. So, it will be U infinity and v

is equal to 0 and obviously, at the right boundary or exit boundary, you do not need in the

boundary condition because you are marching in the x direction. Obviously, when you will go

to the outer boundary, right most boundary, then you will be able to calculate the value of u

from the previous grid point.



So, in today’s class, first we considered the free shear flows between two different streams.

So, initially it was having two different velocities U 1 and U 2 in upper and lower level. Then

it will have the velocity gradient u 1 in the upper level and u 2 in the lower level. 

So, scientist Lock actually solved this problem similar to Blasius equation. So, he used the

same similarity variable eta for two different streams. Then, he wrote the ordinary differential

equation which is third order non-linear ordinary differential equation. Then, we discussed

about the three different boundary conditions; one is that at the valve, the velocity u and v are.

So, we discuss about three different boundary conditions. So, you can see that upper level

obviously at eta tends to infinity, the velocity will be equal to U 1; that means, your f 1 prime

will be 1 and the at eta tends to minus infinity, that means, at the lower level, we have the

velocity U 2. So, using this similarity variable, you can see that f 2 prime will be U 2 by U 1. 

Then, we have used the velocity continuity as well as the shear stress continuity at the

interface and from there, we have seen the velocity profile for two different cases, where U 2

by U 1 is equal to 0, where lower stream velocity is very very small compared to the

upper-level velocity..

And next, we considered U 2 by U 1 as 0.5. Then, we discussed our different values of K

which is the root square ratio of this mu 2 rho 2 divided by mu 1 rho 1 and in that case, K is

equal to if you consider 1, then obviously, two stream properties are same; so, that means, we

will have the same fluid. And if K tends to infinity, obviously, the lower-level velocity will be

0 and for K tends to infinity, we considered that flow over a flat plate which is the Blasius

solution.

Then, we used finite difference method to solve the boundary layer equation. As boundary

layer equation is parabolic in nature, so we are marching in direction x. So, we used both

explicit and implicit method to discretize the boundary layer equation and we have written the

final algebraic equation and finally, we discuss about the boundary conditions.



Thank you.


