# Higher Engineering Mathematics Professor P N Agrawal Department of Mathematics Indian Institute of Technology Roorkee Lecture 37 Coloring of Graphs - I

(Refer Slide Time: 1:05)

### Graph Colorings

Consider a graph *G*. A vertex coloring, or simply a coloring of *G* is an assignment of colors to the vertices of *G* such that adjacent vertices have different colors. We say that *G* is n - colorable if there exists a coloring of *G* which uses n colors. The minimum number of colors needed to paint *G* is called the **chromatic number** of *G* and is denoted by  $\chi(G)$ .

We give an algorithm by **Welch and Powell** for a coloring of graph *G*. We emphasize that this algorithm does not always yield a minimal coloring of *G*.



Hello friends, welcome to my lecture on Coloring of Graphs. Let us consider a graph G vertex coloring are simply a coloring of G is an assignment to the vertices of G such that adjacent vertices have different colors. We say that G is N colorable if there exist coloring of G which uses N colors. The minimum number of colors needed to paint a graph G is called the chromatic number of the graph G and is denoted by  $\chi(G)$ . Now we shall discuss an algorithm by Welch and Powell for coloring of graph G. We will decide that this algorithm does not always yield minimal coloring of G.

## (Refer Slide Time: 1:18)

# Algorithm (Welch-Powell): The input is a graph G. Step 1. Order the vertices of G according to decreasing degrees. Step 2. Assign one color $C_1$ to the first vertex and then, in sequential order, assign $C_1$ to each vertex which is not adjacent to previous vertex which was assigned $C_1$ . Step 3. Repeat Step 2 with a second color $C_2$ and the subsequence of noncolored vertices. Step 4. Repeat Step 3 with a third color $C_3$ , then a fourth color $C_4$ , and so on untill all vertices are coloured. • Step 5. Exit.

### 

Now, let us see what is the Welch Powell algorithm? The input is the graph G, the 1<sup>st</sup> step is order the vertices of G according to the decreasing degrees okay so we will find the decrease of all the vertices of the graph and then arrange them in the order of decreasing degrees. Now, step 2 is assign one color  $C_1$  to the 1<sup>st</sup> vertex okay and then 1<sup>st</sup> vertex means the vertex with the highest degree, and then in sequential order assign  $C_1$  color to each vertex which is not adjacent to the previous vertex that is vertex with the highest degree and which was assigned  $C_1$  okay. Repeat step 2 with 2<sup>nd</sup> color  $C_2$  and the subsequence of non-colored vertices, so in the step 3 we shall start repeating the step 2 with 2<sup>nd</sup> color. Now in the step 4 we repeat step 3 with the 3<sup>rd</sup> color  $C_3$  and 4<sup>th</sup> color  $C_4$  and so on until all vertices are colored and then we exit. (Refer Slide Time: 2:28)



So, let us see how we do this, let us consider this graph okay this graph let us consider. In this graph you see there are 8 vertices okay, we have to find degrees of each vertex and then arrange them in the order of decreasing degrees. So degree of  $A_1$ , let us 1<sup>st</sup> find the degree of  $A_1$ , degree of  $A_1$  is 1, 2, 3, 4, degree of  $A_2$  is 1, 2, 3, 4, degree of  $A_3$  is 1, 2, 3, 4, 5, degree of  $A_4$  is 1, 2, 3, 4, Degree of is 5,  $A_5$  has degree you see 1, 2, 3, 4, 5, 6 and then degree of  $A_6$  so your 1, 2, 3, degree of  $A_7$  okay degree of  $A_7$  is 1, 2, 3, 4, 5, degree of  $A_8$  okay 1, 2, 3, now let us see which one has the highest degree. You see we have degree of  $A_7$  is equal to 5, degree of  $A_5$  is equal to 6 okay so  $A_5$  has the highest degree, so we have put  $A_5$  in the in the 1<sup>st</sup> place in the sequence.

Next comes  $A_3$  okay,  $A_3$  has degree 5 okay 1 lower than degree of  $A_5$  so  $A_3$  becomes next and then  $A_7$ ,  $A_7$  also has the same degree we can write  $A_3$ , at the 2<sup>nd</sup> place we can write  $A_3$  or we can write  $A_7$  because  $A_3$  and  $A_7$  have equal degrees. After  $A_7$ ,  $A_1$  has degree 4 okay so we have  $A_1$  then  $A_2$ ,  $A_2$  has degree 4 so we have  $A_2$  then  $A_4$ ,  $A_4$  has degree 4 so we have  $A_4$ then  $A_6$ ,  $A_6$  has degree 3 and we have  $A_8$ ,  $A_8$  has degree 3 ok. Now, let us see how we shall find the colors to these vertices okay. So we have arranged the vertices in the order of decreasing degrees then we start with the 1<sup>st</sup> vertex  $A_5$ .

We assign color  $C_1$  to  $A_5$  ok so  $C_1$  color you find to  $A_5$  then  $A_5$  is adjacent to  $A_3$  okay so then we leave it then  $A_5$  is adjacent to  $A_7$  so this also is left and then  $A_1.A_1$  is here,  $A_5$  is not adjacent to  $A_1$  so we assign  $C_1$  color, now then let us say whether  $A_2$  is adjacent to  $A_5$  or not?  $A_5$  is adjacent to  $A_2$  okay so we leave  $A_2$  then  $A_4$ ,  $A_4$  is adjacent to  $A_5$  so we leave it, then  $A_6$ ,  $A_6$  is adjacent to  $A_5$  so we also leave it and then  $A_8$ ,  $A_8$  is also adjacent to  $A_5$  so  $C_1$  color is given to  $A_5$  and  $A_1$  ok. Now we have completed one round that is from  $A_5$  starting with  $A_5$  to which we assign color  $C_1$ , we have checked all the vertices in the sequence okay up to  $A_8$ .

Now we come back and start with  $A_3$  ok,  $A_3$  we assign color  $C_2$  ok then  $A_3$  you see let us see  $A_7$  is adjacent to it, so  $A_3$  is here  $A_7$  is here,  $A_3$  is adjacent to  $A_7$  ok they are joined okay so  $A_7$  is not adjacent to  $A_3$  and therefore, we leave  $A_7$  and then  $A_1$  has already been assigned the color  $A_2$ . Yeah  $A_2$  is adjacent to  $A_3$  so we leave it,  $A_4$ ,  $A_4$  is not adjacent to  $A_3$  so  $A_4$  is assigned color  $C_2$ . And then  $A_6$ ,  $A_6$  is adjacent to  $A_3$  so we leave it,  $A_8$ ,  $A_8$  is not adjacent to  $A_3$  so we give it color  $C_2$  so  $A_8$  is also given color  $C_2$ . Now we have computed the color  $C_2$ , we go back and start with  $A_7$ .

 $A_7$  is given color  $C_3$  okay,  $A_7$  is here okay  $A_7$  is here. Now we have to see this one, this one, this one, this one, yeah  $A_2$ , where is  $A_2$ ?  $A_2$  is not adjacent to  $A_7$  so  $A_2$  is given color  $C_3$  ok. And then what about  $A_6$ ?  $A_6$  is here, it is not adjacent to  $A_7$  so it is also given color  $C_3$  ok. So  $A_5$  and your  $A_1$  they have color  $C_1$ , they are colored with color  $C_1$ ,  $A_3$  and then  $A_4$  and then  $A_8$ , they are colored with color  $C_2$ , and then  $A_7$ ,  $A_2$  and then we have  $A_6$ , they are colored with color  $C_3$ . So 3 colors are used to color all the vertices of this graph and we see that let us now find the minimum number of colors to paint this graph ok.

We see that  $A_1$ ,  $A_2$ ,  $A_3$  okay,  $A_1$ ,  $A_2$ ,  $A_3$  are adjacent ok,  $A_1$  is adjacent to  $A_2$ ,  $A_2$  is adjacent to  $A_3$  ok so they are to be painted with different color. So  $A_1$ ,  $A_2$ ,  $A_3$  are to be painted with different colors so there we will need 3 colors to paint  $A_1$ ,  $A_2$ ,  $A_3$  consider  $A_5$ ,  $A_7$ ,  $A_8$  ok  $A_5$ ,  $A_7$ ,  $A_8$  they are adjacent vertices ok  $A_5$  is adjacent to  $A_7$ ,  $A_5$  is adjacent to  $A_8$  so they will have to be painted with different colors so 3 colors will be needed to paint  $A_5$ ,  $A_7$ ,  $A_8$  with different colors. So minimum here we have used 3 colors to paint the entire graph so minimum number of colors needed to color this graph okay are 3, so that means chromatic number is chromatic number of G is 3 which is the minimum number of colors to be used to color the given graph, so 3 is the committing number here. (Refer Slide Time: 9:50)

The first color is assigned to vertices  $A_5$  and  $A_1$ . The second color is assigned to vertices  $A_3$ ,  $A_4$ , and  $A_8$ . The third color is assigned to vertices  $A_7$ ,  $A_2$ , and  $A_6$ . All the vertices have been assigned a color, and so G is 3 - colorable. Observe that G is not 2 - colorable since vertices  $A_1$ ,  $A_2$ , and  $A_3$ , which are connected to each other, must be assigned different colors Accordingly,  $\chi(G) = 3$ .



So this is the so thus we can say that this graph G is 3 color. If 3 colors are to be used to color this graph then we say that it is free colorable. Now it is not two colorable as we have seen it is not 2 colorable because  $A_1$ ,  $A_2$ ,  $A_3$  they are adjacent,  $A_1$  is adjacent to  $A_2$ ,  $A_2$  is adjacent to  $A_3$  so that means they are to be painted with different colors.

(Refer Slide Time: 10:23)



Now we have to consider the complete graphic  $A_6$  okay,  $K_{10}$ , and in general we can take  $K_n$ .  $K_n$  is complete graph, in the case of complete graph every vertex is adjacent to every other vertex ok. So if vertices are  $V_1$ ,  $V_2$ ,  $V_3$ ,  $V_4$ ,  $V_5$ ,  $V_6$  ok then each vertex is adjacent to every other vertex that means they will all have to be painted with different colors okay so 6 colors will be needed, 6 colors are required for painting  $K_6$  ok. And similarly  $K_{10}$ , in the case of  $K_{10}$ , 10 colors will be required, 10 colors for coloring  $K_{10}$ . In general n colors are required and this is the minimum number of colors okay  $X_n$  equal to n here because it is a complete graph, you cannot color this graph with less than n colors.

Now let us consider this graph okay, so here we are again use Welch Powell algorithm to paint this graph and we shall find the chromatic number of G. So there are how many vertices? 7 vertices so let us find the degree of  $V_1$ , you see 1, 2, 3, 4, 5 so it is 5, degree of  $V_2$  is 1, 2, 3. Degree of  $V_3$ , degree of  $V_3$  is 1, 2, 3, degree of  $V_4$ ,  $V_4$  has got degree 1, 2, 3, 4, degree of  $V_5$  is 1 2 3 4, degree of  $V_6$  is 1, 2, 3, 4, degree of  $V_7$  is 1, 2, 3 ok.

Now let us write the vertices according to that degrees okay, so we have maximum degree is 5 okay so  $V_1$  has the maximum degree okay so we have  $V_1$  in order of decreasing degrees. So then  $V_4$ ,  $V_5$ ,  $V_6$  they all have degree 4 ok so  $V_4$ ,  $V_5$ ,  $V_6$ , we can write in any order,  $V_4$ ,  $V_5$ ,  $V_6$  because we all have same degrees ok and then we  $V_2$ ,  $V_3$ ,  $V_7$ , they all have degree 3 okay.

 $V_1$  has degree by 5, $V_4$ ,  $V_5$ ,  $V_6$  have degree for each and then  $V_2$ , $V_3$ ,  $V_7$  have degree 3 ok. Now so we color  $V_1$  with  $C_1$  color ok and let us see then which vertices are adjacent to  $V_1$ , so  $V_1$  is here  $V_1$  is adjacent to  $V_5$  ok  $V_1$  is adjacent to  $V_5$  so we leave  $V_5$ . $V_6$ , $V_1$  is adjacent to  $V_6$  so we will leave  $V_6$ . $V_4$ , $V_1$  is adjacent to  $V_4$  ok,  $V_1$  is adjacent to  $V_2$  yes,  $V_1$  is adjacent to  $V_3$  yes,  $V_1$  is adjacent to  $V_7$  no, so  $V_7$  is also colored with  $C_1$  ok.

Now we go to  $V_5$  okay  $V_5$  we color with  $C_2$  now  $V_5$  is here okay so  $V_5$ ,  $V_6$ , where is  $V_6$ ?  $V_6$ is here so $V_5$  is not adjacent to  $V_6$  so we give color  $C_2$  to  $V_6$ . And then  $V_4$ ,  $V_4$  is adjacent to  $V_5$  okay so we leave  $V_4$ .  $V_2$ ,  $V_2$  is adjacent to  $V_5$  so we leave  $V_2$ . Then  $V_3$ ,  $V_3$  is here ok  $V_3$  is not adjacent to  $V_5$  so $V_3$  is also given color  $C_2$  okay.

Then we come to  $V_4$  okay, now we will give color  $C_3$  to  $V_4$  ok.  $V_4$  is colored with  $C_3$  and  $V_2$ and very  $V_2$ ?  $V_2$  is here so  $V_4$  is not adjacent to  $V_2$  so  $V_2$  is also colored with  $C_3$  ok. So thus,  $C_1$  color is used for  $V_1$  vertex,  $V_7$  vertex, and  $C_2$  color is used for coloring  $V_5$ ,  $V_6$  and V3, and  $C_3$  color is used to color  $V_4$  and  $V_2$  ok so 3 colors are required to paint this graph okay.

Now you see,  $V_1$  is adjacent to  $V_4$ ,  $V_4$  is adjacent to  $V_6$ ,  $V_1$  is adjacent to  $V_4$  and  $V_4$  is adjacent to  $V_6$  so  $V_1, V_4$ ,  $V_6$  have to be painted with different colors and therefore 3 colors

will be required to paint the vertices of  $V_1$ ,  $V_4$  and  $V_6$  so at least 3 colors have to be used but here we have used 3 colors to paint the entire graph therefore, the chromatic number which is the minimum number of colors to be used to paint the graph is  $\chi(G)$  is equal to 3 okay, so the chromatic number here is  $\chi(G)$  is equal to 3.

(Refer Slide Time: 16:53)



Now let us consider this graph okay, so here let us see what is the degree of  $V_1$ ? We have  $V_1$ ,  $V_2$ ,  $V_3$ ,  $V_4$ ,  $V_5$ ,  $V_6$  ok degree of  $V_1$ so 1, 2, 3, 4. Degree of  $V_2$ , degree of  $V_2$  1, 2, 3. Degree of  $V_3$  so 1, 2, 3. Degree of  $V_4$  is 1, 2, 3. Degree of  $V_5$  so 1, 2, 3 and degree of  $V_6$  is 1, 2, 3, 4 ok. So there are 2 vertices  $V_1$  and  $V_6$  with the degree 4 each, we can write anyone at the 1<sup>st</sup> of the sequence okay so we can write  $V_1$ , let us write  $V_1$  then next is  $V_6$ , they both have equal degrees then all others have 3 degrees each ok so we have  $V_2, V_3, V_4, V_5$ .

Okay now we use color  $C_1$  to paint  $V_1$  vertex so for this we use  $C_1$  color. Now  $V_6$  is here,  $V_6$  is not adjacent to  $V_1$  so  $C_1$  is used to paint  $V_6$  okay. Then  $V_2$ ,  $V_2$  is adjacent to  $V_1$  ok so we leave this,  $V_3$  is also adjacent to  $V_1$  so leave this,  $V_4$  is adjacent to  $V_1$  so leave it,  $V_5$  is adjacent to  $V_1$  so leave it ok so  $V_1$ ,  $V_6$  are painted with  $C_1$  color.

Now, we go to  $V_2$  and paint it with  $C_2$  color and then  $V_2$ ,  $V_2$  is here,  $V_2$  and  $V_3$  they are not adjacent okay so  $C_2$  color is used for  $V_3$  also ok. And then  $V_2$  is adjacent to  $V_4$ ,  $V_2$  is not adjacent to  $V_5$ , no  $V_2$  is not adjacent to  $V_5$ ,  $V_5$  is here, so this is also painted with  $C_2$  color ok, and then what is left? Then we are left with  $V_4$  ok,  $V_4$  is painted with color  $C_3$  ok. So  $C_1$  color is used for  $V_1$ ,  $V_6$ ,  $C_2$  color is used for  $V_2$ ,  $V_3$  and  $V_5$  and  $C_3$  color is used for  $V_4$  ok, so 3 colors are used to paint the vertices here.

Now, let us see what is the chromatic number, you see we have  $V_1$ ,  $V_2$ ,  $V_1$  is adjacent to  $V_2$ ,  $V_1$  is adjacent to  $V_5$  okay so 3 colors will be needed to paint  $V_1, V_2, V_5$  okay and here we have used 3 colors to paint the entire graph. Chromatic number means minimum number of colors to be used to paint the graph so  $\chi(G)$  is equal to 3, we cannot paint the graph with colors less than 3 because  $V_1$ , and  $V_5$ ,  $V_1$  is adjacent to  $V_2$  and  $V_1$  is adjacent to  $V_5$ .

(Refer Slide Time: 20:31)



Now, let us consider this graph, ok so use the Welsh Powell algorithm here, so degree of  $V_1$ , what is degree of  $V_1$ ? 1, 2, 3 degree of  $V_1$  is 3. Degree of  $V_2$  okay, degree of  $V_2$  is how much; 1, 2, 3. Degree of  $V_3$  is 1, 2, 3. Degree of  $V_4$  1, 2, 3 and degree of  $V_5$  1, 2, 3 and degree of  $V_6$ 1, 2, 3 ok so they all have degrees 3 each okay so $V_1$ ,  $V_2$ ,  $V_3$ ,  $V_4$ ,  $V_5$ ,  $V_6$ . Here, let us start with  $V_1$ , we can color it with  $C_1$  color, now  $V_1$  is adjacent to  $V_2$  so we have to leave  $V_2$ , then  $V_1$  is adjacent to  $V_3$  so leave  $V_3$ ,  $V_1$  is adjacent to  $V_4$ , no so  $V_4$  can be colored with  $C_1$ .  $V_1$  is adjacent to  $V_5$ , yes,  $V_1$  is adjacent to  $V_5$  so we cannot color  $V_5$  with  $C_1$ .  $V_1$  is not adjacent to  $V_6$  so we can color it with  $C_1$  color okay.

Then we go to  $V_2$ ,  $V_2$  can be colored with  $C_2$  then  $V_2$  is adjacent to  $V_3$  no, so it can also be colored with  $C_2$ . And then  $V_2$ , is it adjacent to  $V_5$ ?  $V_2$  is not adjacent to  $V_5$  so it can be colored with  $C_2$  ok. So,  $C_1$  color is used to paint  $V_1$ ,  $V_4$  and  $V_6$  okay, and  $C_2$  color can be used for  $V_2$ ,  $V_3$  and  $V_5$  so 2 colors are required. And you see we have  $V_1$  and  $V_2$ , they are adjacent to each other so we will have to use different colors to paint  $V_1$  and  $V_2$  so 2 colors are needed for painting  $V_1$  and  $V_2$  and here we are using 2 colors to paint the entire graph so minimum number of colors used to paint this crap that is chromatic number is 2. So that is the end of this, thank you very much for your attention.